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Abstract

The research field of Music Information Retrieval is concerned with the automatic

analysis of musical characteristics. One aspect that has not received much attention so

far is the automatic analysis of sung lyrics. On the other hand, the field of Automatic

Speech Recognition has produced many methods for the automatic analysis of speech,

but those have rarely been employed for singing. This thesis analyzes the feasibility

of applying various speech recognition methods to singing, and suggests adaptations.

In addition, the routes to practical applications for these systems are described. Five

tasks are considered: Phoneme recognition, language identification, keyword spotting,

lyrics-to-audio alignment, and retrieval of lyrics from sung queries.

The main bottleneck in almost all of these tasks lies in the recognition of phonemes

from sung audio. Conventional models trained on speech do not perform well when

applied to singing. Training models on singing is difficult due to a lack of annotated

data. This thesis offers two approaches for generating such data sets. For the first

one, speech recordings are made more “song-like”. In the second approach, textual

lyrics are automatically aligned to an existing singing data set. In both cases, these

new data sets are then used for training new acoustic models, offering considerable

improvements over models trained on speech.

Building on these improved acoustic models, speech recognition algorithms for the

individual tasks were adapted to singing by either improving their robustness to the

differing characteristics of singing, or by exploiting the specific features of singing per-

formances. Examples of improving robustness include the use of keyword-filler HMMs

for keyword spotting, an i-vector approach for language identification, and a method

for alignment and lyrics retrieval that allows highly varying durations. Features of

singing are utilized in various ways: In an approach for language identification that is

well-suited for long recordings; in a method for keyword spotting based on phoneme

durations in singing; and in an algorithm for alignment and retrieval that exploits

known phoneme confusions in singing.



Zusammenfassung

Das Gebiet des Music Information Retrieval befasst sich mit der automatischen Analy-

se von musikalischen Charakteristika. Ein Aspekt, der bisher kaum erforscht wurde, ist

dabei der gesungene Text. Auf der anderen Seite werden in der automatischen Spracher-

kennung viele Methoden für die automatische Analyse von Sprache entwickelt, jedoch

selten für Gesang. Die vorliegende Arbeit untersucht die Anwendung von Methoden

aus der Spracherkennung auf Gesang und beschreibt mögliche Anpassungen. Zudem

werden Wege zur praktischen Anwendung dieser Ansätze aufgezeigt. Fünf Themen

werden dabei betrachtet: Phonemerkennung, Sprachenidentifikation, Schlagwortsuche,

Text-zu-Gesangs-Alignment und Suche von Texten anhand von gesungenen Anfragen.

Das größte Hindernis bei fast allen dieser Themen ist die Erkennung von Phonemen aus

Gesangsaufnahmen. Herkömmliche, auf Sprache trainierte Modelle, bieten keine guten

Ergebnisse für Gesang. Das Trainieren von Modellen auf Gesang ist schwierig, da kaum

annotierte Daten verfügbar sind. Diese Arbeit zeigt zwei Ansätze auf, um solche Da-

ten zu generieren. Für den ersten wurden Sprachaufnahmen künstlich gesangsähnlicher

gemacht. Für den zweiten wurden Texte automatisch zu einem vorhandenen Gesangs-

datensatz zugeordnet. Die neuen Datensätze wurden zum Trainieren neuer Modelle

genutzt, welche deutliche Verbesserungen gegenüber sprachbasierten Modellen bieten.

Auf diesen verbesserten akustischen Modellen aufbauend wurden Algorithmen aus der

Spracherkennung für die verschiedenen Aufgaben angepasst, entweder durch das Ver-

bessern der Robustheit gegenüber Gesangscharakteristika oder durch das Ausnutzen

von hilfreichen Besonderheiten von Gesang. Beispiele für die verbesserte Robustheit

sind der Einsatz von Keyword-Filler-HMMs für die Schlagwortsuche, ein i-Vector-

Ansatz für die Sprachenidentifikation sowie eine Methode für das Alignment und die

Textsuche, die stark schwankende Phonemdauern nicht bestraft. Die Besonderheiten

von Gesang werden auf verschiedene Weisen genutzt: So z.B. in einem Ansatz für

die Sprachenidentifikation, der lange Aufnahmen benötigt; in einer Methode für die

Schlagwortsuche, die bekannte Phonemdauern in Gesang mit einbezieht; und in einem

Algorithmus für das Alignment und die Textsuche, der bekannte Phonemkonfusionen

verwertet.
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1 Introduction

1.1 Motivation

Ever since the widespread introduction of digital formats for music, professional and

personal music collections have grown exponentially. Efficient search algorithms are

necessary for managing these huge collections. In the past ∼15 years, many interesting

technologies have been developed to make it easier for users to efficiently search these

collections by certain semantic criteria, such as tempo, mood, genre, instruments, etc.

This field of research is called Music Information Retrieval (MIR) [1]. One character-

istic that has not received much research attention yet is the lyrical content of songs,

even though this information is useful for many practical applications, and could aid

other MIR tasks.

On the other hand, Automatic Speech Recognition (ASR) has been an active field

of research for more than 60 years now [2] and encompasses a large variety of research

topics. However, speech recognition algorithms have so far only rarely been adapted

to singing. One of the reasons for this seems to be that most of these tasks get harder

when using singing because singing data has different characteristics, which are also

often more varied than in pure speech [3]. For example, the typical fundamental fre-

quency for female speech lies between 165 and 200Hz, while in singing it can reach

more than 1000Hz. Other differences include harmonics, durations, pronunciation,

and vibrato, as well as difficulties introduced with background music.

Generally, both fields of research are strongly related and utilize many of the same

approaches and technologies. This overlap, however, has not been explored thoroughly.

This work aims to look at this relation more closely, and to apply and adapt ASR tech-

nologies to singing.

The possibilities for practical use of such technologies are manifold. Such applica-

tions include, but are not limited to:
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Direct search of songs based on their lyrical content Potential users could search

for songs by their language, lyrical phrases, or keywords. This is useful for such

applications as language learning, finding songs on certain topics, advertisement

etc.

Improvement of similarity search and playlist generation Similarity dimensions could

include the sung language, keywords, or topics.

Improvement of regional classification As described in [4], human subjects tend to

rely on the language to determine the region of origin of a musical piece. This is

not taken into account by current regional classification systems.

Improvement of genre classification Similar to regional classification, certain musi-

cal genres are closely connected to a single singing language, or to certain key-

words. Considering the “glass ceiling” of approximately 80% accuracy for many

classification tasks in MIR [5], new hybrid approaches are necessary to improve

them.

Improvement of mood detection Words can be indicatory of specific moods. By

exploiting those, mood detection in music could be expanded with an additional

dimension.

Lyrics alignment for karaoke Automatically aligned lyrics could be used in karaoke

systems to enable users to sing any song they want to.

Lyrics retrieval from databases Textual lyrics can be retrieved from a database with

just a short sung recording as the input. This is, once again, useful for karaoke.

Lyrics identification It is possible to compute compressed representations of detected

lyrics. These could be used to aid audio identification (query-by-humming) tech-

nologies by utilizing lyrics information in addition to the melodic and harmonic

characteristics used so far.

Cover song detection by lyrics In the same vein, alternative or auxiliary technologies

for cover song detection through lyrics analysis are possible.

Lyrics transcription Given an audio recording, it will eventually be possible to auto-

matically transcribe the full lyrics for users.

Singing generation Similar to recent approaches for speech synthesis [6], ASR tech-

nologies for singing could be used to automatically generate singing audio.
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1.2 Research objectives

As described, speech recognition becomes more difficult when applied to singing. This

thesis highlights strategies to improve various recognition tasks. There are two main

starting points for this improvement:

1. Training better acoustic models for phoneme recognition, which forms the basis

of many speech recognition tasks

2. Adapting subsequent algorithms for the various tasks to singing by either making

them more robust to singing characteristics, or by exploiting knowledge about

sung performances

To show how these improvements can impact speech recognition in singing, five

topics were researched for this thesis:

Phoneme recognition Phoneme recognition describes the task of determining the

sung sounds (phonemes) occurring in an audio recording. This forms the basis for

many other tasks; first and foremost, lyrics transcription, but also almost all other

tasks in this work. Phoneme recognition tends to be the bottleneck component in

systems for ASR in singing. Inaccurate results at this step will lead to inaccurate

results in the subsequent ones. As will be shown, phoneme recognition in singing has

so far been performed with models trained on speech; these are, of course, not optimal.

The reason why models have so far not been trained on singing is the lack of available

training data for this task. This thesis presents ways around this problem. Specifically,

acoustic models are trained on speech data that has been made more “song-like”, and

on singing data with automatically generated phoneme annotations. These new models

lead to improvements on this and all the following tasks.

Language identification Language identification is the task of detecting the language

in which a sung recording is performed. This has many practical applications, as

described above: The results could be employed to directly search for music in certain

languages (e.g. for language learning or for advertisements), to improve similarity

search algorithms, or to support regional and genre classification. There are very few

publications dealing with sung language identification so far. In this thesis, a state-of-

the-art approach from the field of Automatic Speech Recognition (ASR) is applied to

the problem, and a completely new one based on phoneme statistics is presented.
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Keyword spotting During keyword spotting, a set of singing recordings is searched

for a specific keyword. Just like language identification, there are practical motivations

for this. Keyword-based search systems are useful for finding songs on certain topics,

for playlist generation, similarity search, genre classification, or for mood detection.

Once again, there are very few published approaches for this task. This thesis presents

the first approach for English-language keyword spotting of arbitrary keywords without

side information (like the lyrics in text format, the musical score, or sung samples of

the keyword). Additionally, a new method for integrating knowledge about plausible

phoneme durations is described.

Lyrics-to-audio alignment Using an audio recording and its known textual lyrics,

lyrics-to-audio alignment methods are able to determine where each phrase, word, or

phoneme occurs in time. In contrast to the other tasks, this topic is already relatively

well-researched. It is a sought-after technology for karaoke applications, or for sup-

porting other speech recognition tasks (for example, keyword spotting becomes much

easier when the textual lyrics are available). In this thesis, classic HMM-based align-

ment is first used as an auxiliary technology to create a new training data set for

phoneme recognition. Then, two new methods are presented: One based on Dynamic

Time Warping (DTW) on the results of the phoneme recognition, and one based on

Levenshtein distance calculation on phoneme sequences.

Lyrics retrieval As another research topic that has not received much attention so

far, lyrics retrieval is the task of finding the correct textual lyrics (and consequently

the correct song) in a database given a sung query. This is, again, useful for karaoke

systems or generally for voice-based search. This work presents new approaches for this

task that utilize the same technologies as the audio alignment. Compared to the state

of the art, these are the first systems that do not require melody information in addi-

tion to the lyrics, and also work directly on the detected phonemes without a language

modeling step required (which in effect results in a text search on the detected phrases).

