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Abstract

Strategic thinking, best-response, and mutual consistency (equilibrium) are three

key modelling principles in noncooperative game theory. This paper relaxes mutual

consistency to predict how players are likely to behave in in one-shot games before they

can learn to equilibrate. We introduce a one-parameter cognitive hierarchy (CH) model

to predict behavior in one-shot games, and initial conditions in repeated games. The CH

approach assumes that players use k steps of reasoning with frequency f (k). Zero-step

players randomize. Players using k (¸ 1) steps best respond given partially rational

expectations about what players doing 0 through k ¡ 1 steps actually choose. A simple

axiom which expresses the intuition that steps of thinking are increasingly constrained by

working memory, implies that f (k) has a Poisson distribution (characterized by a mean

number of thinking steps ¿ ). The CH model converges to dominance-solvable equilibria

when ¿ is large, predicts monotonic entry in binary entry games for ¿ < 1:25, and predicts

e®ects of group size which are not predicted by Nash equilibrium. Best-¯tting values of

¿ have an interquartile range of (.98,2.40) and a median of 1.65 across 80 experimental

samples of matrix games, entry games, mixed-equilibrium games, and dominance-solvable

p-beauty contests. The CH model also has economic value because subjects would have

raised their earnings substantially if they had best-responded to model forecasts instead

of making the choices they did.
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1 Introduction

Noncooperative game theory uses three distinct concepts to make precise predictions of

how people will, or should, interact strategically: Formation of beliefs based on analysis

of what others might do (strategic thinking); choosing a best response given those beliefs

(optimization); and adjustment of best responses and beliefs until they are mutually

consistent (equilibrium). Standard equilibrium models combine all three features.

The strong assumption of mutual consistency can be reasonably defended on the

grounds that some modelling device is necessary to `close' the model by specifying a

players' beliefs; forcing beliefs to match likely choices is one reasonable way to close

it. Mutual consistency can also be sensibly justi¯ed as a mathematical shortcut which

represents the result of some unspeci¯ed learning or evolutionary adjustment process.2

However, the learning or evolutionary justi¯cations logically imply that beliefs and choices

will not be consistent if players do not have time to learn or evolve. That leaves a

large hole in game theory: Viz., how will people behave before equilibration to mutual

consistency has taken place? This question is important because many games occur

between unfamiliar rivals, and because the way in which play starts probably in°uences

the long-run path of play when there are multiple equilibria.

This paper introduces a cognitive hierarchy (CH) model which weakens mutual con-

sistency but retains the concepts of strategic thinking (to a limited degree) and optimiza-

tion. The model is closed by specifying a hierarchy of decision rules and the frequencies

with which players stop at di®erent steps of the hierarchy. The model is intended to

predict what players do in one-shot games, and to supply initial conditions for dynamic

learning models. It is parameterized by one parameter (¿ ), which is the average number

of steps of thinking. Axioms and estimation across four experimental data sets suggest

that plausible values of ¿ are between 1 and 2.

The CH model illustrates how \behavioral game theory" is done (e.g., Camerer, 2003).

In behavioral game theories, psychological regularities and empirical data are used to

suggest parsimonious ways to weaken assumptions of rationality, equilibrium, and self-

interest.

The CH model is guided by the same aesthetic criteria that motivate analytical game

2Weibull (1995) notes that in Nash's thesis proposing a concept of equilibrium, Nash himself suggested

equilibrium might arise from some \mass action" which adapted over time.
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theorists{ viz., generality, precision, and theoretical usefulness. The theory is general

because it can be applied to all one-shot games. (Extension to repeated games is a

challenge for future work.) The theory is precise because it predicts a speci¯c distribution

of strategy frequencies once one parameter is speci¯ed. (In fact, in games with multiple

equilibria it is more precise than Nash equilibrium and many equilibrium re¯nements.)

And the theory is simple enough that mathematical analysis can be used to derive some

interesting theoretical implications.

The CH approach also strives to meet two other criteria which many ideas in analytical

game theory do not: It is cognitive, and meant to predict behavior accurately. That is, the

steps of thinking players do in the cognitive hierarchy are meant to be taken seriously as

reduced-form outputs of some cognitive mechanism. The theory can therefore be tested

with cognitive data such as self-reports, tests of memory, response times, measures of eye

gaze and attention (Camerer et al., 1994; Costa-Gomes, Crawford and Broseta, 2001),

or even brain imaging (cf. Camerer, Loewenstein, and Prelec, 2002).

Our approach is also heavily disciplined by data. The data reported in this paper

are experimental. Because game-theoretic predictions are notoriously sensitive to what

players know, when they move, and what their payo®s are, laboratory environments

enable good control of these crucial variables (see Crawford, 1997) and hence provide

sharp tests of theoretical predictions. As in all sciences with a laboratory component, of

course, the research program hones models sharply on lab data, in order to choose good

candidate models to eventually explain naturally-occurring ¯eld phenomena.

The CH model is designed to be a useful empirical competitor to Nash equilibrium in

three ways: First, CH should be able to capture deviations when equilibrium behavior

does not occur. An example is behavior in dominance-solvable games. In experimental

studies of these games, most players do think strategically, but they do only one or two

steps of iterated reasoning and hence do not reach an equilibrium in which choices are

mutually consistent (Camerer, 2003, chapter 5). The CH model accounts reasonably well

for deviations like those in dominance-solvable games.

Second, the CH model should reproduce the success of Nash equilibrium in games

where Nash ¯ts well. For example, in games with mixed equilibria, Nash equilibrium

approximates some aspects of behavior surprisingly well, even in one-shot games with

no opportunities to learn. In these games, it appears as if a population mixture of

players using di®erent pure strategies ("puri¯cation") can roughly approximate Nash
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equilibrium. Since the equilibrium model works mysteriously well in these games, the

goal of CH is to o®er a clue to a cognitive process that creates puri¯cation and instant

near-equilibration.

Third, in many interesting games (perhaps most) there are multiple Nash equilibria.

Less plausible equilibria are typically `re¯ned' away by positing additional restrictions

(such as subgame or trembling-hand perfection, and selection principles like risk- or

payo®-dominance). The CH model is another solution to the problem of re¯nement. The

key insight is that multiplicity of equilibria arise because of the assumption of mutual

consistency. Since the CH model does not impose mutual consistency, it does not lead

to multiplicity{ in e®ect, a model of the process of thinking acts as a statistical selection

principle (cf. Harsanyi and Selten, 1988). Ironically, in strategic situations a model

with less (mutual) rationality can be more precise (cf. Lucas, 19863). In extensive-

form games, re¯nement of the Nash concept is needed to eliminate equilibria which rest

on incredible threats (hence subgame perfection) and odd beliefs after surprising events

(hence trembling-hand perfection). In the CH model, every strategy is chosen with

positive probability. So incredible threats and odd beliefs never arise.

The paper is organized as follows. The next section describes the CH model, and

discusses both precursors and alternative speci¯cations. Section III collects some the-

oretical results. Section IV reports estimation of the ¿ parameter from four classes of

games. Section V explores the prescriptive economic value of the CH theory (and some

other theories), by calculating whether subjects would have earned more money if they

had used the CH model to forecast, rather than making their own choices. Section VI

notes how the CH model can account for cognitive details and also sketches how CH and

the QRE approach can be compared. Section VII concludes and points out directions for

further research.

3Lucas (1986) makes the same point in macroeconomic models. Rational expectations often yields

indeterminacy whereas adaptive expectations pins down a dynamic path. Importantly, Lucas also calls

for experiments as a way to supplement intuition about which dynamics are likely to occur, and help

explain why.
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2 The cognitive hierarchy (CH) model

First, notation. Players are indexed by i and strategies by j and j0. Player i has mi

strategies denoted sji . Denote other players' (denoted ¡i) strategies by sj
0
¡i, and player

i's payo®s by ¼i(s
j
i; s

j0
¡i).

We will denote a player's position in the cognitive hierarchy (the number of steps or

steps of thinking she does) by k and a k-step player's expected payo®s (given her beliefs)

by Ek(s
j
i ). Denote the actual frequency of k step players by f (k).

A precise thinking steps theory needs two components: Decision rules for what players

using each step of thinking k in the cognitive hierarchy will do, and a distribution of

thinking steps f (k).

2.1 Decision rules for di®erent thinking steps

We assume that 0 step players are not thinking strategically at all; they randomize equally

across all strategies. Other simple rules could be used to start the cognitive hierarchy

process o®, but equal randomization has some empirical and theoretical advantages.4

Zero-step thinkers may also be \unlucky" rather than \dumb". Players who start to

analyze the game carefully but get confused or make an error might make a choice that

appears random and far from equilibrium (much as a small algebra slip in a long proof

can lead to a bizarre result). Denote the choice probability of step k for strategy Sj by

Pk(Sj). So, we have P0(Sj) = 1
mi

.

Players doing one or more steps of thinking are assumed to not realize that others

are thinking as `hard' as they are (or harder), but they have an accurate guess about the

relative proportions of players using fewer steps than they do. Formally, players at step

k know the true proportions f (0); f(1); ¢ ¢ ¢ f (k ¡ 1). Since these proportions do not add

4Equal randomization implies that all strategies are chosen with positive probability. This is helpful

for empirical work because it means all strategies will have positive predicted probabilities, so there is

no zero likelihood problem when using maximum likelihood estimation. This also liberates us to assume

best response by players using more steps of thinking (rather than stochastic response). For theoretical

work, having all strategies chosen with positive probability solves two familiar problems{ eliminating

incredible threats (since all threats are \tested") as subgame perfection does; and eliminating ad hoc

rules for Bayesian updating after zero probability events (since there are no such events).
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to one, they normalize them by dividing by their sum. That is, step-k players believe

the proportions of players doing h steps of thinking are gk(h) = f (h)=
Pk¡1
i=0 f (k);8h < k

and gk(h) = 0;8h ¸ k.

Given these beliefs, the expected payo® to a k¡step thinker from strategy sj is

Ek(¼i(sj)) =
Pm¡i
j0=1 ¼i(s

j; sj
0
)fPk¡1

h=0 gk(h) ¢ Ph(sj 0)g. For simplicity, assume players best-

respond (or randomize equally if two or more strategies have identical expected payo®s).

The normalized-beliefs assumption gk(h) = f(h)=
Pk¡1
i=0 f (k) has an interesting prop-

erty we call \increasingly rational expectations". To see what this means, ¯rst note

that the absolute total deviation of step-k's beliefs and true frequencies is D(k) =
P1
h=0 jf(h)¡gk(h)j. Then consider how large this total deviation is for players at di®erent

levels of the cognitive hierarchy.

Zero-step thinkers have no beliefs at all. One-step thinkers believe everyone is doing 0

steps of thinking (i.e., g1(0) = 1); since only f(0) are doing 0 steps of thinking the one-step

beliefs are wrong by a total absolute deviation of D(1) = 1¡ f (0) +
P1
h=1(f (h) ¡ 0) =

2 ¡ 2e¡¿ . Two-step thinkers believe g2(0) = f (0)
f (0)+f (1)

and g2(1) = f (1)
f (0)+f(1)

. Since the

actual frequencies are f (0) and f(1) the sum of the deviations between their beliefs and

the true frequencies is D(2) = g2(0) ¡ f(0) + g2(1) ¡ f(1) +
P1
h=2(f(h) ¡ 0). A little

algebra shows that this total deviation is D(2) = 2 ¡ 2e¡¿(1 + ¿ ), which is smaller than

the size of the 1-step thinkers' belief error, D(1). In fact, it is easy to show 5 that the total

deviation D(k) falls monotonically as k increases. The reason is that the \missing" belief
P1
h=k f(h) which is reallocated by the step-k thinker to the lower-step types shrinks as k

grows large. The k-step thinkers' beliefs gradually come closer and closer to the truth.

