158 research outputs found

    Current trends in multilingual speech processing

    Get PDF
    In this paper, we describe recent work at Idiap Research Institute in the domain of multilingual speech processing and provide some insights into emerging challenges for the research community. Multilingual speech processing has been a topic of ongoing interest to the research community for many years and the field is now receiving renewed interest owing to two strong driving forces. Firstly, technical advances in speech recognition and synthesis are posing new challenges and opportunities to researchers. For example, discriminative features are seeing wide application by the speech recognition community, but additional issues arise when using such features in a multilingual setting. Another example is the apparent convergence of speech recognition and speech synthesis technologies in the form of statistical parametric methodologies. This convergence enables the investigation of new approaches to unified modelling for automatic speech recognition and text-to-speech synthesis (TTS) as well as cross-lingual speaker adaptation for TTS. The second driving force is the impetus being provided by both government and industry for technologies to help break down domestic and international language barriers, these also being barriers to the expansion of policy and commerce. Speech-to-speech and speech-to-text translation are thus emerging as key technologies at the heart of which lies multilingual speech processin

    The use of acoustic cues in phonetic perception: Effects of spectral degradation, limited bandwidth and background noise

    Get PDF
    Hearing impairment, cochlear implantation, background noise and other auditory degradations result in the loss or distortion of sound information thought to be critical to speech perception. In many cases, listeners can still identify speech sounds despite degradations, but understanding of how this is accomplished is incomplete. Experiments presented here tested the hypothesis that listeners would utilize acoustic-phonetic cues differently if one or more cues were degraded by hearing impairment or simulated hearing impairment. Results supported this hypothesis for various listening conditions that are directly relevant for clinical populations. Analysis included mixed-effects logistic modeling of contributions of individual acoustic cues for various contrasts. Listeners with cochlear implants (CIs) or normal-hearing (NH) listeners in CI simulations showed increased use of acoustic cues in the temporal domain and decreased use of cues in the spectral domain for the tense/lax vowel contrast and the word-final fricative voicing contrast. For the word-initial stop voicing contrast, NH listeners made less use of voice-onset time and greater use of voice pitch in conditions that simulated high-frequency hearing impairment and/or masking noise; influence of these cues was further modulated by consonant place of articulation. A pair of experiments measured phonetic context effects for the "s/sh" contrast, replicating previously observed effects for NH listeners and generalizing them to CI listeners as well, despite known deficiencies in spectral resolution for CI listeners. For NH listeners in CI simulations, these context effects were absent or negligible. Audio-visual delivery of this experiment revealed enhanced influence of visual lip-rounding cues for CI listeners and NH listeners in CI simulations. Additionally, CI listeners demonstrated that visual cues to gender influence phonetic perception in a manner consistent with gender-related voice acoustics. All of these results suggest that listeners are able to accommodate challenging listening situations by capitalizing on the natural (multimodal) covariance in speech signals. Additionally, these results imply that there are potential differences in speech perception by NH listeners and listeners with hearing impairment that would be overlooked by traditional word recognition or consonant confusion matrix analysis

    Development of Kinematic Templates for Automatic Pronunciation Assessment Using Acoustic-to-Articulatory Inversion

    Get PDF
    Computer-aided pronunciation training (CAPT) is a subcategory of computer-aided language learning (CALL) that deals with the correction of mispronunciation during language learning. For a CAPT system to be effective, it must provide useful and informative feedback that is comprehensive, qualitative, quantitative, and corrective. While the majority of modern systems address the first 3 aspects of feedback, most of these systems do not provide corrective feedback. As part of the National Science Foundation (NSF) funded study “RI: Small: Speaker Independent Acoustic-Articulator Inversion for Pronunciation Assessment”, the Marquette Speech and Swallowing Lab and Marquette Speech and Signal Processing Lab are conducting a pilot study on the feasibility of the use of acoustic-to-articulatory inversion for CAPT. In order to evaluate the results of a speaker’s acoustic-to-articulatory inversion to determine pronunciation accuracy, kinematic templates are required. The templates would represent the vowels, consonant clusters, and stress characteristics of a typical American English (AE) speaker in the midsagittal plane. The Marquette University electromagnetic articulography Mandarin-accented English (EMA-MAE) database, which contains acoustic and kinematic speech data for 40 speakers (20 of which are native AE speakers), provides the data used to form the kinematic templates. The objective of this work is the development and implementation of these templates. The data provided in the EMA-MAE database is analyzed in detail, and the information obtained from the analysis is used to develop the kinematic templates. The vowel templates are designed as sets of concentric confidence ellipses, which specify (in the midsagittal plane) the ranges of tongue and lip positions corresponding to correct pronunciation. These ranges were defined using the typical articulator positioning of all English speakers of the EMA-MAE database. The data from these English speakers were also used to model the magnitude, speed history, movement pattern, and duration (MSTD) features of each consonant cluster in the EMA-MAE corpus. Cluster templates were designed as set of average MSTD parameters across English speakers for each cluster. Finally, English stress characteristics were similarly modeled as a set of average magnitude, speed, and duration parameters across English speakers. The kinematic templates developed in this work, while still in early stages, form the groundwork for assessment of features returned by the acoustic-to-articulatory inversion system. This in turn allows for assessment of articulatory inversion as a pronunciation training tool