Generally, this thesis focuses on unaccompanied singing in order to determine how

much the developed algorithms directly improve results on singing in comparison to

speech. Only the alignment task was tested on polyphonic music. Expanding the

resulting systems to full songs is an important future step.
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1.3 Thesis structure

The thesis is structured into nine chapters:

1 Introduction This chapter. Motivates the work and describes the research goals.

2 Technical background Describes the various algorithms for feature extraction, ma-

chine learning, and distance calculation used throughout this work. Also explains

the general system structure of the developed approaches.

3 State of the art Summarizes existing methods for solving the mentioned research

objectives.

4 Data sets An overview of the various data sets used for training and testing the

developed approaches.

5 Singing phoneme recognition Describes the approaches developed for the phoneme

recognition task and their evaluation results.

6 Sung language identification Presents the developed methods for language identi-

fication and their evaluation results.

7 Sung keyword spotting Explains the keyword spotting algorithms and their evalu-

ation results.

8 Lyrics retrieval and alignment Describes the developed systems for lyrics align-

ment and retrieval and their evaluation results.

9 Conclusion Summarizes the work, points out the major contributions, and suggests

future research directions.

1.4 Publications

The achieved research results have been published in the following conference papers:

Phoneme recognition

• Anna M. Kruspe, “Training phoneme models for singing with ”songified” speech

data”, in 16th International Society for Music Information Retrieval Conference

(ISMIR), Malaga, Spain, 2015.
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• Anna M. Kruspe, “Bootstrapping a system for phoneme recognition and keyword

spotting in unaccompanied singing”, in 17th International Society for Music In-

formation Retrieval Conference (ISMIR), New York, NY, USA, 2016.

Language identification

• Anna M. Kruspe,“Automatic Language Identification for Singing”, in Mid-Atlantic

Student Colloquium on Speech, Language and Learning (MASC-SLL), Baltimore,

MD, USA, 2013.

• Anna M. Kruspe, Jakob Abesser, Christian Dittmar, “A GMM approach to

singing language identification”, in Proc. of the AES Conference on Semantic

Audio, London, UK, 2014.

• Anna M. Kruspe, “Improving singing language identification through i-vector

extraction”, in Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-

14), Erlangen, Germany, 2014.

• Anna M. Kruspe, “Phonotactic Language Identification for Singing”, in Inter-

speech, San Francisco, CA, USA, 2016.

Keyword spotting

• Anna M. Kruspe, “Keyword spotting in a-capella singing”, in 15th International

Society for Music Information Retrieval Conference (ISMIR), Taipei, Taiwan,

2014.

• Anna M. Kruspe, “Keyword spotting in singing with duration-modeled HMMs”,

in European Signal Processing Conference (EUSIPCO), Nice, France, 2015.

• Anna M. Kruspe, “Bootstrapping a system for phoneme recognition and keyword

spotting in unaccompanied singing”, in 17th International Society for Music In-
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2 Technical Background

2.1 General processing chain

The general procedure for the tasks in this work is shown in figures 2.1 and 2.2. Using

data sets of audio (speech or singing) and matching annotations, models are trained

as outlined in figure 2.1. Then, these models are used to classify unseen audio data in

order to generate annotations for them (figure 2.2).

In detail, the necessary steps are:

Pre-processing For the tasks in this work, pre-processing of the audio data is rela-

tively straightforward and consists of normalization of the signal and averaging

to a mono channel. Additionally, the audio is usually downsampled to 16kHz

because this is the lowest sampling frequency in most of the data sets, and down-

sampling is necessary for compatibility. The language identification data sets are

an exception; they are downsampled to 8kHz (more detail on the data sets is

given in chapter 4). In a system for polyphonic music, pre-processing could also

include steps for source separation or Vocal Activity Detection. As described

above, no such steps were integrated due to the focus on unaccompanied singing.

Feature extraction The audio signal contains a lot of data that is redundant and

irrelevant to the tasks. For this reason, many types of so-called feature represen-

tations were developed over the years. The features employed in this work are

described in the next section.

Model training Using both the audio features and the available annotations, models

are trained with machine learning algorithms to gain an implicit understanding

of the requested annotations (i.e. classes). In this work, only supervised learning

was employed. The machine learning methods are described in section 2.4.

Classification The trained models can then be used on features extracted from unseen

audio data to obtain their annotations (= classes).
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Figure 2.1: Schematic of the training procedure of the considered tasks.

Figure 2.2: Schematic of the classification procedure of the considered tasks (the model
is the one created during training - see figure 2.1).

Post-processing In many tasks, the classification results are not used directly, but

processed further. In tasks like alignment and retrieval, for example, phoneme

probabilities are matched with symbolic phoneme annotations. In these cases,

distance calculation methods as described in section 2.3 are required.

The implementation of these steps for the actual tasks is described in the individual

chapters. Evaluation is performed with measures appropriate for the tasks, which are

also described in the individual chapters. Statistical significance is determined using a

one-way analysis of variance (ANOVA), and significance levels below 0.1 are reported.

2.2 Audio features

This section describes the various audio features used througout this work. As one

of the most successful features in ASR, Mel-Frequency Cepstral Coefficients (MFCCs)

were used in all tasks, in some of them as the only feature. Shifted Delta Cepstrum

(SDC) features, Perceptual Linear Prediction (PLP) features, and TempoRAl Patterns

(TRAPs) were used in language identification. All features were extracted with a time

resolution of 10ms, with window sizes of 20 to 25ms.
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2.2.1 Mel-Frequency Cepstral Coefficients (MFCCs)

MFCCs are among the most frequently used audio features in speech recognition and

Music Information Retrieval [7][8]. They were first introduced in 1976 by Mermelstein

and Davis [9][10] based on previous experiments by Bridle and Brown [11].

The basic idea behind MFCCs comes from experiments in human auditory percep-

tion. Audio signals are transformed into a representation that is based on human per-

ceptual sensitivities. This is done by taking the Short-Term Fourier Transform (STFT)

of an audio signal and then mapping the resulting spectrum from a linear frequency

scale onto a Mel scale. Then, the Discrete Cosine Transform (DCT) of the resulting log

energies is calculated along the frequency axis to decorrelate the spectral band signals.

The result is a representation of the various frequencies within the spectrum (i.e. the

cepstrum), which can be interpreted as ranging from the spectral envelope to the more

fine-grained components. In theory, this makes the result largely independent of the

absolute frequencies (i.e. the pitch), but representative of the perceptual content (e.g.

phonemes). One point of criticism, however, is the lack of interpretability of the MFC

coefficients.

In detail, the calculation is performed as follows:

1. Short-term Fourier transform (STFT) After cutting a signal s into frames si, i =

0, 1, ..., I (e.g. of 10ms duration) and windowing it (e.g. with a Hamming win-

dow), the Discrete Fourier Transform (DFT) is calculated for each time frame:

Si(k) =
N−1∑
n=0

si(n)h(n)e−j2πkn/N , k = 0, 1, ..., K − 1 (2.1)

where h(n) is the window of length N , and K is the DFT length. For the further

calculations, only the power spectrum is used:

Pi(k) =
1

N
| Si(k) |2 (2.2)

2. Mel-spectrum calculation The resulting energies are mapped from the linear fre-

quency scale to a perceptually motivated Mel scale. This is done by convolving

the spectrum with a set of M triangular Mel-spaced filters Hm(k), such as the

ones shown in figure 2.3. Furthermore, the resulting energy outputs are logarith-
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Figure 2.3: Example of a Mel filterbank. [10]

mized:

Xm = log10

(
K−1∑
k=0

| Pi(k) | ·Hm(k)

)
,m = 1, 2, ...,M (2.3)

3. Discrete Cosine Transform (DCT) Finally, the Mel-scale spectrum is transformed

with a DCT, resulting in the so-called cepstrum:

Cj =
M∑
m=1

Xm · cos
(

(j + 1) · (m− 1/2) · π
M

)
, j = 0, 1, ..., J − 1 (2.4)

The J MFC coefficients are retained as features. The 0th coefficient can be

interpreted as the power over all frequency bands, and the 1st coefficient as the

global energy balance between low and high frequencies [12].

In this work, 13 coefficients including the 0th coefficient are extracted, with the

exception of language identification, where 20 coefficients are used. In addition, deltas

and double-deltas are calculated to capture information about the feature’s trajectory:

∆(C(n)) = C(n)− C(n− 1) (2.5)

∆∆(C(n)) = ∆(C(n))−∆(C(n− 1)) (2.6)
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Figure 2.4: The SDC calculation at frame t. [14]

2.2.2 Shifted Delta Cepstrum (SDCs)

Shifted Delta Cepstrum features were first described in [13] and have since been suc-

cessfully used for speaker verification and language identification tasks on speech data

[14][15][16]. They are calculated on MFCC vectors and take their temporal evolution

into account. This has been shown to improve recognition results because speech and

singing signals are defined by their temporal contexts. Their configuration is described

by the four parameters N − d− P − k, where N is the number of cepstral coefficients

for each frame, d is the time context (in frames) for the delta calculation, k is the

number of delta blocks to use, and P is the shift between consecutive blocks. The

delta cepstrals are then calculated as:

∆c(t) = C(t+ iP + d)− C(t+ iP − d), 0 ≤ i ≤ k (2.7)

with C = (C0, C1, ..., CN−1) as the previously extracted cepstral coefficients. The

resulting k delta cepstrals for each frame are concatenated to form a single SDC vector

of the length kN . In this work, the common parameter combination N = 7, d = 1, P =

3, k = 7 was used. The calculation is visualized in figure 2.4.

2.2.3 Perceptual Linear Predictive features (PLPs)

PLP features, first introduced in [17], are also among the most frequently used features

in speech processing, next to MFCCs. They are based on the idea to use knowledge

about human perception to emphasize important speech information in spectra while

minimizing the differences between speakers. In principle, these ideas are related to

those that MFCCs are based on, but knowledge about human perception is integrated

more extensively. A comparison of the steps of both algorithms is given in figure 2.5.

For PLP computation, these steps are as follows:
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Figure 2.5: Comparison of the processing steps in PLP (left) and MFCC (right) calcu-
lation. [18]
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1. Short-term Fourier transform As in MFCC extraction, the signal s is segmented

into frames, which are then windowed, and the STFT is calculated for each of

them. The power spectrum X is used for further processing.