(In Stahl and Wilson's (1995) terminology the highest-step thinkers become \worldly".)

The fact that beliefs converge as k grows large has another important implication:

As the missing belief grows small, players who are doing k and k + 1 steps of thinking

will have approximately the same beliefs, and will therefore have approximately the same

expected payo®s. While we have endogenized the mean number of thinking steps, this

5Use the sum of the absolute deviations to measure the distance of the normalized distributions from

the true distribution. The total absolute deviation is

D(k) =
k¡1X

h=0

[
f(h)

Pk¡1
h=0 f (h)

¡ f (h)] +
1X

h=k

[f (h)¡ 0] (2.1)

Algebra shows that this is D(k) = 2(1¡
Pk¡1

h=0 f (h)). D(k) is decreasing in k{ so beliefs get closer and

closer to the truth{ and limk!1D(k) = 0 because
P1

h=0 f (h) = 1:
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convergence property is a clue about why players will do only a few steps of thinking{ it

doesn't pay to think too hard, because doing k steps and k+1 steps yields roughly the

same expected payo®. If the number of steps of thinking is endogenized by some kind

of comparison of bene¯ts (marginal expected payo®s from thinking more) and cognitive

costs, the fact that the expected payo®s of higher-step thinkers converges will lead to a

natural truncation which limits the amount of thinking.

2.2 Principles underlying distributions f (k)

So far we have said nothing about the distribution f(k). Denote the average number of

steps of thinking by ¿ . By de¯nition
P1
h=0 f (h) = 1 and

P1
h=0 h¢ f(h) = ¿ . Our approach

is to derive a parsimonious distribution from axioms, and use both further axioms and

empirical estimation to pin the distribution's mean down further. A more empirical

approach is to allow f(0); f(1); ¢ ¢ ¢ f (k) to be free parameters up to some reasonable k,

and estimate each one separately (cf. Nagel, 1995; Stahl and Wilson, 1995; Ho, Camerer

and Weigelt, 1998; Nagel et al, 2002). The results of this sort of estimation are reported

below. A good way to proceed is to posit some sensible principles f (k) should satisfy

and see what distributions satisfy them. We propose three principles:

1. Discreteness: Because the steps of reasoning are discrete, it is convenient if the

distribution is discrete too (i.e., it only puts probability mass on integer values; cf.

Stahl, 1998).

2. Unimodality: It is likely that most players are doing some degree of strategic think-

ing (so zero is not the mode), but constraints on working memory will constrain

players from doing many steps of thinking (and may be unpro¯table at the mar-

gin).6 The ¯rst two principles imply f (k)
f (k¡1)

should be greater than one for low k

and less than one for high k.

3. Convexity: Let k¤ be the most common type. The convexity principle requires that

for k > k¤, f (k+2)
f (k+1) <

f (k+1)
f(k) (upper convexity) and for k < k¤, f(k¡1)

f (k) > f(k¡2)
f(k¡1) (lower

convexity). The upper convexity condition implies that the distribution f(k) drops

6An alternative principle is that f (k) = Á ¢f (k¡1); 8k and Á =
p

5¡1
2

, so that f (k) is always declining

and ¿ = © = 1+
p

5
2

, the golden ratio. This yields the Boltzmann-like distribution f (k) = (1¡Á) ¢ Ák ; 8k,

which ¯ts the statistical distribution of particles with di®erent energy quantum levels.
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o® rapidly for high k. (In Keynes's famous passage on the stock market as a beauty

contest, he guesses that \there are some, I believe, who practise the fourth, ¯fth

and higher degrees [of reasoning about reasoning]" (p156); his wording{ \some"{

suggests Keynes thinks that not many investors do that much thinking.) Rapid

dropo® also means computations can be truncated at a modest number of steps of

thinking (e.g., 8), and the results normalized, with a tiny loss in precision. The

lower convexity condition is useful for theorizing when k¤ is large. It creates a kind

of separability: Players doing k steps will believe (almost) all players are just one

step below them, which means they best-respond to a single strategy rather than

a mixture of strategies across steps which depends on ¿.

Unimodality and convexity are both satis¯ed by f(k)=f(k ¡ 1) / 1=k ! f (k)=f (k ¡
1) = ¿=k. Among discrete distributions, this property holds if and only if the distribution

f(k) is Poisson7, f(k) = e¡¿ ¢ ¿kk .

The Poisson distribution can also be derived as the steady state of a Markov transition

process in which players can either remain in k steps of thinking or move one step forward

or backward to become k ¡ 1 or k + 1 with equal probability given by Pk;k¡1 = Pk;k+1 =
k!
¿k (1¡ P0;0);8k > 0 and any given P0;0.

The Poisson distribution has only one parameter, ¿, which is its mean and its variance.

This simplicity has obvious advantages in estimation.

2.3 Plausible values of ¿

What are reasonable values of ¿? Our approach is deduce some values from principles,

and also estimate them from data, and hope the deduced and estimated values are not

too far apart.

Since the Poisson distribution has only one parameter, restrictions on proportions

f(k) can pin down the value of ¿ exactly.8 This enables us to directly links intuitions

7Since
f(k)

f(k¡1) = k
¿ ,

f(k)
f(k+1) = ¿

k+1 , and k¤ is the largest integer that is lower or equal to ¿ , the upper

and lower convexity conditions follow naturally.
8This one-step precision property is not true of most distributions, of course. For example, if a

distribution is Gaussian then forcing the mode or mean or median to be a specī c value does not restrict

the variance. Forcing the coe±cient of variation to have a particular value does not imply a particular

mean or variance.
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about f(k) to values of ¿ .

For example, suppose k is Poisson-distributed, and 1-step thinking is the most com-

mon. Then it follows that ¿ 2 (1; 2). Now suppose f(1) is most common and is as large as

possible relative to the neighboring frequencies f(0) and f (2)9. Then ¿ =
p

2 = 1:4142.

Or suppose the frequencies of zero- and two-step thinking are equal (f(0) = f(2)). Then

¿ =
p

2 again.

Two other interesting restrictions are

f (0) + f(1) =
1X

j=2

f (j) (2.2)

f (2) =
1X

j=3

f(j) (2.3)

The ¯rst restriction says that the amount of nonstrategic (step 0) or not-very-strategic

(step 1) thinking is equal to the amount of truly strategic thinking (step 2 and above).

The second restriction says that two steps of thinking and the sum of all higher steps are

equally common.

If k is Poisson-distributed, the two properties together imply that ¿ equals
p

5+1
2 ¼

1:618, a remarkable constant known as the \golden ratio" (usually denoted ©)10. The

golden ratio is equal to the limit of the ratios of adjacent numbers in the Fibbonaci se-

quence, and is often used in architecture because rectangles with golden ratio proportions

are aesthetically pleasing.

The other way to pick a value of ¿ is to estimate it from many data sets. Camerer

(2003, chapter 5) surveyed experiments on dominance-solvable games and suggested that

9i.e., ¿ maximizes the minimum ff(1)
f(0)

; f(1)
f(2)
g or minimum ff (1)¡ f (0); f (1)¡ f (2)g.

10Condition (2.2) implies that

1 + ¿ =
1X

j=2

¿ j

j!
= e¿ ¡ (1 + ¿) (2.4)

or equivalently, 1 + ¿ = e¿

2 , which gives ¿ = 1:68. Condition (2.3) implies that

¿ 2

2
=
X

j=3

¿ j

j!
= e¿ ¡ (1 + ¿ + ¿2=2) (2.5)

or equivalently, e¿ = (1+ ¿ + ¿2), which gives ¿ = 1:8. The two conditions together imply f (0) +f (1) =

f (2) + f (2) (since
P1

j=2 f (j) = f (2) +
P1

j=3 f (j)), which is equivalent to 1 + ¿ = ¿2 which gives ¿ = ©.
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1-2 steps of thinking are typical11. Section III reports formal estimation from a wide

variety of one-shot games (80 games in total). Most estimates are between 1 and 2; the

median across all 80 games is 1.65.

Note that one should not expect the average amount of thinking ¿ to have a universally

constant value. It is like a risk-aversion parameter or a discount factor. Values of those

parameters are typically not derived from ¯rst principles and are not expected to be

constant. Discounting and risk-aversion vary across people (and even across a person's

life; children are measurably more impatient than adults) and situations; ¿ probably does

too. The hope is simply to ¯nd a range of ¿ values which are plausible, and regular enough

to permit us to make guesses about behavior in new games with some con¯dence. And

because the CH model has cognitive detail, ¿ should change in response to certain kinds

of treatment e®ects. For example, people who are more analytically skilled or have special

training in game theory will probably exhibit higher values of ¿ (more strategic thinking),

just as people who are treated for fear of °ying act as if a parameter characterizing their

aversion to °ight risk was changed by therapy.

2.4 Early models of limited thinking

The CH approach is a natural outgrowth of earlier e®orts. Brown (1951) and Robinson

(1951) suggested a kind of "¯ctitious play" as a model of the sort of mental tatonnement

or iterative algorithm that could lead to Nash equilibrium.12 In their model, a player

starts with a prior belief about what others will choose, and best-responds to that belief.

Players then take into account their own reasoning and best-respond to a mixture of

prior belief and the behavior generated by their earlier response at the ¯rst step. This

process iterates to convergence. (See also Harsanyi's, 19??, tracing procedure.)

In our terminology, the original ¯ctitious play model is equivalent to one in which

f(k) = 1=N for N steps of thinking, and N ! 1. Fictitious play was reinterpreted as

a real-time learning model by Fudenberg and Kreps (1990) (and later Fudenberg and

11See also Nagel, 1995; Stahl and Wilson, 1995; Costa-Gomes, Crawford, and Broseta, 2001.
12The ¯ctitious play algorithm always converges to Nash equilibrium in 2x2 games (Robinson, 1951),

zero-sum games(Miyasawa, 1961), games solvable by strict dominance (Nachbar, 1990) and some games

with strategic complements (Krishna and Sjostrom, 1998). Shapley (1964) upset the hope for ¯ctitious

play as a general cognitive underpinning for equilibrium with a 3x3 example in which ¯ctitious play

cycles around a mixed-strategy equilibrium.
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Levine, 1998) by mapping steps of iteration in a single player's reasoning into actual

periods of play in repetitions of a stage game. Our approach is a return to the original

interpretation of ¯ctitious play, except that instead of a single player iterating repeatedly

until a ¯xed point is reached, and taking his earlier tentative decisions as pseudo-data, we

posit a population of players in which a fraction f (k) of players stop cold after k steps of

thinking. Much like a fast-moving ¯lm can be slowed down to show its individual frames

\frozen" one by one, the cognitive hierarchy approach assumes that di®erent players

freeze at di®erent (¯nite) steps in the iteration process, rather than assuming that the

full reasoning process occurs in all players' brains before the ¯rst period of play.

In 1984, Bernheim (1984) and Pearce (1984) relaxed the requirement of mutual con-

sistency by introducing a coarsening of Nash equilibrium, rationalizability. Strategies

are rationalizable if they are best responses given some beliefs, and beliefs must respect

rationalizability by others, which eliminates strategies that are iteratedly dominated. As

in ¯ctitious play, they implicitly assume rationalizability is a process that occurs within

a single players' beliefs. But because they put little structure on where the reasoning

process stops, rationalizability does not yield a precise prediction in many games.

The second step in the cognitive hierarchy is the idea that many players respond to

a di®use, or `ignorance' prior about what others might. This principle can be traced at

least to Laplace. The appeal of 1-step decision rules in games was noted by Camerer

(1990), who hypothesized that players in games treat their choices as decisions, and do

not reason very strategically about what other players would do (see also Kadane and

Larkey, 1982). Banks, Camerer and Porter (1994) also focussed on the 1-step rule in

trying to explain departures from equilibrium in signaling games. Haruvy and Stahl

(1998) found that the 1-step rule is a more robust and useful prediction of behavior in

one-shot games than other rules like minimax, maximax and (Nash) equilibrium.