    Spoken content retrieval: A survey of techniques and technologies

    Get PDF
    Speech media, that is, digital audio and video containing spoken content, has blossomed in recent years. Large collections are accruing on the Internet as well as in private and enterprise settings. This growth has motivated extensive research on techniques and technologies that facilitate reliable indexing and retrieval. Spoken content retrieval (SCR) requires the combination of audio and speech processing technologies with methods from information retrieval (IR). SCR research initially investigated planned speech structured in document-like units, but has subsequently shifted focus to more informal spoken content produced spontaneously, outside of the studio and in conversational settings. This survey provides an overview of the field of SCR encompassing component technologies, the relationship of SCR to text IR and automatic speech recognition and user interaction issues. It is aimed at researchers with backgrounds in speech technology or IR who are seeking deeper insight on how these fields are integrated to support research and development, thus addressing the core challenges of SCR

    Language Identification in Short Utterances Using Long Short-Term Memory (LSTM) Recurrent Neural Networks

    Full text link
    Zazo R, Lozano-Diez A, Gonzalez-Dominguez J, T. Toledano D, Gonzalez-Rodriguez J (2016) Language Identification in Short Utterances Using Long Short-Term Memory (LSTM) Recurrent Neural Networks. PLoS ONE 11(1): e0146917. doi:10.1371/journal.pone.0146917Long Short Term Memory (LSTM) Recurrent Neural Networks (RNNs) have recently outperformed other state-of-the-art approaches, such as i-vector and Deep Neural Networks (DNNs), in automatic Language Identification (LID), particularly when dealing with very short utterances (similar to 3s). In this contribution we present an open-source, end-to-end, LSTM RNN system running on limited computational resources (a single GPU) that outperforms a reference i-vector system on a subset of the NIST Language Recognition Evaluation (8 target languages, 3s task) by up to a 26%. This result is in line with previously published research using proprietary LSTM implementations and huge computational resources, which made these former results hardly reproducible. Further, we extend those previous experiments modeling unseen languages (out of set, OOS, modeling), which is crucial in real applications. Results show that a LSTM RNN with OOS modeling is able to detect these languages and generalizes robustly to unseen OOS languages. Finally, we also analyze the effect of even more limited test data (from 2.25s to 0.1s) proving that with as little as 0.5s an accuracy of over 50% can be achieved.This work has been supported by project CMC-V2: Caracterizacion, Modelado y Compensacion de Variabilidad en la Señal de Voz (TEC2012-37585-C02-01), funded by Ministerio de Economia y Competitividad, Spain

    The listening talker: A review of human and algorithmic context-induced modifications of speech

    Get PDF
    International audienceSpeech output technology is finding widespread application, including in scenarios where intelligibility might be compromised - at least for some listeners - by adverse conditions. Unlike most current algorithms, talkers continually adapt their speech patterns as a response to the immediate context of spoken communication, where the type of interlocutor and the environment are the dominant situational factors influencing speech production. Observations of talker behaviour can motivate the design of more robust speech output algorithms. Starting with a listener-oriented categorisation of possible goals for speech modification, this review article summarises the extensive set of behavioural findings related to human speech modification, identifies which factors appear to be beneficial, and goes on to examine previous computational attempts to improve intelligibility in noise. The review concludes by tabulating 46 speech modifications, many of which have yet to be perceptually or algorithmically evaluated. Consequently, the review provides a roadmap for future work in improving the robustness of speech output

    Subspace Gaussian Mixture Models for Language Identification and Dysarthric Speech Intelligibility Assessment