2. Bark-spectrum calculation Similar to the Mel-frequency transformation step, the

resulting energies P are mapped to a Bark frequency scale, which is also per-

ceptually motivated (resulting in Bark-scaled energies Xi(ω)). As described in

[19] and [18], there is no necessity for the particular use of a Bark scale, but it is

employed for historic reasons. A comparison of the filters of which Mel and Bark

filterbanks are composed is shown in figure 2.6. Furthermore, the coefficients are

logarithmized.

3. Equal loudness pre-emphasis The filterbank coefficients are weighted with an equal-

loudness curve E(ω) which simulates the varying sensitivities of human hearing

across the frequency range. Figure 2.7 displays such a curve; Makhoul and Cosell

presented a numerical approximation in [20]. (As mentioned in figure 2.5, such

a pre-emphasis is sometimes performed as the first step of MFCC calculation as

well). This is computed as

Ξ(ω) = Xi(ω) · E(ω) (2.8)

4. Intensity - loudness conversion This step integrates knowledge about the rela-

tionship between the intensity of the signal and its perceived loudness. According

to the power law of hearing [21], this relation can be approximated as a cubic

root compression:

Φ(ω) = Ξ(ω)0.33 (2.9)

5. Autoregressive modeling An inverse DFT is then applied to the computed loud-

ness signal to obtain an auto-correlation function. Then, the actual linear pre-

diction is implemented with an all-pole model as described in [22]. Levinson-

Durbin recursion is employed to compute the final PLP coefficients from the

auto-correlation function.

Later, RASTA filtering was introduced as a step between the Bark-spectrum calcula-

tion and the equal loudness pre-emphasis (i.e. steps 2 and 3) [23]. This is essentially a

bandpass filtering in the log-spectral domain that serves to suppress the slow-changing

components of the signal, which are commonly rooted in the transmission channel
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Figure 2.6: Bark-scale (top) and Mel-scale filterbank. [18]

Figure 2.7: Perceptually motivated equal-loudness weighting function. (The dashed
function is used for signals with a Nyquist frequency >5kHz). [18]
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rather than the content. The filter is defined as

H(z) = 0.1
2 + z−1 − z−3 − 2z−4

z−4 · (1− 0.98z−1)
(2.10)

In this work, model orders of 13 and 36 are used. Deltas and double-deltas be-

tween frames are also calculated, and PLPs are tested with and without RASTA

pre-processing.

2.2.4 TempoRal Patterns (TRAP)

TRAPs were developed by Hermansky [24][25] and have also been used successfully

in a number of speech recognition tasks. In contrast to MFCCs and PLPs, which,

apart from delta calculation, only consider a single spectral frame at a time, TRAPs

take the spectral development over time into account. This is visualized in figure 2.8.

To demonstrate the feature’s suitability for phoneme classification, examples of mean

TRAPs for various phonemes in the 5th critical band are shown in figure 2.9.

In [26], a slightly modified method is presented. An overview of the steps necessary

for this version of TRAP calculation is given in figure 2.10. In detail, these are:

1. Grouping into spectral bands Spectral band signals are extracted from the signal

with a triangular Mel-scale filterbank, such as the one presented in figure 2.3.

The log-energy of each band is used for further processing.

2. Normalization and windowing Each band’s trajectory is normalized and windowed

with relatively long windows (e.g. Hamming windows with a temporal context

of 200 to 1000ms) to obtain a representation of the temporal development.

3. DCT decorrelation A DCT is applied to each frame to decorrelate its coefficients

and reduce dimensionality. The vectors for each critical band are concatenated.

(In classic TRAP calculation, separate classifiers would be trained for each band

in this step).

4. Model training In classic TRAP calculation, the resulting band coefficients are

now used to train a Multilayer Perceptron with a single hidden layer to obtain

phoneme probabilities [26]. However, as suggested in [27], the feature values

extracted so far can also be used to train other models, or even be combined

with other features beforehand. In [28], the authors suggest that a combination

with MFCCs works particularly well as these two features cover different sets
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Figure 2.8: The temporal paradigm for TRAP extraction versus conventional features
(e.g. MFCC). [24]

of characteristics: MFCCs are better at capturing the spectral content, while

TRAPs model the temporal progressions better.

In this work, the coefficient vector is used directly as a feature to train various models.

8 linear spectral bands were extracted with a time context of 20 frames (corresponding

to 200ms), and the first 8 DCT coefficients were kept.

2.3 Distance calculation

In this section, two algorithms for distance calculation used in this work are described.

Dynamic Time Warping (DTW) is used for calculating optimal alignments between

two sequences of continuous values, while Levenshtein alignment is particularly useful

for finding the optimal alignment (and therefore the minimum distance) between two

sequences with discrete values, such as character strings, when allowing deletions,

insertions, and replacements.

2.3.1 Dynamic Time Warping

Dynamic Time Warping (DTW) is an algorithm for finding an optimal alignment

between two time sequences of vectors X and Y , which was originally developed for

aligning speech sequences to each other [29]. X and Y are not required to have the

same length (i.e. X = (x1, ..., xM) and Y = (y1, ..., yN)). To this end, varying durations



2 Technical Background 18

Figure 2.9: Mean TRAPs of various phonemes in the 5th critical band. [24]

Figure 2.10: TRAP extraction process. [27]
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Figure 2.11: Example of a DTW alignment. Alignment between points is represented
by the arrows. [8]

of parts of each sequence are allowed. The result is a warping path W = (w1, ..., wK)

where each element represents an alignment of the elements of the two sequences (i.e.

wk = (mk, nk) represents the alignment of the elements xmk
and ynk

of X and Y ).

In classic DTW, the warping path must fulfill three restrictions:

1. Boundary condition The warping path must align the whole sequences to each

other - i.e. w1 = (1, 1) and wK = (M,N).

2. Step size condition The warping path may only step sequentially forward in either

direction - i.e. wk+1 − wk ∈ {(0, 1), (1, 0), (1, 1)}.

3. Monotonicity condition The warping path cannot skip backwards - i.e. m1 ≤
m2 ≤ ... ≤ mK and n1 ≤ n2 ≤ ... ≤ nK . (This is, in fact, already implied by

condition 2).

A graphic example of such an alignment is given in figure 2.11.

A DTW consists of two steps: Cost calculation and path detection. In the cost

calculation steps, a local cost c is calculated for all pairs (xm, yn), resulting in a cost

matrix C. An example is shown in figure 2.12. Common cost functions include the

Manhattan distance and the cosine distance (i.e. the complement of the normalized

inner product), which was used in this work:

c(xm, yn) = 1− cos(θ) (2.11)

where θ is the angle between xm and yn.
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Figure 2.12: Example of a matrix of costs between two sequences X and Y using the
Manhattan distance as the local cost measure. [8]

In the second step, an optimal warping path is calculated on the cost matrix. The

cost of a warping path is

cW (X, Y ) =
K∑
k=1

c(xmk
, ynk

) (2.12)

and the optimal warping path is the one with minimal cost - i.e. the DTW cost:

DTW (X, Y ) = min{cW (X, Y )|W is a warping path} (2.13)

Consequently, the DTW cost can also be used to compare the quality of alignments

of one query sequence to multiple other sequences when taking the varying lengths into

account. The path calculation is commonly solved using a Dynamic Programming al-

gorithm [8]. In this work, the implementation from [30] is used.

Subsequence DTW is a variant of this algorithm in which the boundary condition is

loosened. This means that the optimal warping path can run along a subsequence of

the longer compared sequence instead of the full series. This is more computationally

expensive since more paths need to be calculated for comparison.
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2.3.2 Levenshtein distance

The Levenshtein distance, also called edit distance, is a measure of similarity between

two strings (or character sequences). The algorithm was first described by Levenshtein

in 1965 [31] and can also be used to retrieve an optimal alignment (so-called approx-

imate string matching [32]). In that sense, it serves a similar purpose as DTW for

strings instead of time sequences. This measure is commonly used in the fields of

Computational Biology, Natural Language Processing, and signal processing.

The distance is the sum of character operations necessary to transform one string

into the other. These operations can be substitutions, insertions, or deletions, which

may be weighted differently. An example is shown in figure 2.13. If each operation has

a cost of 1, the Levenshtein distance in this example is 5; if substitutions are weighted

with a cost of 2, the distance is 8.

Just like DTW, this problem is usually solved efficiently with a Dynamic Program-

ming approach. For two strings X = (x1, x2, ..., xM) and Y = (y1, y2, ..., yN), the initial

step is then defined as

L(0, 0) = 0, L(i, 0) =
i∑

k=1

I(xk), L(0, j) =

j∑
k=1

D(yk) (2.14)

and the recursive step is defined as

L(i, j) = min


L(i− 1, j) +D(yj)

L(i, j − 1) + I(xi)

L(i− 1, j − 1) + S(xi, yj)

(2.15)

where L(i, j) is the Levenshtein distance at step (i, j) and D, I, and S are the costs

for deletions, insertions, and substitutions respectively [33]. The over-all Levenshtein

distance is L(M,N).

The Levenshtein distance is often employed to measure the quality of speech recogni-

tion systems with regards to the recognized phonemes or words. The so-called Phoneme

Error Rate (PER) is simply the Levenshtein distance between a generated and an ex-

pected phoneme sequence where insertions, deletions, and replacements are weighted
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Figure 2.13: Example of a Levenshtein distance calculation between the two
strings “INTENTION” and “EXECUTION”. Found operations (deletions,
insertions, substitutions) are shown at the bottom. [34]

equally, normalized by the length of the expected sequence:

PER =
D + I + S

N
(2.16)

where D are deletions, I are insertions, and S are substitutions of phonemes and N

is the length of the sequence. The Phoneme Error Rate can become greater than 1

in cases with more errors than phonemes or words contained in the sequence. (The

accuracy measure used in some of the state-of-the-art works is the same as 1− PER;

a Word Error Rate can be calculated analogously).

Some works also use a measure called correct, which ignores insertions. This makes

sense if it is assumed that the phoneme results are used afterwards by an algorithm

that is tolerant to insertions. In many cases, such post-processing steps will then also

be tolerant to deletions. For cases like these, Hunt suggested a weighted error rate

that punishes insertions and deletions less heavily than substitutions [35]:

Weighted PER =
0.5D + 0.5I + S

N
(2.17)

2.4 Machine learning algorithms

This section describes the various Machine Learning algorithms employed throughout

this thesis. Gaussian Mixture Models (GMMs), Hidden Markov Models (HMMs), and

Support Vector Machines (SVMs) are three traditional approaches that are used as the
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basis of many new approaches, and were used for several starting experiments. i-Vector

processing is a relatively new, more sophisticated approach that bundles several other

machine learning techniques. In recent years, Deep Learning has become the standard

for machine learning applications [36]. This section also describes a new approach that

was used extensively in this work: Deep Neural Networks (DNNs).