Truncating iterations beyond the second step was suggested by Binmore (1988) and

Stahl (1993). Selten (1998, p. 421) argued that

the natural way of looking at game situations...is not based on circular con-

cepts, but rather on a step-by-step reasoning procedure.

The ¯rst modern applications to experimental data were done by Nagel (1995) and Stahl

and Wilson (1995). Nagel used the simple k ¡ 1 model, in which all players think others

are using one fewer steps of reasoning than they themselves are. She classi¯ed players
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into thinking steps using the absolute distance of choices from the nearest spike of data in

dominance-solvable \p-beauty contest games" (which are explored further below). Ho,

Camerer and Weigelt (1998) used a more sophisticated procedure to classify players,

allowing stochastic response and explored a wider range of data, and basically corrobo-

rated Nagel's ¯nding that only a couple of steps of thinking were being used. Stahl and

Wilson (1995) posited a mixture of steps of thinking along with other types (e.g., Nash

equilibrium types and \worldly" types who best respond to the distribution of all other

types{ these are equivalent to our highest-step types), using a total of 12 parameters.

Two other models are close to ours in style. Capra (1999) proposed a model of thinking

steps in which players imagine cycles consisting of a move, an opponent's best response,

and their own best response to the opponent's best response which coincides with the

initial posited move. But responses are actually stochastic; so the model produces prob-

abilities of each possible cycle; summing over them gives predicted probabilities of each

considered move. The model is cognitively appealing and ¯ts experimental data well (see

Cabrera, Capra, and Gomez, 2002) but is di±cult to compute in large games. Goeree

and Holt (2002) propose a two-parameter model of `noisy introspection' in which choices

are stochastic best responses to iterations of thinking which are increasingly noisy. One

parameter expresses the increase in noise across iterations (when there is no increase the

model reduces to QRE), and the other expresses the overall level of stochastic response.

Our approach attempts to broaden the scope of application of these ideas to many

games, while simultaneously adding precision to Nagel's scheme, economizing on the

many parameters used by Stahl and Wilson, and going in a di®erent direction than

Capra and Goeree and Holt. The idea is to see how far one can get with a distribution

of types that is characterized by only one parameter (¿), by best-response (eliminating

the need for response sensitivity parameters used in Stahl and Wilson), and by sharp

restrictions on what the various types do.

2.5 Alternative speci¯cations

Once the mutual consistency of choices and beliefs is relaxed, there are many ways to

specify choices and beliefs that are not consistent. The Poisson model in which k-step

thinkers believe everyone else does k ¡ 1 or fewer steps is one speci¯cation, but others

spring to mind.

One alternative speci¯cation is to assume that step-k thinkers believe everyone else
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is doing k ¡ 1 steps (i.e., gk(h) = I(k ¡ 1; h) where I(x; y) is an identity function). Call

this the \k-1" speci¯cation. Preliminary estimates showed that the k-1 model ¯ts about

as accurately as our speci¯cation in three sets of matrix games.13

However, the k ¡ 1 model has some unfortunate properties. The k ¡ 1 model is a

freeze-frame version of Cournot dynamics, in which a player always believes others will

repeat their choices in the most recent period and best responds to that belief. Since it

is possible for play to cycle endlessly in Cournot, the k ¡ 1 model can cycle too.

Furthermore, in the k ¡ 1 model, players doing more and more steps of thinking

do not become more worldly{ in fact, their beliefs diverge from rational expectations

as k increases.14 The belief deviations in the k ¡ 1 model are also larger than in our

speci¯cation; in a sense, the k ¡ 1 thinkers have \less rational" expectations than in our

approach.15 Furthermore, because k-step thinkers' beliefs do not converge to the correct

distribution in the k ¡ 1 model, their beliefs embody a double dose of overcon¯dence.

Two-step thinkers, for example, think that all players are doing one step of thinking, and

think that all the one-step thinkers are completely deluded in thinking there are 0-step

thinkers.

It is also easy to ¯nd games in which the k ¡ 1 speci¯cation ¯ts data very poorly.

In the market entry games discussed in section IV below, the k ¡ 1 model predicts a

step function{ the rate of entry into a capacity-constrained market will depend only on

whether the capacity is less than half of the number of entrants, or more than half. But

the data are surprisingly monotonic in the capacity, so the predicted step function is

a poor approximation.16 Another example is asymmetric matching pennies, shown in

Table 1.
13The k ¡ 1 assumption is easy to work with theoretically because the sequence of predicted choices

can be computed by working up the hierarchy without using any information about the true distribution

f (k).
14The total absolute deviation for the k ¡ 1 model is

Dk¡1(k) =
k¡2X

h=0

f (h) + 1 ¡ f (k ¡ 1) +
1X

h=k

f (h) = 2(1 ¡ f (k ¡ 1)) (2.6)

. This ¯gure falls as k approaches the distribution mode (¿) then rises again, which means the beliefs of

the highest step thinkers (beyond ¿) are furthest from the truth.
15Recall that in our approach, the sum of absolute belief deviations is D(k) = 2(1¡

Pk¡1
h=0 f (h)). This

is smaller than Dk¡1(k) for any k > 0 because 2(1 ¡
Pk¡1

h=0 f (h)) < 2(1 ¡ f (k ¡ 1)).
16In the entry games, as you increase k the k ¡ 1 model decision rules alternate back and forth

between entering at low c (i.e., c less than half the number of entrants) and staying out at high c, and
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Table 1: Asymmetric matching pennies
L R

T x,0 0,1

B 0,1 1,0

For x > 1 the model in which players think everyone is one step below them makes

the same prediction for every value of x. But row players actually choose T more often

when x is larger, a fact which is anomalous for the k ¡ 1 speci¯cation but is predicted

by the CH model speci¯cation.17.

In the CH model, players who do k steps of thinking are not aware that others might

be thinking like they do (or even thinking harder). An alternative approach is to make

players \self-aware" so that k-step players' beliefs include the possibility that there are

others doing k steps like themselves (e.g., gk(c) = f (c)=(
Pk
c=0 f (c)) for 0 · c · k and

gk(c) = 0 otherwise).

Selten (1998) argues that the \circular" reasoning implicit in self-awareness is less

cognitively plausible than a purely sequential procedure. Self-awareness is deliberately

excluded from the CH model for that reason, and several others. One reason is that

overcon¯dent players will doubt others are thinking as much as they themselves are. If

players all think they are `smarter' (or harder-thinking) than others then they will neglect

the possibility that others are thinking at their step. This sort of overcon¯dence about

relative skill is well-documented in some economic domains (e.g., Roll, 1984; Camerer

and Lovallo, 1999; Benabou and Tirole, 2002).

Including self-awareness also leads to a model which is very much like a noisy equi-

librium or quantal response equilibrium (QRE) model, because including self-awareness

reintroduces an element of the mutual consistency which is precisely what the CH ap-

proach jettisons. To see this, ¯rst note that the relative proportion of 0 and 1-step

the opposite pattern. Aggregating these decision rules will produce a step function in which the rate

of entry is constant for c < :5N then switches to a higher rate, which does not look at all like the

monotonicity in the data.
17For column players, the 0- and 1-step thinkers randomize equally over L and R, 2- and 3-step

thinkers choose R, 4- and 5-step thinkers choose L, and so forth in a two-step cycle. For row players,

0-step thinkers randomize equally over T and B, 1- and 2-step thinkers choose T, 3- and 4-step thinkers

choose B, and so forth in a two-step cycle. These best-response cycles do not depend on f (k) or on x.
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thinkers, conditional on thinking only up to 1 step, is f (0)=(f (0) + f(1)) = 1=(1 + ¿ ).

For large ¿ this fraction will be small, which means 1-step thinkers believe most others are

1-step thinkers too (with a small fraction of 0-step randomizers thrown in the mixture).

The 1-step thinkers' optimal choices will be the solution to a recursive equation which

requires (approximate) mutual consistency{ bringing us back near Nash equilibrium. But

the point of the cognitive hierarchy approach was to improve on the predictive accuracy

of Nash equilibrium for one-shot games; circling back towards equilibrium defeats the

purpose of creating a di®erent approach.

Self-awareness also adds computational di±culty, compared to the CH speci¯cation,

because it requires solving for ¯xed points. This is especially cumbersome in games with

large strategy spaces or many players. Finally, and perhaps most importantly, in earlier

work we did compare CH models with and without self-awareness. Adding self-awareness

always reduced explanatory power, often substantially.18

3 Theoretical properties of the Poisson CH model

The combination of optimizing decision rules and the one-parameter Poisson structure

makes the CH model relatively easy to work with theoretically. This section mentions a

few simple properties that can be derived from it.

3.1 Convergence to equilibrium in dominance-solvable games

As noted earlier, when ¿ is large, the relative proportions of adjacent types, which is

f(k ¡ 1)=f(k ¡ 2) = ¿ =(k ¡ 1), puts overwhelming weight on the higher-step types.

Iterating, this means that when ¿ is large, a k-step thinker acts as if almost all others

are using k-1 steps. (That's just the k-1 speci¯cation mentioned in the previous section

on alternative approaches.) One-step thinkers will never violate dominance. Two-step

thinkers will never choose strategies which are dominated when dominated strategies are

deleted (since they think they are playing one-steppers who don't violate dominance.)

The same logic can be iterated inde¯nitely when ¿ is large (i.e., for any ¯nite number

18The log-likelihood values for the CH models with and without self-awareness are -1265 vs - 1115

for Stahl and Wilson (1995), -1802 vs -1740 for Cooper and Van Huyck (2001) and -570 vs -555 for

Costa-Gomes et al. (2001).
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of iterations of deletion, a large enough value of ¿ exists which yields decision rules that

correspond to that amount of deletion). So when ¿ is su±ciently large, the CH model

converges to Nash equilibrium in games that are solved by repeated deletion of weakly

dominated strategies.

This relation ties the CH idea closely to Nash equilibrium in dominance-solvable

games: If you believe players will choose equilibrium strategies in dominance-solvable

games, then you must also believe the CH model with large ¿ is an equally-good model

of behavior in those games. The relation between the CH and equilibrium approaches

also highlights where the Nash approach is likely to go wrong. Since large values of ¿

are needed to reach dominance-solvable equilibrium in games that are only solved by

deletion of very many (iteratively) dominated strategies, if thinking is limited then only

partial movement toward equilibrium will occur.

3.2 Market entry games

In the market entry games we studied experimentally in section IV below, N entrants

simultaneously decide whether to enter (1) or not enter (0) a market. Denote capacity

by c (expressed as a fraction of number of potential entrants). If c or fewer players

enter, the entrants all earn a payo® of 1; if more than c enter, the entrants earn zero. Not

entering yields a payo® of 0.5. For theoretical simplicity, assume there are in¯nitely many

atomistic entrants. (In our empirical estimation we drop this assumption.) If entrants are

atomistic and risk-neutral, they only care about whether the fraction of others entering

is above a half or not (if not, they enter; if so, they stay out). Denote the entry function

of step k players for capacity c by e(k; c) : c! [0; 1].

We are interested in the conditions under which actual entry is monotonic. Denote

the normalized cumulative entry function for all steps up to and including k by E(k; c) :

c! [0; 1].