    Get PDF
    En esta Tesis se ha investigado la aplicación de técnicas de modelado de subespacios de mezclas de Gaussianas en dos problemas relacionados con las tecnologías del habla, como son la identificación automática de idioma (LID, por sus siglas en inglés) y la evaluación automática de inteligibilidad en el habla de personas con disartria. Una de las técnicas más importantes estudiadas es el análisis factorial conjunto (JFA, por sus siglas en inglés). JFA es, en esencia, un modelo de mezclas de Gaussianas en el que la media de cada componente se expresa como una suma de factores de dimensión reducida, y donde cada factor representa una contribución diferente a la señal de audio. Esta factorización nos permite compensar nuestros modelos frente a contribuciones indeseadas presentes en la señal, como la información de canal. JFA se ha investigado como clasficador y como extractor de parámetros. En esta última aproximación se modela un solo factor que representa todas las contribuciones presentes en la señal. Los puntos en este subespacio se denominan i-Vectors. Así, un i-Vector es un vector de baja dimensión que representa una grabación de audio. Los i-Vectors han resultado ser muy útiles como vector de características para representar señales en diferentes problemas relacionados con el aprendizaje de máquinas. En relación al problema de LID, se han investigado dos sistemas diferentes de acuerdo al tipo de información extraída de la señal. En el primero, la señal se parametriza en vectores acústicos con información espectral a corto plazo. En este caso, observamos mejoras de hasta un 50% con el sistema basado en i-Vectors respecto al sistema que utilizaba JFA como clasificador. Se comprobó que el subespacio de canal del modelo JFA también contenía información del idioma, mientras que con los i-Vectors no se descarta ningún tipo de información, y además, son útiles para mitigar diferencias entre los datos de entrenamiento y de evaluación. En la fase de clasificación, los i-Vectors de cada idioma se modelaron con una distribución Gaussiana en la que la matriz de covarianza era común para todos. Este método es simple y rápido, y no requiere de ningún post-procesado de los i-Vectors. En el segundo sistema, se introdujo el uso de información prosódica y formántica en un sistema de LID basado en i-Vectors. La precisión de éste estaba por debajo de la del sistema acústico. Sin embargo, los dos sistemas son complementarios, y se obtuvo hasta un 20% de mejora con la fusión de los dos respecto al sistema acústico solo. Tras los buenos resultados obtenidos para LID, y dado que, teóricamente, los i-Vectors capturan toda la información presente en la señal, decidimos usarlos para la evaluar de manera automática la inteligibilidad en el habla de personas con disartria. Los logopedas están muy interesados en esta tecnología porque permitiría evaluar a sus pacientes de una manera objetiva y consistente. En este caso, los i-Vectors se obtuvieron a partir de información espectral a corto plazo de la señal, y la inteligibilidad se calculó a partir de los i-Vectors obtenidos para un conjunto de palabras dichas por el locutor evaluado. Comprobamos que los resultados eran mucho mejores si en el entrenamiento del sistema se incorporaban datos de la persona que iba a ser evaluada. No obstante, esta limitación podría aliviarse utilizando una mayor cantidad de datos para entrenar el sistema.In this Thesis, we investigated how to effciently apply subspace Gaussian mixture modeling techniques onto two speech technology problems, namely automatic spoken language identification (LID) and automatic intelligibility assessment of dysarthric speech. One of the most important of such techniques in this Thesis was joint factor analysis (JFA). JFA is essentially a Gaussian mixture model where the mean of the components is expressed as a sum of low-dimension factors that represent different contributions to the speech signal. This factorization makes it possible to compensate for undesired sources of variability, like the channel. JFA was investigated as final classiffer and as feature extractor. In the latter approach, a single subspace including all sources of variability is trained, and points in this subspace are known as i-Vectors. Thus, one i-Vector is defined as a low-dimension representation of a single utterance, and they are a very powerful feature for different machine learning problems. We have investigated two different LID systems according to the type of features extracted from speech. First, we extracted acoustic features representing short-time spectral information. In this case, we observed relative improvements with i-Vectors with respect to JFA of up to 50%. We realized that the channel subspace in a JFA model also contains language information whereas i-Vectors do not discard any language information, and moreover, they help to reduce mismatches between training and testing data. For classification, we modeled the i-Vectors of each language with a Gaussian distribution with covariance matrix shared among languages. This method is simple and fast, and it worked well without any post-processing. Second, we introduced the use of prosodic and formant information with the i-Vectors system. The performance was below the acoustic system but both were found to be complementary and we obtained up to a 20% relative improvement with the fusion with respect to the acoustic system alone. Given the success in LID and the fact that i-Vectors capture all the information that is present in the data, we decided to use i-Vectors for other tasks, specifically, the assessment of speech intelligibility in speakers with different types of dysarthria. Speech therapists are very interested in this technology because it would allow them to objectively and consistently rate the intelligibility of their patients. In this case, the input features were extracted from short-term spectral information, and the intelligibility was assessed from the i-Vectors calculated from a set of words uttered by the tested speaker. We found that the performance was clearly much better if we had available data for training of the person that would use the application. We think that this limitation could be relaxed if we had larger databases for training. However, the recording process is not easy for people with disabilities, and it is difficult to obtain large datasets of dysarthric speakers open to the research community. Finally, the same system architecture for intelligibility assessment based on i-Vectors was used for predicting the accuracy that an automatic speech recognizer (ASR) system would obtain with dysarthric speakers. The only difference between both was the ground truth label set used for training. Predicting the performance response of an ASR system would increase the confidence of speech therapists in these systems and would diminish health related costs. The results were not as satisfactory as in the previous case, probably because an ASR is a complex system whose accuracy can be very difficult to be predicted only with acoustic information. Nonetheless, we think that we opened a door to an interesting research direction for the two problems