2.4.1 Gaussian Mixture Models

In their basic form, Gaussian Mixture Models (GMMs) are a form of unsupervised

learning. Given a set of observations X = (x1, x2, ..., xN), their probability distribution

is modeled with a superposition of Gaussian distributions:

p(xn|λ) =
M∑
i=1

pibi(x) (2.18)

where bi are the constituting distributions, pi are the mixture weights, and λ are the

model parameters. A visualization is shown in figure 2.14. If the observations are

multidimensional (which is the case for audio features), multivariate Gaussians (with

D dimensions) are used for this:

bi(x) =
1

(2π)D/2 det(Σi)1/2
exp

{
−1

2
(x− µi)Σ−1

i (x− µi)
}

(2.19)

where µi is the mean vector and Σi is the covariance matrix.

These parameters, together with the mixture weights, define the model:

λ = {pi, µi,Σi} , i = 1, ...,M (2.20)

For each observation oj, the contribution of each Gaussian bi can be calculated as:

pni = P (i|n) =
biP (i)

P (xn)
(2.21)

The overall likelihood of the model is:

L =
N∏
n=1

P (xn) (2.22)

In order to find the optimal parameters λ, the iterative Expectation Maximization

(EM) algorithm is commonly used [37]. In the expectation step, L is calculated; in the
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Figure 2.14: Visualization of a GMM. The Gaussian mixture is the weighted sum of
several Gaussian distributions, where pi are the mixture weights and bi
are the Gaussians. [38]

maximization step, the parameters are adapted. This is repeated until convergence.

An example of such a training procedure is visualized in figure 2.15.

Gaussian Mixture Models have been used in many areas of machine learning, for

example in ASR [38], in image retrieval [40], in financial modeling [41], and in visual

tracking [42]. When used for classification, one GMM is trained for each class S =

(s1, s2, ..., sJ) separately, resulting in J sets of parameters λ. The likelihood Lj of each

class is then determined, and the most likely class is chosen:

C = argmax
1≤j≤J

P (λj|X) = argmax
1≤j≤J

p(X|λj)P (λj)

p(X)
(2.23)

(according to Bayes’ rule). If all classes and all observations are equally likely, this

simplifies to

C = argmax
1≤j≤J

p(X|λj) (2.24)

In practice, log-probabilities are commonly used for numerical reasons, resulting in the
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Figure 2.15: Example of a GMM in two dimensions. Crosses signify the data points,
ellipses the three multivariate Gaussians. On the left-hand side, the evolu-
tion of the estimated means and covariances of these Gaussians during the
EM process is shown; the right-hand side shows the converged mixture.
[39]

calculation:

C = argmax
1≤j≤J

N∑
n=1

log p(xn|λj) (2.25)

In addition to this direct use for classification, GMMs are often used to model the

emission probabilities in Hidden Markov Models; these are then called GMM-HMMs.

2.4.2 Hidden Markov Models

Markov models are statistical models of Markov processes - i.e. sequences of states in

which the probability of each state only depends on the previous one. In a Hidden

Markov Model (HMM), these states are not directly observable, but may be inferred

from the models emissions. HMMs were first suggested by Baum et al. around 1970

[43][44][45][46][47]. Due to their ability to model temporal processes, they have been

employed extensively in ASR [48][49][50][51]. Apart from this field, they are also fre-

quently used in Natural Language Processing [52], Optical Character Recognition [53],

and Computational Biology [54][55].

A HMM consists of four basic components:
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• The observation (= emission) sequence Y = (y1, y2, ..., yT )

• The hidden state nodes Q = (q1, q2, ..., qN); the sequence of hidden states corre-

sponding to the observation sequence will be denoted as I = (i1, i2, ..., iT ) where

it ∈ Q.

• The transition probabilities between the hidden states, defined by a transition

matrix A ∈ RNxN ; additionally, the initial state distribution (i.e. the probability

of starting in each state) π ∈ RN

• The emission probabilities B = (b1(k), b2(k), ..., bN(k)), mapping from the hidden

states to the observations. These can, for example, be Gaussians for continuous

outputs yt or conditional probabilities for discrete yt.

The transition probabilities, initial state distribution, and emission probabilities define

the model λ.

In the case of speech recognition, the observations are the feature vectors, and the

hidden states are the phonemes generating these features. Such a model is visualized

in figure 2.16. Different variants of HMMs can be created by restricting the transition

matrix in certain ways; e.g., left-to-right HMMs, which only allow transitions to subse-

quent states and are often used in speech recognition and handwriting recognition [56].

A particularly interesting property of HMMs for speech recognition is their relative

invariance to warping along the time axis because states can usually be repeated for

arbitrary amounts of time.

Three tasks commonly need to be solved for problems modeled with HMMs:

Evaluation - i.e., how probable is an observation sequence given this model? In math-

ematical terms, the probability P (Y, I|λ) is sought. The most straightforward

way to do this would be to calculate this probability for each possible Y of the

length T of the observation sequence, but this is very computationally expen-

sive. For this reason, an algorithm called forward procedure is used. A forward

variable α representing the probability at time t is introduced:

αt(i) = P (y1, y2, ..., yt, it = qi|λ) (2.26)

This can be solved inductively with the initialization

α1(i) = πibi(Y1), 1 ≤ i ≤ N (2.27)
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and the induction step

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(Yt+1) (2.28)

This is a form of Dynamic Programming.

Training - i.e., how can the parameters λ be set optimally to maximize the proba-

bility of observed sequences? There is no analytical way to compute this, but

the so-called Baum-Welch algorithm (which is a special case of the Expectation

Maximization algorithm) allows for an iterative estimation of the parameters. In

order to do this, a backward variable β is calculated analogous to α to represent

the probability of the sequence from time t+ 1 to the end:

βt(i) = P (yt+1, yt+2, ..., yT , it = qi|λ) (2.29)

βT (i) = 1, 1 ≤ i ≤ N (2.30)

βt(i) =
N∑
j=1

aijbj(Yt+1)βt+1(j) (2.31)

The probability of a path being in state qi at t and making a transition to qj at

t+ 1 is then:

ξt(i, j) =
αt(i)aijbj(Yt+1βt+1(j)

P (Y |λ)
(2.32)

This can be used to calculate the expected transitions and emissions, which can

be re-adapted with statistics from the observation sequences and used to adjust

α and β. This process is repeated until convergence.

Decoding - i.e., given an observation sequence, what is the most probable underlying

sequence of hidden states? This is particularly interesting for speech recognition

since the interpretation here is the detection of the phonemes generating a series

of feature vectors.

Again, this problem is broken down by first defining a variable for the probability

of being in state qi at time t:

γt(i) = P (it = qi|Y, λ) (2.33)
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Figure 2.16: A HMM as it is commonly used in ASR, with phonemes as hidden states
and acoustic feature vectors as the observations. a12, a22, a23, ... are ele-
ments of the transition matrix A; b2(y1), b2(y2), b3(y3) are elements of the
output probability matrix B; Y = y1, y2, ... is the observation sequence.
[51]

and therefore, the most likely state at t is:

it = argmax
1≤i≤N

[γt(i)], 1 ≤ t ≤ T (2.34)

Using the forward and backward variables, this can be expressed as

γt(i) =
αt(i)βt(i)

P (Y |1
2
λ)

(2.35)

This problem can be solved efficiently with the Viterbi algorithm, which again

employs Dynamic Programming.

2.4.3 Support Vector Machines

Support Vector Machines (SVMs) are another type of supervised machine learning

models, which are able to learn relationships between feature vectors xi ∈ Rn and

their expected classes yi, i = 1, ..., L. SVMs attempt to solve this problem by grouping

the training data vectors xi and finding separating (hyper-)planes (with the normal

vector w and the offset b) between the points of the different classes (or annotation la-

bels) yi. In doing so, they try to maximize the margin between the plane and the data

points. Additionally, the feature vectors may be transformed into a higher-dimensional
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space by the function φ(xi) to make them more easily separable (as demonstrated in

figure 2.17).

In [57], this training process is expressed (for a two-class problem) as:

min
w,b,ξ

1

2
w>w + C

L∑
i=1

ξi

subject to yi(w
>φ(xi) + b) ≥ 1− ξi,

ξi ≥ 0

(2.36)

(with ξi being a slack variable and C > 0 being a penalty parameter for the error term,

higher Cs allowing for fewer outliers ([58]).

Figure 2.17: A set of data points which cannot be separated linearly in their original
form (left), but can be separated after transformation into another space
(right). [58]

K(xi, xj) ≡ φ(xi)
>φ(xj) is called a “kernel function”. Several variants are possible, e.g.

a linear kernel:

K(xi, xj) = x>i xj (2.37)

It is often useful to use a non-linear kernel because the data points may not be linearly

separable (even after the transformation into a higher-dimensional space). An example

is shown in figure 2.18. The Radial Basis Function (RBF) kernel is a popular one:

K(xi, xj) = e−γ|xi−xj |
2

, γ > 0 (2.38)
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Figure 2.18: A set of data points which cannot be separated using a linear kernel (left),
but can be separated with a polynomial kernel (right). [59]

As can be seen from the above equations, C and γ are free parameters. Their optimum

values depend on the actual training data vectors. In [57], a grid search during each

training is suggested to find them.

The presented training process is useful for solving two-class problems. For multi-

class problems, one-vs-one trainings for all combinations of classes are performed.

Then, all of the developed classifiers are used for the classification of the evaluation

data and a voting strategy is applied to determine the resulting class.

2.4.4 i-Vector processing

i-Vector (identity vector) extraction was first introduced in [60] and has since become

a state-of-the-art technique for various speech processing tasks, such as speaker verifi-

cation, speaker recognition, and language identification [61]. i-Vector extraction is not

a stand-alone training algorithm, but rather a feature post-processing step using un-

supervised machine learning. The resulting i-vectors for training examples are used to

train other models (instead of the features themselves); during classification, i-vectors

are extracted in the same way and run through this model.

The main idea behind i-vectors is that all training examples (e.g. speech utterances)

contain some common trends, which effectively add irrelevance to the data during

training. Using i-vector extraction, this irrelevance can be filtered out, while only the

unique parts of the data relevant to the task at hand remain. The dimensionality of the

training data is massively reduced, which also makes the training less computationally
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expensive. As a side effect, all feature matrices are transformed into i-vectors of equal

length, eliminating problems that are caused by varying utterance lengths.