We have:

e(0; c) =
1

2
; 8c

E(k; c) =

Pk
j=0 f(j)e(j; c)
Pk
j=0 f(j)

=

Pk
j=0 f (j)e(j; c)

F (j)
;where F (j) ´

kX

j=0

f (j)
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In general, for k ¸ 1

e(k; c) =

8
<
:

0 if E(k ¡ 1; c) > c

1 if E(k ¡ 1; c) < c

In general, E(k; c) is a step function with the following cutpoint values (at which steps

begin or end) with increasing c for c < 1=2

1
2f (0)

F(k) ;
1
2f (0)+f (k)

F (k) ;
1
2 f (0)+f(k¡1)

F (k) ;
1
2 f (0)+f(k¡)+f(k)

F (k) ; ¢ ¢ ¢
1
2 f(0)+f(2)+¢¢¢+f(k)

F(k)

The cutpoint values for c > 1=2 are

1
2f (0)+f(1)

F(k) ;
1
2f (0)+f (1)+f(2)

F(k) ; ¢ ¢ ¢
1
2f (0)+f (1)+f(2)+¢¢¢+f(k)

F (k)

(For c = 1=2 atomistic entrants are all indi®erent and randomize so E(k; :5) = :5 8k.)

These cutpoints imply two properties: The cutpoints are always (weakly) monotoni-

cally increasing in c as long as f(k¡ 1) > f (k) 8k ¸ 2. For a Poisson f(k), this is equiv-

alent to ¿ · 2. Furthermore, the last cutpoint for the c < 1=2 segment is greater than

the ¯rst cutpoint of the c > 1=2 segment i® 1
2f(0) +f (2)+ f(3) + ¢ ¢ ¢+ f(k¡ 1)+ f(k) ·

1
2
f(0) + f(1). This is equivalent to f(1) ¸ f (2) + f (3) + ¢ ¢ ¢ + f (k), which implies

f(1) ¸ 1¡f(0)¡f (1). For Poisson this implies (1+2¿) ¸ e¿ or ¿ · 1:25. Thus, ¿ · 1:25

implies weak monotonicity throughout both the left (c < 1=2) and right (c > 1=2) seg-

ments of the entry function E(k; c) (since ¿ < 1:25 satis¯es the ¿ < 2 condition and

ensures monotonicity across the crossover from the left to right halves of e(k; c)).

As we will discuss further below, in one-shot entry games like these, the entry rate

is usually monotonic in capacity c. But how? Daniel Kahneman (1988) wrote that \to

a psychologist, it is like magic". There are many pure-strategy equilibria in which c

entrants enter, but how do subjects who play once without talking coordinate on one

equilibrium? There is a symmetric mixed-strategy equilibrium, but it cannot account

for the regular empirical fact that too many players enter at low values of c and too few

enter at high values of c. The proof above shows that the CH model, with ¿ · 1:25,

can explain how monotonic entry rates arise from a simple cognitive process. As we will

see below, the model also explains the deviations from Nash behavior at low and high

capacities.
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3.3 Bargaining: Nash demand games and ultimatum games

An interesting property of the CH model is that it can produce behavior which corre-

sponds to fair or focal outcomes in bargaining games. The easiest example is the Nash

demand game. Two players divide a one unit prize by demanding x1; x2 simultaneously.

They earn what they demanded i® x1 + x2 · 1. In the CH model, zero-step players

randomize over [0,1]. A one step player who demands x expects to earn x(1¡ x), which

is maximized by demanding half (x = :5). Higher-step players also demand half since

that is a best response to any mixture of random and .5 demands. The model there-

fore predicts that 1 ¡ f (0) players will demand half (around 80% if ¿ = 1:5) and other

demands will be sprinkled throughout the [0,1] interval.

When one player has an outside option, the CH model approximates the \split the

di®erence" equilibrium in which players demand half the surplus beyond the option.19

Binmore et al (1985) found that in early periods of their experiment many demands

were consistent with the split-the-di®erence solution, though after learning over rounds

of bargaining most players converged to the perfect equilibrium demands of about a half.

Behavior in ultimatum games is similar. In ultimatum games, a Proposer o®ers a

division of a unit pie and a Responder accepts or rejects; if she rejects both earn nothing.

Suppose Responders choose a rejection threshold between 0 and .520 and reject all o®ers

above their threshold. Since the probability of accepting an o®er of size x is 2x, and

the Proposer earns 1 ¡ x if the o®er is accepted, a 1-step thinker's expected payo® of

2x(1¡ x) is maximized by o®ering half. Since a Responder doing one or more steps of

thinking accepts any o®er, a 2-step Proposer faces a perceived acceptance probability

of (f(1) + 2xf(0))=(f (1) + f(0)) = (¿ + 2x)=(¿ + 1). Expected payo®s are maximized

at x¤2 = (2 ¡ ¿)=4, which is .125 for ¿ = 1:5. If we mix together random o®ers by 0-

step Proposers, o®ers of .5 from 1-step Proposers, and o®ers of (2 ¡ ¿ )=4 from 2-step

proposers, the expected o®er is .38 when ¿ = 1:521, which is close to the empirical average

19Suppose player 1 an option of y and randomizes over demands in the interval [y,1]. Now the one-step

player's demand of x is accepted with probability max(0,(1 ¡ x ¡ y)=(1 ¡ y)). The expected payo® is

x(1¡ x¡ y)=(1 ¡ y) which is maximized at (1 ¡ y)=2, dividing the surplus.
20This assumption is admittedly ad hoc. If we assume Responders choose rejection thresholds between

0 and 1 the 2-step player o®ers are x¤2 = (1 ¡ ¿ )=2 which go to zero "too fast" compared to data (in

which zero o®ers are rare). We take this and other examples to suggest that a more re¯ned and general

theory of 0-step behavior is an important challenge for future work.
21The expected o®er is :5(g(0) + g(1)) + g(2)(2¡ ¿ )=5 = (4 + 8¿ + 2¿2 ¡ ¿ 3)=(8 + 8¿ + 4¿2).
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observed in many countries and populations (e.g., Camerer, 2003, chapter 2; Henrich et

al., 2002).22 This simple exercise is not meant to be a full model of ultimatum bargaining,

which surely contains some element of social preference or repeated-game instinct. The

point is just that even without a concept of social preferences, simple structural forces can

lead to bargaining o®ers which are closer to equal splits than standard models predict,

simply because of limited reasoning23.

3.4 E®ects of group size dominance-solvable and stag hunt games

Some interesting e®ects of group size emerge from the thinking-steps model. These e®ects

are plausible but are not predicted by Nash equilibrium.

In p-beauty contest games two or more players all choose numbers in some interval

(say [0,100]) and the player whose number is closest to p < 1 times the average in absolute

value wins a ¯xed prize (see Nagel, 1995; Ho, Camerer and Weigelt, 1998; Nagel, 1999).

The game is dominance-solvable and the unique Nash equilibrium is zero (the number

which is equal to p times itself).

There is also an interesting behavioral e®ect of group size. In three-person games with

p = 2=3, players tend to choose higher numbers than in 2-person games (see Grosskopf

and Nagel, 2001, and below). The 2-person game is special because it can be solved by

weak dominance. In the 2-person game, one player will always be high and one low, and

for any p < 1, p times the average will be closer to the lower player's number. Therefore,

rational players want to choose the lowest number possible- 0. In fact, in the CH model

all players using one or more thinking steps will choose zero. This is not true in the

3-player game; a smart player wants to choose a number between the other two numbers

if they are su±ciently far apart.

Another example is stag hunt. Imagine a stag-hunt game in which each of n players

choose either H or L. Players earn 1 if they choose H and everyone else does, 0 if they

choose H and anybody else chooses L, and x if they choose L (regardless of what others

do).

22Including higher-step thinkers will lower the expected o®er, but only by a little (to around .30) if

¿ ¼ 1:5 because there are so few players using three or more steps of thinking.
23See also Johnson et al, 2002; Gale, Binmore, and Samuelson, 1995; Roth and Erev, 1995; McKelvey

and Palfrey, 1998).
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In the two-player game, 0-step thinkers randomize so 1-step thinkers (and all higher-

step thinkers) choose H if x · 1=2 and choose L if x ¸ 1=2 (the higher-step behavior

corresponds to the risk-dominance re¯nement). In the three-player game, however, a

1-step player thinks she is facing two 0-step players who randomize independently; so the

chance of at least one L is .75. As a result, the 1-step player (and higher-level players)

choose H i® x · :25. Thus, for values :25 · x · :5, there will be mostly H play in 2-player

games and mostly L-play in 3-player games. This is a simple way of expressing the idea

that there is more strategic uncertainty in games with more players, and corresponds to

the empirical fact that choices are lower in stag hunt (or `weak-link') game experiments

as the number of players rises (e.g., Camerer, 2003, chapter 7).

4 Estimation and model comparison

This section estimates best-¯tting values of ¿ in the CH Poisson model and compares it

to other models. Our philosophy is that exploring a wide range of games and models is

especially useful in the early stage of a research program. Models which sound appealing

(perhaps because they are conventional) may ¯t badly. Fitting a wide range of games

often turns up clues about where models fail and how to improve them.

Since the cognitive hierarchy model is designed to be general, it is particularly im-

portant to check its robustness across di®erent types of games and see how regular the

best-¯tting values of ¿ are. Once the mean number of thinking steps ¿ is speci¯ed, the

model's predictions about the distribution of choices can be easily derived. We then

use maximum likelihood (MLE) techniques to estimate best-¯tting values of ¿ and their

precision. The MLE procedure can be shown to estimate ¿ reliably with samples of 50

or so.24

We ¯t four data sets: 33 matrix games with 2-4 strategies from three data sets; 22

24Simulations were used to see how well the MLE procedure recovers the true value of ¿ when the

CH model actually creates the data. In the simulations, pseudosamples of size K were created using

the CH value with a known ¿ , for six games from the mixed-strategy game sample (one KxK game for

K 2 2; 3; 4; 5; 6. For each pseudosample, the value of ¿ was then estimated using MLE to see whether

the procedure can recover the correct (known) value of ¿ which actually created the data. There is no

systematic bias in recovered ¿ , and the precision of recovered estimates is reasonably good{ bootstrapped

con¯dence intervals are around (¿ ¡ :3; ¿ + :3){ except when samples are small (N=20) in 2x2 games.

See Appendix for details.
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games with mixed equilibria (new data); the binary entry game described above (new

data); and 24 samples of subjects playing variants of the dominance-solvable `p-beauty

contest game'.25

The matrix games are 12 games from Stahl and Wilson (1995), 8 games from Cooper

and Van Huyck (2001) (used to compare normal- and extensive-form play), and 13 games

from Costa-Gomes, Crawford and Broseta (2001). All these games were played only once

with feedback, with sample sizes large enough to permit reliable estimation.

The 22 games with mixed-equilibria are taken from those reviewed by Camerer (2003,

chapter 3), with payo®s rescaled so subjects win or lose about $1 in each game (see

Appendix for details). These games were run in four experimental sessions of 12 subjects

each, using the \playing in the dark" software developed by McKelvey and Palfrey. Two

sessions used undergraduates from Caltech and two used undergraduates from Pasadena

City College (PCC), which is near Caltech.

The binary entry game is the one described above. In the four experimental sessions,

each of 12 players simultaneously decides whether to enter a market with announced

capacity c. If c or fewer players enter the entrants earn $1; if more than c enter they earn

nothing. Not entering earns $.5. In this simple structure, risk-neutral players care only

about whether the expected number of entrants will be less than c¡ 1.26 Subjects were

shown ¯ve capacities c{ 2,4,6,8,10{ in a ¯xed random order, with no feedback.

The 24 p-beauty contest games were taken from previously published results (Nagel,

1995; 1999; Ho, Camerer and Weigelt, 1998), from 2- and 3-player games conducted

in the four 12-subject sessions with Caltech and PCC students, from unpublished data

collected by Ho, Camerer and Weigelt, and from convenience samples collected by author

Camerer with various audiences playing for $20.

At this exploratory stage, there are three questions: Is the estimated value of ¿

reasonably regular across games with very di®erent structures? When ¿ is unusually

low or high, is this a clue about how the model might be improved? How does the CH

Poisson speci¯cation compare to QRE and Nash equilibrium?