    Application of automatic speech recognition technologies to singing

    Get PDF
    The research field of Music Information Retrieval is concerned with the automatic analysis of musical characteristics. One aspect that has not received much attention so far is the automatic analysis of sung lyrics. On the other hand, the field of Automatic Speech Recognition has produced many methods for the automatic analysis of speech, but those have rarely been employed for singing. This thesis analyzes the feasibility of applying various speech recognition methods to singing, and suggests adaptations. In addition, the routes to practical applications for these systems are described. Five tasks are considered: Phoneme recognition, language identification, keyword spotting, lyrics-to-audio alignment, and retrieval of lyrics from sung queries. The main bottleneck in almost all of these tasks lies in the recognition of phonemes from sung audio. Conventional models trained on speech do not perform well when applied to singing. Training models on singing is difficult due to a lack of annotated data. This thesis offers two approaches for generating such data sets. For the first one, speech recordings are made more “song-like”. In the second approach, textual lyrics are automatically aligned to an existing singing data set. In both cases, these new data sets are then used for training new acoustic models, offering considerable improvements over models trained on speech. Building on these improved acoustic models, speech recognition algorithms for the individual tasks were adapted to singing by either improving their robustness to the differing characteristics of singing, or by exploiting the specific features of singing performances. Examples of improving robustness include the use of keyword-filler HMMs for keyword spotting, an i-vector approach for language identification, and a method for alignment and lyrics retrieval that allows highly varying durations. Features of singing are utilized in various ways: In an approach for language identification that is well-suited for long recordings; in a method for keyword spotting based on phoneme durations in singing; and in an algorithm for alignment and retrieval that exploits known phoneme confusions in singing.Das Gebiet des Music Information Retrieval befasst sich mit der automatischen Analyse von musikalischen Charakteristika. Ein Aspekt, der bisher kaum erforscht wurde, ist dabei der gesungene Text. Auf der anderen Seite werden in der automatischen Spracherkennung viele Methoden für die automatische Analyse von Sprache entwickelt, jedoch selten für Gesang. Die vorliegende Arbeit untersucht die Anwendung von Methoden aus der Spracherkennung auf Gesang und beschreibt mögliche Anpassungen. Zudem werden Wege zur praktischen Anwendung dieser Ansätze aufgezeigt. Fünf Themen werden dabei betrachtet: Phonemerkennung, Sprachenidentifikation, Schlagwortsuche, Text-zu-Gesangs-Alignment und Suche von Texten anhand von gesungenen Anfragen. Das größte Hindernis bei fast allen dieser Themen ist die Erkennung von Phonemen aus Gesangsaufnahmen. Herkömmliche, auf Sprache trainierte Modelle, bieten keine guten Ergebnisse für Gesang. Das Trainieren von Modellen auf Gesang ist schwierig, da kaum annotierte Daten verfügbar sind. Diese Arbeit zeigt zwei Ansätze auf, um solche Daten zu generieren. Für den ersten wurden Sprachaufnahmen künstlich gesangsähnlicher gemacht. Für den zweiten wurden Texte automatisch zu einem vorhandenen Gesangsdatensatz zugeordnet. Die neuen Datensätze wurden zum Trainieren neuer Modelle genutzt, welche deutliche Verbesserungen gegenüber sprachbasierten Modellen bieten. Auf diesen verbesserten akustischen Modellen aufbauend wurden Algorithmen aus der Spracherkennung für die verschiedenen Aufgaben angepasst, entweder durch das Verbessern der Robustheit gegenüber Gesangscharakteristika oder durch das Ausnutzen von hilfreichen Besonderheiten von Gesang. Beispiele für die verbesserte Robustheit sind der Einsatz von Keyword-Filler-HMMs für die Schlagwortsuche, ein i-Vector-Ansatz für die Sprachenidentifikation sowie eine Methode für das Alignment und die Textsuche, die stark schwankende Phonemdauern nicht bestraft. Die Besonderheiten von Gesang werden auf verschiedene Weisen genutzt: So z.B. in einem Ansatz für die Sprachenidentifikation, der lange Aufnahmen benötigt; in einer Methode für die Schlagwortsuche, die bekannte Phonemdauern in Gesang mit einbezieht; und in einem Algorithmus für das Alignment und die Textsuche, der bekannte Phonemkonfusionen verwertet

    Sequential grouping constraints on across-channel auditory processing

    Get PDF
    corecore