Mathematically, this assumption can be expressed as:

M(u) = m+ Tw (2.39)

where M(u) is the GMM supervector for utterance u. The supervector approach

was first presented in [62] and has since been successfully applied to a number of

speech recognition problems. A music example can be found in [63]. m represents the

language- and channel-independent component of u and is estimated using a Universal

Background Model (UBM). T is a low-rank matrix modeling the relevant language-

and channel-related variability, the so-called Total Variability Matrix. Finally, w is a

normally distributed latent variable vector: The i-vector for utterance u.

The following steps are necessary for i-vector extraction:

1. UBM training A Universal Background Model (UBM) is trained using Gaussian

Mixture Models (GMMs) from all utterances. This unsupervised model repre-

sents the characteristics that are common to all of them.

2. Statistics extraction 0th and 1st order Baum-Welch statistics are calculated for

each of the utterances from the UBM according to:

Nc(u) =
L∑
t=1

P (c|yt,Ω) (2.40)

F̃c(u) =
L∑
t=1

P (c|yt,Ω)(yt −mc) (2.41)

where u = y1, y2, ..., yL denotes an utterance with L frames, c = 1, ..., C denotes

the index of the Gaussian component, Ω denotes the UBM, mc is the mean of the

UBM mixture component c, and P (c|yt,Ω) denotes the posterior probability that

the frame yt was generated by mixture component c. As the equation shows, the

1st order statistics are centered around the mean of each mixture component.

3. T matrix training Using the Baum-Welch statistics for all utterances, the Total
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Variability Matrix T is now trained iteratively according to:

w = (I + T>Σ−1N(u)T )−1T>Σ−1F̃ (u) (2.42)

using the Expectation Maximization algorithm.

4. Actual i-vector extraction Finally, an i-vector w can be extracted for each utter-

ance using equation 2.42 again. This can also be done for unseen utterances,

using a previously trained T , and in this way be used during classification.

2.4.5 Artificial Neural Networks

History Artificial Neural Networks have a long research history. Based on an idea

by McCulloch and Pitts from 1943 [64], they were slowly developed into functional

algorithms for classification and pattern recognition. Rosenblatt proposed a hardware

design for a single-layer perceptron in 1958 [65], while the first multi-layer networks

were introduced by Ivakhnenko and Lapa in 1965 [66]. In 1969, Minsky and Papert

posited many practical limitations for Neural Networks [67], which led to a decrease

in interest.

The introduction of the backpropagation algorithm solved some of these issues and

increased the training speed of multilayer networks [68], leading to a wider usage in

speech recognition [69] and other fields, such as computer vision [70] and Natural Lan-

guage Processing [71]. However, other algorithms such as SVMs began to produce

better results over time and thus overtook Neural Networks in popularity.

Over time, processing speed of computers increased, and better strategies and hard-

ware for parallel computing became available. This made the training of networks with

many more layers possible, allowing for a much better adaptation to high-dimensional

problems [72]. Over the past 10 years, this so-called “Deep Learning” has become the

state of the art for many machine learning problems [73][36][74].

Functionality Artifical Neural Networks (ANNs) are inspired by “real” Neural Net-

works - i.e. the human brain and nervous system. They consist of neurons, which are

nodes that can process inputs and send outputs, and the connections between them.

These neurons are grouped in layers: An input layer, an output layer, and a number

of hidden layers in between them. Historically, ANNs had no hidden layers at all;
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this type of ANN was called “perceptron”. Later, hidden layers were introduced and

the resulting networks were called “Multilayer Perceptrons” (MLPs). Networks with

no hidden layers are only able to solve linear problems; the introduction of hidden

layers added non-linear projections to the calculation. Recent “Deep” Neural Networks

(DNNs) possess three or more hidden layers, leading to an exponential increase of the

degrees of freedom and thus the possibility to model much more complex problems.

Figure 2.19: Functionality of a single neuron in an ANN. The neuron computes a
weighted sum of its inputs, and then applies an activation function, re-
sulting in output y. [75]

The function of a single neuron is visualized in figure 2.19. Classic neurons compute

a weighted sum z of their inputs x = (x1, x2, ..., xI):

z = w0 +
I∑
i=1

xiwi = w0 + w>x (2.43)

where w = (w1, w2, ..., wI) is a vector of weights, and w0 is a constant bias. This result

is often called the “logit”. Then, a nonlinear activation function can be applied. In

perceptrons, this was the Heaviside step function, shown in figure 2.20a, resulting in a

(a) Heaviside binary step (b) Sigmoid (c) ReLU

Figure 2.20: Activation functions used for ANN neurons. [76]
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binary output:

y =

1 if z ≤ 0

0 otherwise
(2.44)

An activation function commonly used is the sigmoid function, shown in figure 2.20b:

y =
1

1 + e−z
(2.45)

Neurons of this type are called“logistic”neurons. This function is often applied because

it generates a smooth, real-valued output and has easy-to-use derivatives, simplifying

the training process.

Rectified linear units (ReLUs) are also used frequently since they train faster than

logistic units and retain more information that is relevant in the middle layers (in

particular, this leads to sparsity for small inputs and a lower risk of vanishing or

exploding gradients). The function is shown in figure 2.20c:

y = max(0, z) (2.46)

In the last layer, a so-called softmax activation function is often applied. This function

takes the outputs of all neurons into account, and computes a probability distribution

(i.e. all the outputs will sum up to one and represent the likelihood of the corresponding

class):

yj =
ezj∑M
k=1 e

zk
, 1 ≤ j ≤M (2.47)

where M is the number of output neurons.

Figure 2.21: Schematic of a feed-forward neural network with an input layer with four
neurons, two hidden layers with four neurons each, and an output layer
with two neurons. [76]
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Types In addition to the various types of neurons, ANNs themselves can be grouped

into different types. In their basic configuration, ANNs will have multiple layers of the

described neurons where connections are only allowed in one direction. A schematic is

shown in figure 2.21. This type of network is called “feed forward” or, in the context of

Deep Learning, a Deep Neural Network (DNN). In this work, DNNs with logistic units

in the hidden layers and a softmax output layer were used in phoneme classification

tasks.

If connections that skip back are allowed in the network, the network is called a Re-

current Neural Network (RNN). These networks are particularly useful for modeling

time-dependent series because they have the ability to “store” temporal states in their

units. However, they were deemed impractical for a long time because they exhibit the

exploding/vanishing gradient problem during training [77]. This problem was solved

with the introduction of memory cells in place of neurons, in particular Long Short-

Term Memory (LSTM) units [78] and Gated Recurrent Units (GRU) [79]. Nowadays,

RNNs are being used successfully in a number of research tasks [80].

A third type of Neural Network are Convolutional Neural Networks (CNNs). These

networks add layers of filters (so-called convolutional layers) before or in between classic

fully-connected layers. The parameters of these filters are trained jointly with the

other layers. For this reason, CNNs are able to “learn” a feature representation of the

input. They were first used in image recognition [81], but are now also being used

for audio-related tasks such as environmental sound classification [82] and ASR [83].

A disadvantage of both RNNs and CNNs is the computational complexity of training

them, and the requirement for even more training data because they possess even more

degrees of freedom than DNNs of comparable sizes.

Training Neural Network training is nowadays usually performed via the backprop-

agation algorithm. This algorithm is based on the calculation of a cost (or error)

function E, which computes the difference between the network output and the ex-

pected output (e.g. the annotated classes in the training data). Then, the partial

derivatives of the cost are calculated with regards to the weights, using the outputs

and logits for the chain rule:

∂E

∂wij
=
∂E

∂yj

∂yj
∂zj

∂zj
∂wij

(2.48)
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Then, the weights are adjusted accordingly:

∆wij = −η ∂E
∂wij

(2.49)

where η is the so-called learning rate, which must be chosen carefully to ensure con-

vergence of the training process. In the same way, the error is propagated further

backwards through the model to adjust the weights of the previous layers. This is

done until all the weights have been adjusted. Then, the next batch of training data

is passed through the model and the process is repeated. The training process is

performed until the weights converge (or until a fixed number of iterations has been

reached).

A commonly used cost function is the squared error measure (employing the L2 or

Euclidean norm):

ES =
1

2

M∑
j=1

(tj − yj)2 (2.50)

where tj is the target value for output unit j.

Alternatively, the cross-entropy is often chosen as the cost function when using a

softmax output layer:

EC = −
M∑
j=1

tj log yj (2.51)

Curse of dimensionality One of the major issues in Neural Networks is that of over-

fitting: The model adapts too well to the training data and is not able to sufficiently

generalize to new data anymore. (In extreme cases, the model simply learns all the

training data by heart). This is especially relevant for deep networks because of the

many degrees of freedom.

There are several strategies to overcome this problem. One of the most frequently

used regularization techniques is dropout: During training, nodes in the network are

deactivated randomly, effectively resulting in many different network structures and

making the whole network robust to variations in the data. The most crucial point,

however, is the amount of data used for training the network. The more variety is

available, the lower the risk of overtraining.

The so-called “curse of dimensionality” is a concept that applies to many machine
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learning algorithms. However, Goodfellow et al. make an argument that deep models

operate on a different level altogether [84]: Where traditional machine learning meth-

ods make an assumption of smoothness of the hidden functions to be represented, deep

models actually attempt to model the underlying structures in a distributed way. This

means that information about outputs can be learned in a shared way - i.e., if two

classes have something in common, the model is also able to represent this fact. Prac-

tically, the many degrees of freedom do not lead to “learning by heart”, but instead

allow for an internal representation of highly complex relationships. Goodfellow et al.

mention two interpretations of the deep modeling capabilities: Learning a representa-

tion composed of simpler representations (e.g. corners defined by edges), or learning

sequential steps that build on top of each other (e.g. first locate objects, then segment

them, then recognize them). There is also a number of publications that demonstrate

better generalization abilities for deeper networks [85][86][87][88][81][89]. In an exper-

iment in [90], models with three hidden layers overfit at 20 million parameters, while

a deep model (11 hidden layers) benefits from more than 60 million. This is because

a deep model has the capability to learn the actual explanatory factors behind the

expected outputs (e.g. learning about different genders or whether a person is wearing

glasses when modeling faces [91]).
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3 State of the Art

This chapter presents an overview over the various published approaches for the tasks

considered in this work. One key issue is comparability: As in many MIR tasks, data

sets are not publicly available and vary widely, which makes comparison of the individ-

ual approaches very difficult. As the following sections show, there is also disagreement

about evaluation measures in all of these tasks.

For these reasons, new, reproducible data sets were created for this work (presented

in the next chapter). As described in the individual chapters, the most frequently used

measures were employed for evaluation.