25We are also estimating the model on 7 sender-receiver signaling games studied by Banks, Camerer

and Porter (1994) to explore which signaling game re¯nements (intuitive criterion, divinity, and univeral

divinity, etc.) predict best when there are multiple Nash equilibria. The samples from ¯rst-period play

are too small for reliable estimation so we are currently collecting more data.
26This structure suppresses the e®ect of overcon¯dence actual business entrants might have in a game

in which more skilled entrants earn more (e.g., Camerer and Lovallo, 1999).
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4.1 How regular is ¿?

Table 2 shows game-by-game estimates of ¿ in the Poisson CH model, and estimates when

¿ is constrained to be common across games within each data set. Five of 56 game-speci¯c

¿ estimates are high (4 or more) and some are zero. Including the estimates from p-beauty

contests reported later, the interquartile range across 80 estimates is (.98,2.40) and the

median is 1.65. An Appendix Table shows bootstrapped 95% con¯dence intervals for ¿

estimates. Most of the intervals have a range of about one, which means ¿ is estimated

fairly precisely. The common ¿ estimates are roughly 1-2.

In three of the Stahl-Wilson games (2, 6, 8) the estimated value of ¿ is zero. These

games are clues about when the model can fail badly because ¿ = 0 is simply random

choice. Their game 2 is shown in Table 3. (The Table shows only the row player payo®s

since the game is symmetric.)

Let's ¯gure out what goes wrong. One-step thinkers will choose M. Two-step thinkers

will choose B for reasonable ¿ (above .42) since B is a reasonable response against 0-step

thinkers and a best-response against 1-step thinkers who choose M. But only 25% and

13% of players actually choose those strategies, M and B. The Nash strategy T is chosen

most often (63% of the time). The CH model cannot explain this because it is impossible

to `reach' strategy T by steps of iterated reasoning. The reason is that T is a poor

response to a low number of steps of thinking. If some low-step thinkers chose it, then

higher-step thinkers would lock in to the equilibrium strategy and choose it also, but

low-step thinkers do not gravitate toward it. Put di®erently, playing M or B are nearly

best responses to T, so subjects have to lock sharply in to strategy T for it to be chosen

frequently. (As a result, QRE does not ¯t this game well either.) Choosing T seems

to require a leap of faith in which subjects somehow deduce that a very large fraction

of other subjects will almost surely choose T.27 Since estimates of ¿̂ = 0 are so rare in

other games, this suggests there is something special about these games, or the Stahl-

Wilson procedure, which encouraged an unusual amount of Nash thinking.28 Perhaps

27The set of beliefs in which T is optimal is a small sliver of the P(T), P(M) simplex in which

P (M) > (55=80)¡ (60=80)P (T) and P (M ) < (45=65)¡ (40=65)P (T). Unless P(M) lies in a very small

interval when P(T) is low, beliefs only lie in this sliver if P(T) is high.
28In the Costa-Gomes et al. sample, there are also games in which Nash strategies do not correspond

to one- or two-step thinking and they are played less often so the CH model does not produce low ¿

values. In fact, Stahl and Wilson used a mean-matching procedure in which each subject was randomly

matched with every other subject and paid according to their mean payo®. This procedure may have
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Table 3: Payo® tables and actual frequencies, Stahl and Wilson (1995) game 2

payo® table actual decision rules

Game 2 T M B frequency selecting strategy

T 75 40 45 0.63 Nash

M 70 15 100 0.25 1-step, RE

B 70 60 0 0.13 2-step

anticipating this, Stahl and Wilson included a special Nash-type player, which helps ¯t

the games 2,6, and 8 that the CH model does not ¯t well. In general, however, including

such a player does not appear to be necessary in most other one-shot games.

4.2 Which models ¯t best?

Table 4 shows log likelihoods (LL) and mean-squared deviations for several model es-

timated game-by-game or with common parameters across games in a dataset.29 This

Table answers several questions. Focussing ¯rst on the CH Poisson model, moving from

game-speci¯c estimates of ¿ to common within-column estimates only degrades ¯t badly

in the Stahl-Wilson data; in the other samples imposing a common ¿ ¯ts about as well

as letting ¿ vary in each game.

The CH Poisson model also ¯ts substantially better than QRE (and hence, better than

Nash), or about as well, except in the Stahl-Wilson games when common parameters are

imposed. This result does not mean QRE research (which imposes mutual consistency

but relaxes optimization) should be abandoned in favor of the CH approach (which does

the opposite, relaxing consistency and retaining optimization); our view is that both

approaches should be explored further. But the relative success of CH in many games is

an indication that mutual consistency is not necessary to produce a model that ¯ts data

from one-shot games reasonably well.

Table 4 also reports ¯ts from a general CH model in which the frequencies of k-step

encouraged players to form strategically-thoughtful beliefs and catalyzed a large fraction of Nash play.
29When the Stahl-Wilson games 2, 6, 8 are included the common ¿ is zero because these games

swamp the other 10. We therefore excluded these games in estimating the common ¿ , which penalizes

the resulting LL a bit.
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thinkers, f (k), are not constrained to satisfy the Poisson distribution (and truncated at

six steps).30 Except for the Stahl-Wilson data (once again), imposing this 6-parameter

general speci¯cation degrades ¯t very little compared to the Poisson distribution. Table

5 shows the fractions of players estimated to use each level in the general speci¯cation;

these fractions are reasonably close to those constrained by the Poisson distribution.

A graphical comparison of predicted and actual strategy frequencies helps give a

clearer image of how accurate the CH and Nash approaches are. Each point in Figures

1a-b represents a distinct strategy in each of the 33 matrix games (Figure 1a) and 22

mixed games (Figure 1b), comparing actual strategy frequencies which CH predictions

using a single common ¿ within each data set (i.e., one ¿ per ¯gure). The R2's are both

around .80 for the CH model. Figures 2a-b show the corresponding ¯gures comparing

actual frequencies and the Nash predictions. In Figure 2a there are many strategies which

are predicted to be always chosen (probability one) or never chosen (probability zero),

so the ¯t is not visually impressive and the R2 is modest (.32). Figure 2b is a fairer test

because most of the Nash predictions are in the interior, but there is still wide dispersion

and R2 rises to about a half. Comparing Figures 1a-b with 2a-b shows that the CH

model is able to tighten up the ¯t dramatically for matrix games, and substantially for

mixed games, using only one parameter in each data set.

Games with many strategies create a special challenge for estimating models of limited

thinking. When these models assume best response, if the number of steps of thinking

is limited to n empirically plausible numbers (e.g., 6), then the model only predicts

30The frequencies f (k) are constrained in a small way to improve identi¯cation, which is essentially

harmless in terms of ¯t. The constraint imposed is that the f (k) function should be inverted-U shaped

in k. That is, if f (k) < f (k ¡ 1) for a particular k{ that is, the distribution function turns downward{

then f (k + x) < f (k) for any positive integer x{ i.e., once the f (k) distribution turns downward it

cannot rise up again. This constraint is necessary because when the estimates are not constrained in

this way, it is possible to have, say, a large fraction of 0,1, and 2 subjects, but no 3-step subjects.

But 4-step subjects who have (normalized) beliefs about this distribution will simply ignore the 3-step

types. As a result, they will choose the same strategy a 3-step type would choose. So the unconstrained

estimation can place zero f (k) values anywhere in the distribution and produce precisely the same

pattern of best responses (and hence, ¯t) as an alternative specī cation in which the zero is removed.

In econometric language, there is a severe identī cation problem. One way to eliminate the possibility

of these unidenti¯ed insertions of zero f (k) types is to force the distribution to not wake up again after

a zero f (k) and produce positive values of f (k + 1). Happily, imposing this no-inverted-U constraint

degrades LL very little. Across the four data sets, the reduction in LL is only 40, 0, 1, 14, and 0 points

so the constraint is essentially harmless.
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n¡ 1 separate choices from the higher-step thinkers (i.e., those using one step or more).

In games with many strategies{ like pricing or location games{ this means the high-step

thinking model will only predict a small fraction of the strategies that are actually chosen.

Maximizing the likelihood of the observed choices is a poor method for assessing how well

such a model ¯ts because most observed choices will have predicted likelihoods of zero,

regardless of the value of ¿ . Likelihood estimation throws away information because a

model which predicts strategies very close to those which are chosen, but is not exactly

right, will have the same likelihood as a model which predicts strategies which are far

away from the data.31

An instructive example is \p-beauty contest games". In this class of games players

choose numbers from a bounded interval, say [0,100]. Each players' payo® depends on

how close their number is to some multiple p of a summary statistic (typically the average)

of all the choices. In a frequently-studied game, the statistic is the average, p = 2=3,

and the player whose number is closest earns a ¯xed sum of money (see Nagel, 1999,

for a recent review). In this game the 0-step thinkers randomize so 1-step players will

best-respond to an expected average of 50, choosing 33. Two-step players best-respond

to a mixture of 50 and 33, choosing (50f (0) + 33f (1))=(f (0) + f(1)); if f(k) is Poisson

their choice will be (50+33¿)=(1+¿ ). Note that this model predicts that a fraction f(1)

of players will choose exactly 33. In experiments, however, number choices near 33 are

common but the exact response 33 is only chosen around 5-10% of the time. In likelihood

estimation, the fact that the model is close to the data, but slightly o®, is ignored.

Given that likelihood maximization does not adequately characterize how well the

model is approximately ¯tting, it makes sense to choose a di®erent estimation method.32

In the generalized method of moments, parameters are chosen to minimize a weighted

average of the mean and higher moments (particularly variance). We use a simple method

of moments in which ¿ is chosen to make the predicted mean as close as possible to the

actual mean. We can then see whether the predicted variance is close to the actual

31Likelihood-maximization severely penalizes a model which assigns low probability to a choice that

is observed (since log(²) becomes hugely negative as ² ! 0. In the CH model, when lots of strategies

are actually chosen, but only a few are predicted to be chosen, the only way for the model to maximize

likelihood is to choose a low value of ¿ (since the 0-step types smear probability across all strategies).
32An alternative is to relax the assumption that players are best-responding to allow stochastic re-

sponse. This means the predicted choices of 33 will then be smoothed around 33 and will put more

likelihood in the right places (e.g., rounded-o® choices of 30 or 35). This is actually computationally

more di±cult, and adds an extra parameter which is of little interest.
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variance; if it is we take that as an out-of-moments clue that the model is capturing some

important features of the data.

Table 6 shows estimates of ¿ in 24 beauty contest games, which were chosen to

minimize the (absolute) di®erence between the predicted and actual mean of chosen

numbers. The table is ordered from top to bottom by the mean number chosen. The

¯rst seven lines show games in which the equilibrium is not zero; in all the others the

equilibrium is zero. The ¯rst four columns describe the game or subject pool, the source,

group size, and total sample size. The ¯fth and sixth columns show the Nash equilibrium

and the di®erence between the equilibrium and the average choice. The middle three

columns show the mean, standard deviation, and mode in the data. The mean choices

are generally far o® from the equilibrium; they choose numbers which are too low when the

equilibrium is high (¯rst six rows) and numbers which are too high when the equilibrium

is low (lower rows). The rightmost six columns show the estimate of ¿ from the CH

Poisson model, and the mean, prediction error, standard deviation, and mode predicted

by the best-¯tting estimate of ¿ , and the 90% con¯dence interval for ¿ estimated from a

randomized resampling (bootstrap) procedure.

There are several interesting patterns in Table 6. The prediction error of the mean

(column 13, \error") are extremely small, less than .6 in all but two cases. Of course,

this is no surprise since ¿ is estimated (separately in each row) to minimize this error.

The pleasant surprise is that the predicted standard deviations and modes which result

from the error-minimizing estimate of ¿ are also fairly close (across rows, the correlation

of the predicted and actual standard deviation is .72).

The values of ¿ have a median and mean across rows of 1.30 and 1.61, close to the

golden ratio and
p

2 values derived from simple restrictions earlier in this paper. The

con¯dence intervals have a range of about one in samples of reasonable size (above 50

subjects).

Outlying low and high values of ¿ are instructive. Estimates of ¿ are quite low (0-.1)

when p > 1 and, consequently, the equilibrium is at the upper end of the range of possible

choices (rows 1-2). In these games, subjects seem to have trouble realizing they should

choose very large numbers when p > 1 (though they equilibrate rapidly by learning; see

Ho, Camerer and Weigelt, 1998). Low ¿'s are also estimated among the PCC subjects

playing 2- and 3-player games (rows 8 and 10). High values of ¿ (¼ 3-5) appear in

games where the equilibrium is in the interior, 72, (rows 7-10){ small incremental steps
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toward the equilibrium in these games produce high values of ¿ . High ¿ values are also

estimated in games with an equilibrium of zero when subjects are professional stock

market portfolio managers (row 19), Caltech students (row 20), game theorists (row 24),

and subjects self-selecting to enter newspaper contests (row 25). The latter subject pools

show that in highly analytical and educated subject pools (especially with self-selection)

¿ can be much higher than in other subject pools.

A sensible intuition is that when stakes are higher, subjects will use more steps of

reasoning (and may think others will think harder too). Rows 3 and 6 compare low stakes

($1 per person per period) and high stakes ($4) in games with an interior equilibrium of

72. When stakes are higher ¿ is estimated to be twice as large (5.01 versus 2.51), which

is a clue that some sort of cost-bene¯t analysis may underlie steps of reasoning.

Notwithstanding these interesting outliers, there is also substantial regularity across

very diverse subject pools. About half the samples have con¯dence intervals which include

¿ = 1:5. Subsamples of corporate CEOs (row 13), high-functioning 70-year old spouses of

memory-impaired patients (row 15), and high school students (row 16) all have ¿ values

from 1.1-1.7.

4.3 Predicting across games

Good theories should predict behavior in new situations. A simple way to see whether the

CH model can do this, within a large sample of games, is to estimate the value of ¿ on n¡1

games and forecast behavior in each holdout sample separately. (This is a roundabout

way to test how stable ¿ appears to be across games, and also whether small variations in

estimated ¿ create large or small di®erences in predicted choice frequencies.) The bottom

panel of Table 4 reports the result of this sort of cross-game estimation. Both the CH

Poisson and QRE models ¯t cross-game a little less accurately than when estimates are

common within games. QRE degrades particularly badly in the Costa-Gomes et al.

and mixed-equilibrium games. This is not surprising since the free parameter in the

QRE model is a response sensitivity which is sensitive to changes in payo® scales (e.g.,

McKelvey, Palfrey and Weber, 2000).
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5 Economic value of theories

One way to use theories of strategic thinking is to give advice to players. Camerer and Ho

(2001) introduced the idea of judging theories by their economic value. Economic value

is computed by using a theory to predict what other players will do, choosing a best

response based on that prediction, and comparing whether the best response actually

would have earned more money than the response a subject actually chose.

Economic value is also an indirect way to measure how well behavior is equilibrated.

If players are mutually consistent, then their beliefs already match likely choices so no

theory can have economic value. Therefore, if Nash equilibrium is predictively accurate,

then it cannot have economic value. Similarly, if players are in equilibrium then models

which assume they are not in equilibrium (such as the CH model) will have negative

economic value.

Table 7 reports the pro¯ts players would have earned if they used the CH or QRE

models to forecast likely behavior and chose best responses. The economic value of a

theory is the di®erence between these hypothetical pro¯ts and the actual pro¯ts players

earned. (The payo®s from predicting perfectly, using the actual distribution of strategies

chosen by others, are also reported because these represent an upper bound on economic

value).

The top panel shows economic value when common parameters are estimated within

each set of games. The CH approach adds value in all data sets, typically 30-50% of the

maximum possible economic value. QRE and Nash equilibrium add a little less value,

and both subtract value in two data sets. The bottom panel shows economic value when

parameters are estimated on n¡ 1 data sets and used to forecast the remaining data set.

The results are basically the same.

6 Cognitive implications and comparisons with QRE

6.1 Comparing QRE and thinking-steps models

The CH model retains optimization but relaxes mutual consistency. Quantal response

equilibrium is a complementary approach, which retains mutual consistency but relaxes
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optimization (Rosenthal, 1989; Chen, Friedman and Thisse, 1996; McKelvey and Palfrey,

1995, 1998; Goeree and Holt, 1999). QRE weakens the best-response property in Nash

equilibrium and substitutes statistically-rational expectations in the sense that a player's

beliefs about the distribution of play by others matches the actual distribution.

In empirical applications, QRE and CH will usually predict deviations in the same

direction from Nash equilibrium, and they should be treated as alternative paths which

both deserve exploration. However, keep in mind that in the results above, QRE ¯t and

predicted a little less accurately than CH (except in the Stahl-Wilson matrix games).

Because they will often predict similar deviations, it is useful to carefully distinguish

how they di®er. QRE will generally make di®erent predictions when games are subject to

\inessential transformations" (see Dalkey, 1953; Ho and Weigelt, 1996). For example, in

QRE \cloning" strategies (adding precisely equivalent strategies) will generally increase

the frequency of play of the set of cloned strategies (because players who noisily best-

respond will play these strategies equally often).33 In CH, in contrast, cloning strategies

will only increase how often the cloned strategy (set) is played for 0-step thinkers. If the

cloned strategy has the highest expected payo®s, then higher-step thinkers are assumed

to randomize across the set of equally-good (and best) responses so they will play a

set of best responses just as often as if one strategy was a uniquely best response. A

similar property arises if strategies are amalgamated rather than cloned. Mookerjee and

Sopher (1997) found that amalgamating strategies did not change how frequently they

were played, which goes against QRE and is more consistent with CH.

Another subtle contrast between the two models is when some strategies are nearly

dominated. For example, if one strategy yields ² less than another strategy, than as ²! 0

the QRE frequencies of the two strategies will become equal. Since the CH approach

assumes best responses, for any ² > 0 the predicted frequency of the dominated strategy

will be lower than the predicted frequency of the strategy which dominates it. This

contrast sharpens the di®erence between the two approaches. If subjects spot dominated

strategies (regardless of the degree of dominance) and never play them, the CH approach

will predict better than the QRE approach; oppositely, if subjects do not notice or

care about small degrees of dominance then they will play nearly-dominated strategies

relatively often consistent with QRE.

33This is because the logit has the Independence from Irrelevant Alternatives property. One could

presumably develop a hierarchical equivalent that does not exhibit this property.
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Another di®erence is that the CH model naturally generates heterogeneity{ \spikes"

which can potentially match spikes in data. (The p-beauty contest is an example.) QRE,

in contrast, predicts a smooth statistical distribution with no spikes (the same is true of

Capra's, 1999, and Goeree and Holt's , 2002, models). In the same way, CH can easily

explain endogeneous puri¯cation but the simplest form of QRE cannot (in QRE each

player mixes with the same statistical distribution across strategies).

Finally, our analysis of mixed games shows that when the true model is CH, MLE

estimation recovers the correct ¿ parameters in modest samples (around 50) (see Ap-

pendix). However, when samples are small, sampling error is `accurately' ¯t by QRE

with a low response sensitivity ¸. So we suspect that MLE and other techniques will

generally underestimate the true value of ¸ (i.e., estimates are biased downward) in small

or medium samples.

6.2 Cognitive measures

The CH model should be taken seriously as a prediction about the kinds of algorithms

that players use in thinking about games. This means that cognitive data other than

choices can{ like belief-prompting, response times, information lookups, or even brain

imaging { can, in principle, be used to test the model.34

Several studies show that prompting players for beliefs about what others will do

actually changes their choices, typically moving them closer to equilibrium. A simple

example was ¯rst demonstrated by Giovanna Devetag and Eldar Sha¯r and replicated

by Warglien, Devetag and Legrenzi (1998). Their game and results are shown in Table

8. If players think others are step 0 (randomizing), choosing X yields an (expected)

34See Camerer, Loewenstein, and Prelec, 2002. The use of brain imaging will sound farfetched to

most economists. But Glimcher, 2002, chapter 13, reports the existence of `equilibrating' neurons in

monkeys which ¯re in rough proportion to expected payo®s of strategies, as the monkeys play a 2x2

`work-or-shirk' game with a mixed equilibrium against a computerized opponent. When play is out of

equilibrium, neurons ¯re more actively when the monkey plays the strategy with the higher expected

payo®. This activation guides the monkey to play the `better' strategy more often, which eventually

produces equilibration. After equilibration, when both strategies have equal expected payo®s, the neu-

rons ¯re at the same rate after each of the two strategies are played, so that the brain is `recognizing'

equilibration. Since the human brain is essentially the monkey brain with some extra cortex, which is

used largely for planning and understanding social structure and language, it is likely that humans have

a similar neural circuitry which encodes expected payo®s and guides equilibration in simple games.
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Table 8: How belief-prompting promotes dominance-solvable choices by row players (War-

glien, Devetag and Legrenzi, 1998)

column player without belief with belief

row move L R prompting prompting

X 60,20 60,10 .70 .30

Y 80,20 10,10 .30 .70

payo® of 60 rather than 45 from choosing Y. When players simply choose (with ¯nancial

incentives) 70% of the row players choose X. When subjects are prompted to articulate

a belief about what the column players will do before they choose, 70% then choose

the dominance-solvable equilibrium choice Y (see also Croson, 2000; and Ho®man et al,

2000).35 In the CH model, the fractions of X play are ¯t perfectly by ¿ = :58 without

belief-prompting and ¿ = 2:20 after belief-promoting. This suggests that the e®ect of

belief prompting is to encourage strategic thinking among the 0-step players and shift

the entire distribution up by about a step and a half of thinking.

If the algorithmic reasoning in the CH model is taken seriously as a model of human

cognition, then the model can be tested by jointly estimating both choices and cognitive

variables. An easy variable to measure is response time. We are currently investigating

whether response times are longer for choices that correspond to higher steps of thinking.

Another alternative is to directly measure the information subjects acquire in a game

by forcing subjects to \look up" payo®s in games (as in Camerer et al (1994), Costa-

Gomes, Crawford, and Broseta (2001) and Johnson et al (2002)). Information lookups are

another cognitive measure which we expect to be correlated to thinking steps. Johnson

et al show that how much players look ahead to future \pie sizes" in alternating-o®er

bargaining is correlated with the o®ers they make. Costa-Gomes et al show that lookup

35Schotter et al (1994) found a similar e®ect of display and timing in games with Nash equilibria which

are not subgame-perfect. In the simultaneous matrix form more players chose the Nash equilibrium, as

if they did not reason through what others would do. Note that these display e®ects can be interpreted

as focussing players' attention in di®erent ways, altering the number of thinking steps they are doing

or what players think at di®erent steps. We also observed a belief-prompting e®ect in beauty contest

games (unpublished). When players simply made choices, 25% chose numbers above 50 in the ¯rst

period. When forced to guess what the average choice would be, this ¯gure fell to 15%. The samples

were small so the e®ect is not signī cant but it goes in the same direction as the e®ects above.



31

patterns are clearly correlated with choices that result from various (unobserved) decision

rules. These patterns are not proof that models based on steps of thinking are correct,

but they do illustrate a fresh prediction that results from these models.

7 Economic implications of limited strategic think-

ing

Models of iterated thinking can be applied to several interesting problems in economics,

including asset pricing, speculation, competition neglect in business entry, incentive con-

tracts, and macroeconomics.

Asset pricing: As Keynes pointed out (and many commentators since him; e.g., Tirole

1985; Shleifer and Vishny, 1990), if investors in stocks are not sure that others are rational

(or will price assets rationally in the future) then asset prices will not necessarily equal

fundamental or intrinsic values.36 A precise model of limited strategic thinking might

therefore be used to explain the existence and crashes of price bubbles.