3.1 From speech to singing

Singing presents a number of challenges for speech recognition when compared to

pure speech [3][92][93]. The following factors make speech recognition on singing more

difficult than on speech, and necessitate the adaption of existing algorithms.

Larger pitch fluctuations A singing voice varies its pitch to a much higher degree

than a speaking voice. It often also has very different spectral properties.

Larger changes in loudness In addition to pitch, loudness also fluctuates much more

in singing than in speech.

Higher pronunciation variation The musical context causes singers to pronounce cer-

tain sounds and words differently than if they were speaking them.

Larger time variations In singing, sounds are often prolonged for a certain amount of

time to fit them to the music. Conversely, they can also be shortened or left out

completely. In order to research this effect more closely, a small experiment was

performed on a speech corpus and on a singing data set (TIMIT and ACAP, see

chapter 4): The standard deviations for all the phonemes in each data set were
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calculated. The result is shown in figure 3.1, confirming that the variation in

singing is much higher. This is particularly pronounced for vowels.

Different vocabulary In musical lyrics, words and phrases often differ from normal

conversational script. Certain words and phrases have different probabilities of

occurring in speech versus singing (e.g. a higher focus on emotional topics in

singing).

Background music This is the biggest interfering factor with polyphonic recordings.

Harmonic and percussive instruments add a big amount of spectral components to

the signal, which lead to confusion in speech recognition algorithms. Ideally, these

components should be removed or suppressed in a precursory step. This could

be achieved, for example, by employing source separation algorithms, but such

algorithms add additional artifacts to the signal, and may not even be sufficient

for this purpose at the current state of research. Vocal Activity Detection (VAD)

could be used as a non-invasive first step in order to discard segments of songs

that do not contain singing voices. However, such algorithms often make mistakes

in the same cases that are problematic for speech recognition algorithms (e.g.

instrumental solos [94]). For these reasons, most of the experiments in this work

were performed on unaccompanied singing. The integration of the mentioned

pre-processing algorithms would be a very interesting next step of research. The

lyrics-to-singing alignment algorithms presented in chapter 8 are an exception.

Those were also tested on polyphonic music, and the algorithms appear to be

largely robust to these influences.

The broad field of analyzing various aspects of the singing voice was summed up as

singing information processing in [95] (updated in [96]). A first collection of singing

voice recordings for Music Information Retrieval was created in 2005 [97] (this database

is not used in this work because it is not publicly available).

3.2 Phoneme recognition

Due to the factors mentioned above in section 3.1, phoneme recognition on singing is

more difficult than on clean speech. It has only been a topic of research for a few years,

and there are few publications.

One of the earliest systems was presented by Wang et al. in 2003 [98]. Acoustic

modeling is performed with triphone HMMs trained on read speech in Taiwanese and
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Figure 3.1: Standard deviations of phoneme durations in the TIMIT and ACAP data
sets.

Mandarin. The language model is completely restricted to lines of lyrics in the test

data set. Testing is performed on 925 unaccompanied sung phrases in these language.

Due to the highly specific language model, the Word Error Rate is just 0.07.

Hosoya et al. employ a similarly classic approach from ASR that employs mono-

phone HMMs also trained on read speech for acoustic modeling [99] (2005). These

models are adapted to singing voices using the Maximum Likelihood Linear Regres-

sion (MLLR) technique [100]. Language modeling is performed with a Finite State

Automaton (FSA) specific to the Japanese language, making it more flexible than the

previous system. The system is tested on five-word unaccompanied phrases, while the

adaptation is performed on 127 choruses performed by different singers. The Word

Error Rate is 0.36 without the adaptation, and 0.27 after adaptation.

In 2007, Gruhne et al. presented a classic approach that employs feature extraction

and various machine learning algorithms to classify singing into 15 phoneme classes

[101][102]. The specialty of this approach lies in the pre-processing: At first, funda-

mental frequency estimation is performed on the audio input, using a Multi-Resolution

Fast Fourier Transform (MRFFT) [103]. Based on the estimated fundamental fre-

quency, the harmonic partials are retrieved from the spectrogram. Then, a sinusoidal

re-synthesis is carried out, using only the detected fundamental frequency and par-

tials. Feature extraction is then performed on this re-synthesis instead of the original

audio. Extracted features include MFCCs, PLPs, Linear Predictive Coding features

(LPCs), and Warped Linear Predictive Coding features (WLPCs [104]). MLP, GMM,
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and SVM models are trained on the resulting feature vectors. The re-synthesis idea

comes from a singer identification approach by Fujihara [105]. The approach is tested

on more than 2000 separate, manually annotated phoneme instances from polyphonic

recordings. Only one feature vector per phoneme instance is calculated. Using SVM

models, 56% of the tested instances were classified correctly into one of the 15 classes.

This is considerably better than the best result without the re-synthesis step (34%). In

[106] (2010), the approach is expanded by testing a larger set of perceptually motivated

features, and more classifiers. No significant improvements are found when using more

intricate features, and the best-performing classifier remains an SVM.

Fujihara et al. described an approach based on spectral analysis in 2009 [107]. The

underlying idea is that spectra of polyphonic music can be viewed as the weighted sum

of two types of spectra: One for the singing voice, and one for the background music.

This approach then models these two spectra as probabilistic spectral templates. The

singing voice is modeled by multiplying a vocal envelope template, which represents

the spectral structure of the singing voice, with a harmonic filter, which represents the

harmonic structure of the produced sound itself. This is analogous to the source-filter

model of speech production [108]. For recognizing vowels, five such harmonic filters

are prepared (a - e - i - o - u). Vocal envelope templates are trained on voice-

only recordings, separated by gender. Templates for background music are trained

on instrumental tracks. In order to recognize vowels, the probabilities for each of

the five harmonic templates are estimated. As described, the phoneme models are

gender-specific and only model five vowels, but also work for singing with instrumental

accompaniment. The approach is tested on 10 Japanese-language songs. The best

result is 65% correctly classified frames, compared to the 56% with the previous ap-

proach by this team, based on GMMs.

In these experiments, the fundamental frequencies F0 (which are necessary for the

recognition) are manually provided. The approach is further expanded in [109] to be

able to detect them concurrently with the phonemes. Additionally, models can directly

be trained on polyphonic music rather than monophonic singing voices. The over-all

best results degrade by around 4 percent points, but this method is much more flexible.

In 2009, Mesaros et al. picked Hosoya’s approach back up by using MFCC features

and GMM-HMMs for acoustic modeling [110] and adapting the models for singing
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voices. These models are trained on the CMU ARCTIC speech corpus1. Then, differ-

ent MLLR techniques for adapting the models to singing voices are tested [100]. The

adaptation and test corpus consists of 49 voice-only fragments from 12 pop songs with

durations between 20 and 30 seconds. The best results are achieved when both the

means and variances of the Gaussians are transformed with MLLR. The results im-

proved slightly when not just a single transform was used for all phonemes, but when

they were grouped into base classes beforehand, each receiving individual transforma-

tion parameters. The best result is around 0.79 Phoneme Error Rate on the test set.

In [111] and [112], language modeling is added to the presented approach. Phoneme-

level language models are trained on the CMU ARCTIC corpus as unigrams, bigrams,

and trigrams, while word-level bigram and trigram models are trained on actual song

lyrics in order to match the application case. The output from the acoustic models is

then refined using these language models. The approach is tested on the clean singing

corpus mentioned above and on 100 manually selected fragments of 17 polyphonic pop

songs. To facilitate recognition on polyphonic music, a vocal separation algorithm is

introduced [113]. Using phoneme-level language modeling, the Phoneme Error Rate

on clean singing is reduced to 0.7. On polyphonic music, it is 0.81. For the word

recognition approach, the Word Error Rate is 0.88 on clean singing and 0.94 on the

polyphonic tracks.

A more detailed voice adaptation strategy is tested in [114]. Instead of adapting

the acoustic models with mixed-gender singing data, they are adapted gender-wise, or

to specific singers. With the gender-specific adaptations, the average Phoneme Error

Rate on clean singing is lowered to 0.81 without language modeling and 0.67 with

language modeling. Singer-specific adaptation does not improve the results, probably

because of the very small amount of adaptation data in this case.

In [115] (2014), McVicar et al. build on a very similar baseline system, but also

exploit repetitions of choruses to improve transcription accuracy. This has been done

for other MIR tasks, such as chord recognition, beat tracking, and source separation.

They propose three different strategies for combining individual results: Feature av-

eraging, selection of the chorus instance with the highest likelihood, and combination

using the Recogniser Output Voting Error Reduction (ROVER) algorithm [116]. They

also employ three different language models, two of which were matched to the test

1http://festvox.org/cmu_arctic/

http://festvox.org/cmu_arctic/
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songs (and therefore not representative for general application). 20 unaccompanied,

English-language songs from the RWC database [117] were used for testing; chorus

sections were selected manually. The best-instance selection and the ROVER strate-

gies improve results considerably; with the ROVER approach and a general-purpose

language model, the Phoneme Error Rate is at 0.74 (versus 0.76 in the baseline exper-

iment), while the Word Error Rate is improved from 0.97 to 0.9. Interestingly, cases

with a low baseline result benefit the most from exploiting repetition information.

The final system was proposed by Hansen in 2012 [27]. It also employs a classic

approach consisting of a feature extraction step and a model training step. Extracted

features are MFCCs and TRAP features. Then, MLPs are trained separately on both

feature sets. As mentioned in section 2.2.4, each feature models different properties

of the considered phonemes: Short-term MFCCs are good at modeling the pitch-

independent properties of stationary sounds, such as sonorants and fricatives. On the

flip side, TRAP features are able to model temporal developments in the spectrum,

forming better representations for sounds like plosives or affricates. The results of

both MLP classifiers are combined via a fusion classifier, also an MLP. Then, Viterbi

decoding is performed on its output. The approach is trained and tested on a data

set of 13 vocal tracks of pop songs, which were manually annotated with a set of 27

phonemes. The combined system achieves a recall of 0.48, compared to 0.45 and 0.42

for the individual MFCC and TRAP classifiers respectively. This confirms the assump-

tion that the two features complement each other. The phoneme-wise results further

corroborate this.

Various publications suggest that phoneme recognition is not a trivial task for human

listeners either. Recognition rates are in the range of 70 to 90% for native speakers,

depending on factors such the signal quality and the type of phoneme [118][119]. For

singing, much lower rates are reported [120].