Speculation: The \Groucho Marx theorem" says that traders who are risk-averse

should not speculate by trading with each other even if they have private information

(since the only person who will trade with you may be better-informed). But this theorem

rests on unrealistic assumptions of common knowledge of rationality and is violated

constantly by massive speculative trading volume and other kinds of betting, as well as

in experiments.37 Speculation will occur in CH models because 1- and higher-step players

think they are sometimes betting against random (0-step) bettors who make mistakes.

Competition neglect and business entry: Players who do limited iterated thinking, or

believe others are not as smart as themselves, will neglect competition in business entry,

which may help explain why the failure rate of new businesses is so high (see Camerer and

Lovallo, 1999; Huberman and Rubinstein, 2000). Simple entry games are studied below.

Theory and estimates from experimental data show that the CH model can explain why

36Besides historical examples like Dutch tulip bulbs and the $5 trillion tech-stock bubble in the 1990s,

experiments have shown such bubbles even in environments in which the asset's fundamental value is

controlled and commonly-known. See Smith, Suchanek and Williams, 1988; Camerer and Weigelt, 1993;

and Lei, Noussair and Plott, 2001.
37See Sonsino, Erev and Gilat, 2000; Sovik, 2000.
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the amount of entry is monotonic in market capacity, but too many players enter when

capacity is low. Managerial hubris, overcon¯dence, and self-serving biases which are

correlated with costly delay and labor strikes in the lab (Babcock et al., 1995) and in the

¯eld (Babcock and Loewenstein. 1997) can also be interpreted as players not believing

others always behave rationally.

Incentives: In his review of empirical evidence on incentive contracts in organizations,

Prendergast (1999) notes that workers typically react to simple incentives as standard

models predict. However, ¯rms usually do not implement complex contracts which should

elicit higher e®ort and improve e±ciency. This might be explained as the result of ¯rms

thinking strategically, but not believing that workers respond rationally.

Macroeconomics: Woodford (2001) notes that in Phelps-Lucas \islands" models, nom-

inal shocks can have real e®ects, but their predicted persistence is too short compared

to actual e®ects in data. He shows that imperfect information about higher-order nomi-

nal GDP estimates{ beliefs about beliefs, and higher-order iterations{ can cause longer

persistence which matches the data, and Svensson (2001) notes that iterated beliefs are

probably constrained by computational capacity. In CH models, players' beliefs are not

mutually consistent so there is higher-order belief inconsistency which might explain the

longer persistence of shocks that Woodford noted.

8 Conclusion

This paper introduced a parsimonious one-parameter cognitive hierarchy (CH) model of

limited reasoning in games. The model is designed to be as general and precise as Nash

equilibrium (in fact, it re¯nes implausible Nash equilibria and selects one of multiple Nash

equilibria). One innovation is to use axioms and estimation to restrict the frequencies of

players who stop thinking at various levels. The idea that most players do some strategic

thinking, but the amount of strategic thinking is sharply constrained by working memory,

is consistent with a simple axiom which implies a Poisson distribution of thinking steps

that can be characterized by one parameter ¿ (the mean number of thinking steps, and

the variance). Plausible restrictions and estimates from many experimental data sets

suggest that the mean amount of thinking ¿ is between one and two. The value ¿ = 1:5

is a good omnibus guess which makes the CH theory parameter-free.
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The other innovation in this paper is to show that the same model can explain limited

equilibration in dominance-solvable games (like p-beauty contests) and also to explain

why behavior in one-shot games with mixed equilibria is surprisingly well-approximated

by Nash equilibrium. A useful example is simultaneous binary entry games in which

players choose whether to enter a capacity-constrainted market. In one-shot games with

no communication, the rate of entry in these games is `magically' monotonic in the

capacity c, but there is reliable overentry at low values of c and underentry at high

values of c. The CH approach predicts monotonicity (it is guaranteed when ¿ · 1:25)

and also explains over- and under-entry. Furthermore, in the CH approach most players

use a pure strategy, which creates a kind of endogeneous puri¯cation that can explain

how a population mixture of players who use pure strategies (and perhaps regard mixing

as nonsensical) can approximate a mixed equilibrium.

Because players do not appear to be mutually consistent in one-shot games where

there is no opportunity to learn, it is possible that a theory of how others are likely

to play has economic value{ i.e, players would earn more if they used the model to

recommend choices, compared to how much they actually earn. In fact, economic value

is always positive for the CH model, whether ¿ is estimated within a data set or across

data sets. (Economic value is about 1/3 to 1/2 of the maximum possible economic

value.) The QRE and Nash approaches add less economic value, and sometimes subtract

economic value (e.g., in p-beauty contests players are better choosing on their own than

picking the Nash or QRE recommendation).

There are many challenges in future research. An obvious one is to endogenize the

mean number of thinking steps ¿ , presumably from some kind of cost-bene¯t analysis in

which players weigh the marginal bene¯ts of thinking further against cognitive constraint

(cf. Gabaix and Laibson, 2000). It is also likely that a more nuanced model of what

0-step players are doing would improve model ¯ts in some types of games.

The model is easily adapted to incomplete information games because the 0-step

players make choices which reach every information set, which eliminates the need to

impose delicate re¯nements to make predictions. Explaining behavior in signaling games

and other extensive-form games with incomplete information is therefore workable and

a high priority for future work. (Brandts and Holt, 1992, and Banks, Camerer, and

Porter, 1994, suggest that mixtures of decision rules in the ¯rst period, and learning in

subsequent periods, can explain the path of equilibration in signaling games; the CH

approach may add some bite to these ideas.)
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Another important challenge is repeated games. The CH approach will generally

underestimate the amount of strategic foresight observed in these games (e.g., players

using more than one step of thinking will choose supergame strategies which always defect

in repeated prisoners' dilemmas). An important step is to draw a sensible parametric

analogy between steps of strategic foresight and steps of iterated thinking is necessary to

explain observed behavior in such games (cf. Camerer, Ho and Chong, 2002a,b).

Finally, the ultimate goal of the laboratory honing of simple models is to explain

behavior in the economy. Field phenomena which seem to involve limits on iterated

thinking include speculation in zero-sum betting games, price bubbles in asset markets,

contract structure and behavior, and macroeconomic applications involving limits on

iterated expectations.
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9 Appendix: Model recovery, mixed games, and boot-

strapped standard errors

The 22 mixed games were taken from the review in Camerer (2003, chapter 3). They are

(in order of presentation to the subjects): Ochs (1995), (matching pennies plus games

1-3); Bloom¯eld (1994); Binmore et al. (2001) Game 4; Rapoport and Almadoss (2000);

Binmore et al (2001), games 1-3; Tang (2001), games 1-3; Goeree, Holt, and Palfrey

(2000), games 2-3; Mookerjhee and Sopher (1997), games 1-2; Rapoport and Boebel

(1992); Messick (1965); Lieberman (1962); O'Neill (1987); Goeree, Holt, and Palfrey
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(2000), game 1. Four games were perturbed from the original payo®s: The row upper

left payo® in Ochs's original game 1 was changed to 2; the Rapoport and Almadoss (2000)

game was computed for r=15; the middle row payo® in Binmore et al (2001) game 2 was

30 rather than -30; and the lower left row payo® in Goeree, Holt and Palfrey's (2000)

game 3 was 16 rather than 37. Original payo®s in games were multiplied by the following

conversion factors: 10, 10, 10, 10, 0.5, 10, 5, 10, 10, 10,1,1,1,0.25,0.1,30,30,30,5,3,10,0.25.

Currency units were then equal to $.10.

Table 9 below shows estimates of ¿ recovered from simulated data, created using the

CH model, to see how well the estimation procedure recovers ¿ when the actual value

is known. Each line shows a di®erent value of "true" ¿, for di®erent sizes of simulated

samples (n, either 20, 48, or 100), across a 2x2, 4x4, and 6x6 game, and then averaged

over the three games. There is little bias in recovering the actual ¿ values (except for

a slight upward bias when ¿ is small), although the 95% con¯dence intervals are rather

wide when samples are of size 20, and for the 2x2 game. The key lesson is that small

samples do not have much power, and 2x2 games are not very useful for estimating CH

models. The problem is that each level of thinking, above 0, picks a distinct strategy;

so when there are only two strategies several di®erent levels all pick the same strategy,

which means it is hard to identify how many levels are being used.

also insert table with bootstrapped standard errors (from coghi1102.xls)
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Table 9: Estimates of ¿ from model recovery simulations

true 2 £ 2 4£ 4 6 £ 6 average across games

¿ n mean 90% CI mean 90% CI mean 90% CI mean 90% CI

.5 20 0.62 (.05, 2) 0.53 (.2, .9) 0.51 (.3, .9) 0.56 (.19, 1.23)

48 0.52 (.15, .95) 0.51 (.3, .75) 0.5 (.35, .65 0.51 (.28, .77)

100 0.52 (.25, .8) 0.51 (.35, .7) 0.5 (.4, .6) 0.51 (.34, .68)

1 20 1.08 (.5, 2) 1.02 (.55, 1.55) 0.97 (.6, 1.45) 1.04 (.57, 1.6)

48 1.04 (.6, 1.6) 1.01 (.7, 1.35) 0.96 (.7, 1.2) 1.01 (.69, 1.37)

100 1.01 (.7, 1.3) 1 (.8, 1.2) 0.96 (.75, 1.05) 1 (.78, 1.21)

1.5 20 1.55 (.95, 2) 1.52 (1, 2.15) 1.45 (1.05, 1.55) 1.48 (.96, 1.83)

48 1.55 (1.1, 2) 1.51 (1.15, 1.85) 1.48 (1.4, 1.5) 1.5 (1.22, 1.75)

100 1.54 (1.2, 1.95) 1.5 (1.25, 1.75) 1.5 (1.5, 1.5) 1.5 (1.3, 1.7)

2 20 1.96 (.85, 2.85) 2.05 (1.45, 2.7) 2.06 (1.55, 2.65) 2.01 (1.31, 2.68)

48 2.02 (1.25, 2.5) 2.02 (1.65, 2.5) 2.01 (1.65, 2.4) 2.01 (1.59, 2.43)

100 2.05 (1.8, 2.35) 2.01 (1.75, 2.3) 2.01 (1.75, 2.3) 2.01 (1.77, 2.3)

2.5 20 2.39 (1.2, 3) 2.45 (1.9, 2.9) 2.52 (1.9, 3) 2.46 (1.74, 2.98)

48 2.49 (2, 3) 2.47 (2.05, 2.7) 2.53 (2.05, 3) 2.49 (2.06, 2.91)

100 2.51 (2.15, 2.9) 2.49 (2.2, 2.65) 2.51 (2.2, 2.85) 2.5 (2.21, 2.8)



Table 2: Parameter Estimate τ  for Cognitive Hierarchy Models

Data set Stahl & Cooper & Costa-Gomes
Wilson (1995) Van Huyck et al. Mixed Entry

Game-specific τ 
Game 1 2.93 16.02 2.16 0.98 0.69
Game 2 0.00 1.04 2.05 1.71 0.83
Game 3 1.35 0.18 2.29 0.86 -
Game 4 2.34 1.22 1.31 3.85 0.73
Game 5 2.01 0.50 1.71 1.08 0.69
Game 6 0.00 0.78 1.52 1.13
Game 7 5.37 0.98 0.85 3.29
Game 8 0.00 1.42 1.99 1.84
Game 9 1.35 1.91 1.06
Game 10 11.33 2.30 2.26
Game 11 6.48 1.23 0.87
Game 12 1.71 0.98 2.06
Game 13 2.40 1.88
Game 14 9.07
Game 15 3.49
Game 16 2.07
Game 17 1.14
Game 18 1.14
Game 19 1.55
Game 20 1.95
Game 21 1.68
Game 22 3.06
Median τ 1.86 1.01 1.91 1.77 0.71

Common τ 1.54 0.80 1.69 1.48 0.73



Table 4: Model Fit (Log Likelihood LL and Mean-squared Deviation MSD)

Stahl & Cooper & Costa-Gomes
Data set Wilson (1995) Van Huyck et al. Mixed Entry

Cognitive Hierarchy (Game-specific ττ  ) 1 

LL -721 -1690 -540 -824 -150
MSD 0.0074 0.0079 0.0034 0.0097 0.0004
Quantal Response (Game-specific λλ  )
LL -792 -1750 -574 -897 -150
MSD 0.0153 0.0148 0.0108 0.0203 0.0001
Cognitive Hierarchy (Common General Distribution f(k))
LL -777 -1741 -554 -866 -150
MSD 0.0125 0.0132 0.0086 0.0175 0.0004
Cognitive Hierarchy (Common ττ  )
LL -918 -1743 -560 -872 -150
MSD 0.0327 0.0136 0.0100 0.0179 0.0005
Quantal Response (Common λλ  )
LL -843 -1838 -596 -1005 -151
MSD 0.0248 0.0269 0.0178 0.0456 0.0022

Cognitive Hierarchy (Common ττ  )
LL -941 -1929 -599 -884 -153
MSD 0.0425 0.0328 0.0257 0.0216 0.0034
Quantal Response (Common λλ  )
LL -862 -1980 -748 -1429 -166
MSD 0.0275 0.0500 0.0697 0.0501 0.0216

Nash Equilibrium 2 

LL -3657 -10921 -3684 -1641 -154
MSD 0.0882 0.2040 0.1367 0.0521 0.0049

Note 1: The scale sensitivity parameter λ for the Cognitive Hierarchy models is set to infinity. The results reported
in Camerer, Ho & Chong(2001) presented at the Nobel Symposium 2001 are for models where λ is estimated.

Note 2: The Nash Equilibrium result is derived by allowing a non-zero mass of 0.0001 on non-equilibrium strategies.

Within-dataset Forecasting

Cross-dataset Forecasting



Table 5: Probability Distribution of Thinking Levels for the General Cognitive Hierarchy Models

Data set Stahl & Cooper & Costa-Gomes
Wilson (1995) Van Huyck et al. Mixed Entry

Frequency Estimates of the General Cognitive Hierarchy Models with Constraints 1 

Thinking Levels
0 0.25 0.43 0.22 0.20 0.50
1 0.12 0.43 0.22 0.38 0.40
2 0.12 0.11 0.26 0.23 0.08
3 0.12 0.03 0.18 0.08 0.01
4 0.12 0.00 0.08 0.04 0.00
5 0.12 0.00 0.03 0.04 0.00
6 0.12 0.00 0.01 0.01 0.00

7 and Higher 0.00 0.00 0.00 0.00 0.00

Frequency of the Poisson Cognitive Hierarchy Models
Thinking Levels

0 0.21 0.45 0.19 0.23 0.48
1 0.33 0.36 0.31 0.34 0.35
2 0.25 0.14 0.26 0.25 0.13
3 0.13 0.04 0.15 0.12 0.03
4 0.05 0.01 0.06 0.05 0.01
5 0.02 0.00 0.02 0.01 0.00
6 0.00 0.00 0.01 0.00 0.00

7 and Higher 0.00 0.00 0.00 0.00 0.00

Note 1: The constraints imposed are: (1) if f(k) < f(k-1) then f(k+x) <= f(k) where f(k) is the frequency
estimate for thinking level k; (2) f(6) >= f(7 and higher).



Table 6: Data and CH estimates of τ in various p-beauty contest games

subject pool group sample Nash pred'n data fit of CH model bootstrapped
or game source1 size size equil'm error mean std dev mode τ mean error std dev mode 90%  c.i.
p=1.1 HCW (98) 7 69 200 47.9 152.1 23.7 150 0.10 151.6 -0.5 28.0 165 (0.0,0.5)
p=1.3 HCW (98) 7 71 200 50.0 150.0 25.9 150 0.00 150.4 0.5 29.4 195 (0.0,0.1)
high $ CHW 7 14 72 11.0 61.0 8.4 55 4.90 59.4 -1.6 3.8 61 (3.4,4.9)
male CHW 7 17 72 14.4 57.6 9.7 54 3.70 57.6 0.1 5.5 58 (1.0,4.3)
female CHW 7 46 72 16.3 55.7 12.1 56 2.40 55.7 0.0 9.3 58 (1.6,4.9)
low $ CHW 7 49 72 17.2 54.8 11.9 54 2.00 54.7 -0.1 11.1 56 (0.7,3.8)
.7(M+18) Nagel (98) 7 34 42 -7.5 49.5 7.7 48 0.20 49.4 -0.1 26.4 48 (0.0,1.0)
PCC CHC (new) 2 24 0 -54.2 54.2 29.2 50 0.00 49.5 -4.7 29.5 0 (0.0,0.1)
p=0.9 HCW (98) 7 67 0 -49.4 49.4 24.3 50 0.10 49.5 0.0 27.7 45 (0.1,1.5)
PCC CHC (new) 3 24 0 -47.5 47.5 29.0 50 0.10 47.5 0.0 28.6 26 (0.1,0.8)
Caltech board Camerer 73 73 0 -42.6 42.6 23.4 33 0.50 43.1 0.4 24.3 34 (0.1,0.9)
p=0.7 HCW (98) 7 69 0 -38.9 38.9 24.7 35 1.00 38.8 -0.2 19.8 35 (0.5,1.6)
CEOs Camerer 20 20 0 -37.9 37.9 18.8 33 1.00 37.7 -0.1 20.2 34 (0.3,1.8)
German students Nagel (95) 14-16 66 0 -37.2 37.2 20.0 25 1.10 36.9 -0.2 19.4 34 (0.7,1.5)
70 yr olds Kovalchik 33 33 0 -37.0 37.0 17.5 27 1.10 36.9 -0.1 19.4 34 (0.6,1.7)
US high school Camerer 20-32 52 0 -32.5 32.5 18.6 33 1.60 32.7 0.2 16.3 34 (1.1,2.2)
econ PhDs Camerer 16 16 0 -27.4 27.4 18.7 N/A 2.30 27.5 0.0 13.1 21 (1.4,3.5)
1/2 mean Nagel (98) 15-17 48 0 -26.7 26.7 19.9 25 1.50 26.5 -0.2 19.1 25 (1.1,1.9)
portfolio mgrs Camerer 26 26 0 -24.3 24.3 16.1 22 2.80 24.4 0.1 11.4 26 (2.0,3.7)
Caltech students Camerer 17-25 42 0 -23.0 23.0 11.1 35 3.00 23.0 0.1 10.6 24 (2.7,3.8)
newspaper Nagel (98) 3696, 1460, 2728 7884 0 -23.0 23.0 20.2 1 3.00 23.0 0.0 10.6 24 (3.0,3.1)
Caltech CHC (new) 2 24 0 -21.7 21.7 29.9 0 0.80 22.2 0.6 31.6 0 (4.0,1.4)
Caltech CHC (new) 3 24 0 -21.5 21.5 25.7 0 1.80 21.5 0.1 18.6 26 (1.1,3.1)
game theorists Nagel (98) 27-54 136 0 -19.1 19.1 21.8 0 3.70 19.1 0.0 9.2 16 (2.8,4.7)

mean 1.30
median 1.61

Note 1: HCW (98) is Ho, Camerer, Weigelt AER 98; CHC are new data from Camerer, Ho, and Chong;
CHW is Camerer, Ho, Weigelt (unpublished); Kovalchik is unpublished data collected by Stephanie Kovalchik



Table 7: Economic Value of Various Theories

Stahl & Cooper & Costa-Gomes
Data set Wilson (1995) Van Huyck et al. Mixed Entry
Total Payoff (% Improvement)

Actual Subject Choices 384 1169 530 328 118
Ex-post Maximum 685 1322 615 708 176

79% 13% 16% 116% 49%
Within-dataset Estimation
Cognitive Hierarchy (Game-specific τ ) 401 1277 573 471 128

4% 9% 8% 43% 8%
Quantal Response (Game-specific λ ) 418 1277 573 371 128

9% 9% 8% 13% 8%
Cognitive Hierarchy (Common General Distribution f(k)) 421 1277 561 472 128

10% 9% 6% 44% 8%
Cognitive Hierarchy (Common τ ) 418 1277 573 471 128

9% 9% 8% 43% 8%
Quantal Response (Common λ ) 389 1277 561 324 128

1% 9% 6% -1% 8%

Cross-dataset Estimation
Cognitive Hierarchy (Common τ ) 418 1277 573 460 128

9% 9% 8% 40% 8%
Quantal Response (Common λ ) 379 1277 484 427 120

-1% 9% -9% 30% 2%
Nash Equilibrium 398 1230 556 274 112

4% 5% 5% -16% -5%

Note 1: The economic value is the total value (in USD) of all rounds that a "hypothetical" subject will earn using the respective model
to predict other's behavior and best responds with the strategy that yields the highest expected payoff in each round.



Table A1: 95% Confidence Interval for the Parameter Estimate τ  of Cognitive Hierarchy Models

Data set

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper
Game-specific τ 
Game 1 2.40 3.65 15.40 16.71 1.58 3.04 0.67 1.22 0.17 1.64
Game 2 0.00 0.00 0.83 1.27 1.44 2.80 0.98 2.37 0.71 0.88
Game 3 0.75 1.73 0.11 0.30 1.66 3.18 0.57 1.37 - -
Game 4 2.34 2.45 1.01 1.48 0.91 1.84 2.65 4.26 0.57 1.10
Game 5 1.61 2.45 0.36 0.67 1.22 2.30 0.70 1.62 0.26 1.59
Game 6 0.00 0.00 0.64 0.94 0.89 2.26 0.87 1.77
Game 7 5.20 5.62 0.75 1.23 0.40 1.41 2.45 3.85
Game 8 0.00 0.00 1.16 1.72 1.48 2.67 1.21 2.09
Game 9 1.06 1.69 1.28 2.68 0.62 1.64
Game 10 11.29 11.37 1.67 3.06 1.34 3.58
Game 11 5.81 7.56 0.75 1.85 0.64 1.23
Game 12 1.49 2.02 0.55 1.46 1.40 2.35
Game 13 1.75 3.16 1.64 2.15
Game 14 6.61 10.84
Game 15 2.46 5.25
Game 16 1.45 2.64
Game 17 0.82 1.52
Game 18 0.78 1.60
Game 19 1.00 2.15
Game 20 1.28 2.59
Game 21 0.95 2.21
Game 22 1.70 3.63

Common τ 1.39 1.67 0.74 0.87 1.53 2.13 1.30 1.78 0.41 1.03

Stahl &
Wilson (1995)

Cooper &
Van Huyck

Costa-Gomes
et al. Mixed Entry



Figure 1a: Predicted Frequencies of Cognitive Hierarchy Models 
for Matrix Games (common ττ )

y = 0.868x + 0.0499
R2 = 0.8203
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Figure 1b: Predicted Frequencies of Cognitive Hierarchy Models 
for Entry and Mixed Games (common ττ )

y = 0.8785x + 0.0419
R2 = 0.8027
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Figure 2a: Predicted Frequencies of Nash Equilibrium for Matrix 
Games

y = 0.8273x + 0.0652
R2 = 0.3187
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Figure 2b: Predicted Frequencies of Nash Equilibrium for 
Entry and Mixed Games

y = 0.707x + 0.1011
R2 = 0.4873
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Figure A1a: Predicted Frequencies of Cognitive Hierarchy Models 
for Matrix Games (individual ττ )

y = 0.9529x + 0.0178
R2 = 0.9402
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Figure A1b: Predicted Frequencies of Cognitive Hierarchy Models 
for Entry and Mixed Games (individual ττ )

y = 0.8785x + 0.0419
R2 = 0.8913
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