3.3 Language identification

A first approach for language identification in singing was proposed by Tsai and Wang

in 2004 [121]. At its core, the algorithm is similar to Parallel Phoneme Recognition fol-

lowed by Language Modeling (PPRLM). However, instead of full phoneme modeling,

they employ an unsupervised clustering algorithm to the input feature data and tok-

enize the results to form language-specific codebooks (plus one for background music).
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Following this, the results from each codebook are run through matching language

models to determine the likelihood that the segment was performed in this language.

Prior to the whole process, Vocal Activity Detection is performed. This is done by

training GMMs on segments of each language and on non-vocal segments. MFCCs

are used as features. The approach is tested on 112 English- and Mandarin-language

polyphonic songs each, with 32 of them being the same songs performed in both lan-

guages. A classification accuracy of 0.8 is achieved on the non-overlapping songs. On

the overlapping songs, the accuracy is only 0.7, suggesting some influence of the mu-

sical material (as opposed to the actual language characteristics). Misclassifications

occur more frequently on the English-language songs, possibly because of accents of

Chinese singers performing in English and because of louder background music.

A second, simpler approach was presented by Schwenninger et al. in 2006 [122]. They

also extract MFCC features and then use these to directly train statistical models for

each language. Three different pre-processing strategies are tested: Vocal Activity

Detection, distortion reduction, and azimuth discrimination. Vocal Activity Detection

(or vocal/non-vocal segmentation) is performed by thresholding the energy in high-

frequency bands as an indicator for voice presence over 1-second windows. This leaves

a relatively small amount of material per song. Distortion reduction is employed to

discard strong drum and bass frames where the vocal spectrum is masked by using

a Mel-scale approach. Finally, azimuth discrimination attempts to detect and isolate

singing voices panned to the center of the stereo scene. The approach is tested on three

small data sets of speech, unaccompanied singing, and polyphonic music. Without pre-

processing steps, the accuracies are 0.84, 0.68, and 0.64 respectively, highlighting the

increased difficulty of language identification on singing versus speech, and on poly-

phonic music versus pure vocals. On the polyphonic corpus, the pre-processing steps

do not improve the result.

In 2011, Mehrabani and Hansen presented a full PPRLM approach for sung language

identification [123]. MFCC features are run through phoneme recognizers for Hindi,

German, and Mandarin; then, the results are scored by individual language models

for each considered language. In addition, a second system is employed which uses

prosodic instead of phonetic tokenization. This is done by modeling pitch contours

with Legendre polynomials and then quantizing these vectors with previously trained

GMMs. The results are then again used as inputs to language models. The approach

is trained and tested on a corpus containing 12 hours of unaccompanied singing and
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speech in Mandarin, Hindi, and Farsi. The average accuracies for singing are 0.78 and

0.43 for the phoneme- and prosody-based systems respectively, and 0.83 for a combi-

nation of both.

Also in 2011, Chandrasekhar et al. presented a very interesting approach for lan-

guage identification on music videos, analyzing both audio and video features [124].

On the audio side, the spectrogram, volume, MFCCs, and perceptually motivated Sta-

bilized Auditory Images (SAI) are used as inputs. One-vs-all SVMs are trained for

each language. The approach is trained and tested on 25,000 music videos in 25 lan-

guages. Using audio features only, the accuracy is 0.45; combined with video features,

it rises to 0.48. It is interesting to note that European languages achieve much lower

accuracies than Asian and Arabic ones. English, French, German, Spanish and Italian

rank below 0.4, while languages like Nepali, Arabic, and Pashto achieve accuracies

above 0.6. It is possible that the language characteristics of European languages make

them harder to discriminate (especially against each other) than others.

3.4 Keyword spotting

Keyword spotting in singing was first attempted in 2008 by Fujihara et al. [125]. Their

method starts with a phoneme recognition step, which is once again based on the vocal

re-synthesis method described in [105]. MFCCs and power features are extracted from

the re-synthesized singing and used as inputs to a phoneme model, similar to Gruhne’s

phoneme recognition approach mentioned above in section 3.2. Three phoneme models

are compared: One trained on pure speech and adapted with a small set of singing

recordings, one adapted with all recordings, and one trained directly on singing. Viterbi

decoding is then performed using keyword-filler HMMs to detect candidate segments

where keywords may occur. These segments are then re-scored through the filler HMM

to verify the occurrence. When the textual lyrics for a song are known, the system

offers the additional possibility to use lyrics-to-audio alignment instead. The method

is tested on 79 unaccompanied Japanese-language songs from the RWC database [117]

with keywords containing at least 10 phonemes. The Phoneme Error Rate is 0.73 for

the acoustic models trained on speech, 0.67 for the adapted models, and 0.49 for the

models trained on singing (it should be mentioned that the same songs were used for

training and testing, although a cross-validation experiment shows that the effect is

negligible). The employed evaluation measure is “link success rate”, describing the

percentage of detected phrases that were linked correctly to other occurrences of the
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phrase in the data set. In that sense, it is a sort of accuracy measure. The link success

rate for detecting the keywords is 0.3. The authors show that the result depends highly

on the number of phonemes in the considered keyword, with longer keywords being

easier to detect.

Building on this approach, a system named “LyricListPlayer” was developed by

Nakano and Goto in 2016 [126]. In this case, however, keywords are exclusively de-

tected using lyrics-to-audio alignment and a subsequent search on the textual lyrics

(which need to be available in advance). Monophone HMM acoustic models for En-

glish and Japanese similar to the ones mentioned above are employed. Those models

are trained on a relatively small number of songs from the RWC database [117] using

power-based and MFCC features. An interesting addition is the further processing of

these alignments: Natural Language Processing (NLP) techniques for topic modeling

are applied to the lyrics, allowing users to search for similar keywords or phrases.

In 2012, Dittmar et al. presented an approach to keyword spotting in singing based

on a different principle: DTW between a sung query and the requested phrase in the

song recording [127]. In particular, Statistical Sub-Sequence DTW is the algorithm

employed for this purpose. MFCCs are used as feature inputs on which the costs of

the warping paths are calculated from all possible starting points to obtain candidate

segments, which are then further refined to find the most likely position. The approach

is tested on a set of vocal tracks of 19 pop songs (see section 4.2.2) as the references,

and recordings of phrases sung by amateur singers as the queries, but no quantitative

results are given. The disadvantage of this approach lies in the necessity for audio

recordings of the key phrases, which need to have at least similar timing and pitch as

the reference phrases.

Finally, Dzhambazov et al. developed a score-aided approach to keyword spotting in

2015 [128]. A user needs to select a keyword phrase and a single recording in which this

phrase occurs. The keyword is then modeled acoustically by concatenating recordings

of the constituent phonemes (so-called acoustic keyword spotting). Similar to Mer-

cado’s approach, Sub-Sequence DTW is performed between the acoustic template and

all starting positions in the reference recording to obtain candidate segments. These

segments are then refined by aligning the phonemes to the score in these positions to

model their durations. This is implemented with Dynamic Bayesian Network HMMs.

Then, Viterbi decoding is performed to re-score the candidate segments and obtain the
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best match. The approach is tested on a small set of unaccompanied Turkish-language

recordings of traditional Makam music. The Mean Average Precision (MAP) for the

best match is 0.08 for the DTW approach only, and 0.05 for the combined approach.

For the Top-6 results, the MAPs are 0.26 and 0.38 respectively.

3.5 Lyrics-to-audio alignment

In contrast to the other tasks discussed in this chapter, the task of lyrics-to-audio

alignment has been the focus of many more publications. A comprehensive overview

until 2012 is given in [92].

A first approach was presented in 1999 by Loscos et al. [3]. The standard forced

alignment approach from speech recognition is adapted to singing. MFCCs are ex-

tracted first, and then a left-to-right HMM is employed to perform alignment via

Viterbi decoding. Some modifications are made to the Viterbi algorithm to allow for

low-delay alignment. The approach is trained and tested on a very small (22 minutes)

database of unaccompanied singing, but no quantitative results are given.

The first attempt to synchronize lyrics to polyphonic recordings was made by Wang

et al. in 2004 [129]. They propose a system, named “LyricAlly”, to provide line-level

alignments for karaoke applications. Their approach is heavily based on musical struc-

ture analysis. First, the hierarchical rhythm structure of the song is estimated. The

result is combined with an analysis of the chords and then used to split the song into

sections by applying a chorus detection algorithm. Second, Vocal Activity Detection

(VAD) using HMMs is performed on each section. Then, sections of the text lyrics are

assigned to the detected sections (e.g. verses, choruses). In the next step, the algorithm

determines whether the individual lines of the lyrics match up with the vocal sections

detected by the VAD step. If they do not, grouping or partitioning is performed. This

is based on the assumption that lyrics match up to rhythmic bars as determined by

the hierarchical rhythm analysis. The expected duration of each section and line is

estimated using Gaussian distributions of phoneme durations from a singing data set.

In this manner, lines of text are aligned to the detected vocal segments. The approach

is tested on 20 manually annotated pop songs. On the line level, the average error is

0.58 seconds for the starting points and −0.48 seconds for the durations. The system

components are analyzed in more detail in [130].
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In 2006, the same team presented an approach that also performs rhythm and bar

analysis to facilitate syllable-level alignment [131]. For the phoneme recognition step,

an acoustic model is trained on speech data and adapted to singing using the previ-

ously mentioned 20 songs. The possible syllable positions in the alignment step are

constrained to the note segments detected in the rhythm analysis step. Due to anno-

tator disagreement on the syllable level, the evaluation is performed on the word level.

On three example songs, the average synchronization error rate is 0.19 when allowing

for a tolerance of 1/4 bar.

Sasou et al. presented a signal parameter estimation method for singing employing

an auto-regressive HMM (AR-HMM) in 2005 [132]. This method is particularly suited

for modeling high-pitched signals, which is important for singing voices and usually

not a focus in speech processing techniques. Models trained on speech are adapted to

singing using MLLR. For evaluation, the method is applied to the task of lyrics-to-

audio alignment and tested on 12 Japanese-language songs. For each song, a specific

language model is prepared. The correct word rate is 0.79.

Chen et al. presented an approach based on MFCC features and Viterbi alignment

in 2006 [133]. Vocal Activity Detection is performed as a pre-processing step, and

then GMM-HMMs are used for Viterbi alignment between the audio and the lyrics.

Once again, MLLR is used to adapt the acoustic models to singing. In addition, the

grammar is specifically tailored to the lyrics. On a data set of Chinese songs by three

singers, a boundary accuracy of 0.76 is obtained on the syllable level.

A similar approach which does not require in-depth music analysis was presented by

Fujihara et al. in 2006 [134]. Once again, a straightforward Viterbi alignment method

from speech recognition is refined by introducing three singing-specific pre-processing

steps: Accompaniment sound reduction, Vocal Activity Detection, and phoneme model

adaptation. For accompaniment reduction, the previously mentioned harmonic re-

synthesis algorithm from [105] is used. For Vocal Activity Detection, a HMM is trained

on a small set of unaccompanied singing using LPC-derived MFCCs and fundamental

frequency (F0) differences as features. The HMM can be parameterized to control the

rejection rate. For the phoneme model adaptation, three consecutive steps are tested:

Adaptation to a clean singing voice, adaptation to a singing voice segregated with

the accompaniment reduction method, and on-the-fly adaptation to a specific singer.

MFCC features are used for the Viterbi alignment, which is performed on the vow-
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els and syllabic nasals (/m/, /n/, /l/) only. Ten Japanese pop songs were used for

testing. Evaluation was done on the phrase level by calculating the proportion of the

duration of correctly aligned sections to the total duration of the song. For eight of the

ten songs, this proportion was 0.9 or higher when using the complete system, which

the authors judge as satisfactory. Generally, the results are lower for performances by

female singers, possibly because of the higher F0s. These performances also benefit

the most from the Vocal Activity Detection step, even though its performance is also

somewhat worse for female singing. All three levels of phoneme model adaptations

contribute to the success of the approach.

In 2008, the authors improved upon this system with three modifications: Fricative

detection, filler models, and new features for the Vocal Activity Detection step [135].

Fricative detection is introduced because the previous system was only based on vowels

and nasals, due to the fact that the harmonic re-synthesis discards other consonants.

In the new system, fricatives are detected before this step and then retained for the

alignment (stop phonemes are not used because they are too short). The filler model

is employed because singers sometimes add extraneous lyrics (like “la la la” or “yeah”)

to their performances. As mentioned above, Vocal Activity Detection does not work

as well for female performances because of inaccuracies in the spectral envelope esti-

mation in higher-pitched regions. For this reason, the features are replaced in the new

version by comparing the power of the harmonic components directly with those of

similar F0 regions. The approach is again evaluated on ten Japanese pop songs. The

original system produces an average accuracy of 0.81, which is raised to 0.85 with the

new improvements. In [136], the whole system is presented succinctly and evaluated

in more detail. Additionally, integration into a music playback interface is described.

The system is expanded in [137], where users can select sung phrases and record new

versions of them to improve their performances.

Mauch et al. augmented the same approach in 2010 by using chord labels, which

are often available in combination with the lyrics on the internet [138][139]. Chords

usually have longer durations than individual phonemes, and are therefore easier to

detect. In this way, they provide a coarse alignment, which can be used to simplify the

shorter-scale phoneme-level alignment. A chroma-based approach is used to estimate

the chords. Information about the chord alignments is directly integrated into the

HMM used for alignment. In [139], a large range of parameterizations is tested on 20

English-language pop songs. The highest accuracy for the baseline approach (without



3 State of the Art 50

chord information) is 0.46. Using chord position information, this rises to 0.88. In-

terestingly, Vocal Activity Detection improves the result when not using chords, but

decreases it for the version with chord alignments, possibly because the coarse segmen-

tation it provides is already covered by the chord detection in the second case. The

method is also able to cope with incomplete chord transcriptions while still producing

satisfactory results.

In 2007, Wong et al. presented a specialized approach for Cantonese singing that

does not require phoneme recognition [140]. Since Cantonese is a tonal language,

prosodic information can be inferred from the lyrics. This is done by estimating rel-

ative pitch and timing of the syllables by using linguistic rules. On the other side, a

vocal enhancement algorithm is applied to the input signal, and its pitches and onsets

are calculated. Then, both sets of features are aligned using DTW. 14 polyphonic songs

were used for evaluation. The approach reaches an average (duration) accuracy of 0.75.

Lee et al. also follow an approach without phoneme recognition [141] (2008). It

is purely based on structural analysis of the song recording, which is performed by

calculating a self-similarity matrix and using it for segmentation. The algorithm takes

structural a-priori knowledge into account, e.g. the fact that choruses usually occur

most frequently and do not differ much internally. Lyrics segments are annotated by

hand, splitting them up into paragraphs and labeling them with structural part tags

(“intro”, “verse”, “chorus”, and “bridge”). Then, Dynamic Programming is performed

to match the lyrics paragraphs to the detected musical segments. A Vocal Activity

Detection step is also introduced. Testing the approach on 15 English-language pop

songs with 174 lyrics paragraphs in total, they obtain an average displacement error

of 3.5 seconds.

Mesaros et al. also present an alignment approach that makes use of their phoneme

recognition approach described above in section 3.2[142], adding a harmonic re-synthesis

step for vocal separation. Based on these models, they employ Viterbi alignment and

obtain an average displacement error of 1.4 seconds for line-wise alignment (0.12 sec-

onds when not using absolute differences). The test set consists of 17 English-language

pop songs. They identify mistakes in the vocal separation step as the main source of

error.

Two specialized approaches were presented in the past two years. The first one is
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part of a score-following algorithm by Gong et al. [143]. Here, vowels are used to

aid alignment of the musical score to the recording, assuming the score contains the

lyrics. This is done by training vowel templates on a small set of sung vowels. Spec-

tral envelopes are used as features. Two different strategies for fusing the vowel and

melody information are tested (“early” and “late”), as well as singer-specific adapta-

tion of the templates via Maximum A-Posteriori (MAP) estimation. The training set

consists of 160 vowel instances per singer, the test set of 8 full unaccompanied French-

language songs per singer. The average displacement error is around 68ms for both

singer-specific and -adapted models (best strategy).

Finally, Dzhambazov et al. presented a method that integrates knowledge of note

onsets into the alignment algorithm [144]. Pitch extraction and note segmentation are

performed in parallel with phoneme recognition via HMMs, and both results are re-

fined with a transition model. A variable time HMM (VTHMM) is used to model the

rules for phoneme transitions at note onsets. On a test data set of 12 unaccompanied

Turkish-language Makam performances, the method achieves an alignment accuracy

of 0.76. For polyphonic recordings (usually with accompaniment by one or more string

instruments), a vocal re-synthesis step is introduced. The average accuracy in this case

is 0.65.

3.6 Lyrics retrieval

As described in section 3.2, Hosoya et al. developed a system for phoneme recognition,

which they also apply to lyrics retrieval [99]. On a data set of 238 children’s songs,

they obtain a retrieval rate of 0.86 for the Top-1 result, and of 0.91 for the Top-10

results. In [145] and [146], more experiments are conducted. As a starting point, the

number of words in the queries is fixed at 5, resulting in a retrieval rate of 0.9 (Top-1

result). Then, a melody recognition is used to verify the matches proposed by the

speech recognition step, raising the retrieval rate to 0.93. The influence of the number

of words in the query is also evaluated, confirming that retrieval becomes easier the

longer the query is. However, even at a length of just three words, the retrieval rate is

0.87 (vs. 0.81 without melody verification).

Similarly, Wang et al. presented a query-by-singing system in 2010 [147]. The

difference here is that melody and lyrics information are weighted equally in the dis-
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tance calculation. Lyrics are recognized with a bigram HMM model trained on speech.

The results are interpreted as syllables. A syllable similarity matrix is employed for

calculating phoneme variety in the query, which is used for singing vs. humming dis-

crimination. Assuming that only the beginning of each song is used as the starting

point for queries, the first 30 syllables of each song are transformed into an Finite State

Machine (FSM) language model and used for scoring queries against each song in the

database. The algorithm is tested on a database of 2154 Mandarin-language songs, of

which 23 were annotated and the remainder are used as “noise” songs. On the Top-1

result, a retrieval rate of 0.91 is achieved for the system combining melody and lyrics

information, compared to 0.88 for the melody-only system.

As described in section 3.2, Mesaros et al. developed a sophisticated system for

phoneme and word recognition in singing. In [148], [114], and [112], they also describe

how this system can be used for lyrics retrieval. This is the only purely lyrics-based

system in literature. Retrieval is performed by recognizing words in queries with the

full system, including language modeling, and then ranking each lyrics segment by the

number of matching words (bag-of-words approach). The lyrics database is constructed

from 149 song segments (lasting between 9 and 40 seconds in the corresponding record-

ings). Recordings of 49 of these segments are used as queries to test the system. The

Top-1 retrieval rate is 0.57 (0.71 for the Top-10).
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4 Data Sets

This chapter contains descriptions of all the data sets (or corpora) used over the course

of this thesis. They are grouped into speech-only data sets, data sets of unaccompanied

(= a-capella) singing, and data sets of full musical pieces with singing (“real-world”

data sets). The final section lists the keywords chosen for the keyword spotting tasks

and describes their selection process.

4.1 Speech data sets

4.1.1 TIMIT

TIMIT is, presumably, the most widely used corpus in speech recognition research

[149]. It was developed in 1993 and consists of 6,300 English-language audio record-

ings of 630 native speakers with annotations on the phoneme, word, and sentence

levels. The corpus is split into a training and a test section, with the training section

containing 4,620 utterances, and the test section containing 1,680. Each of those ut-

terances has a duration of a few seconds. The recordings are sampled at 16,000Hz and

have a mono channel.

The phoneme annotations contain 61 different phonemes and follow a model similar

to ARPABET, a popular set of phonetic symbols developed by the Advanced Research

Projects Agency (ARPA) [150]. In this work, the annotations are broken down to a set

of 39 phonemes as suggested in [151]. This phoneme set is commonly used in speech

recognition, e.g. by the CMU Sphinx framework, and is listed in appendix A.1. As

described in [150], the data was collected and annotated in a sophisticated process,

and verified multiple times. It can therefore be assumed to be correct.

4.1.2 NIST Language identification corpus (NIST2003LRE)

The National Institute for Standards and Technology (NIST) regularly runs various

speech recognition challenges, one of them being the Language Recognition Evaluation
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(LRE) task, which is held every two to four years1. To this end, they publish training

and evaluation corpora of speech in several languages. They consist of short segments

(up to 35 seconds) of free telephone speech by many different speakers. The recordings

are mono channel with a sampling rate of 8000Hz.

The corpus for the 2003 challenge was used in this work for comparison of lan-

guage identification algorithms on speech data [152]. Only the English-, German-, and

Spanish-language subsets were selected because these languages are covered by the cor-

responding singing data set. To balance out the languages, 240 recordings were used

for each of them, summing up to around 1 hour of material per language. This corpus

will be referred to as NIST2003LRE. Since the speakers were instructed to speak their

native language, the language annotations can be assumed to be correct. However,

the recording quality is not very high, owing to the telephone-based recording process.

Additionally, some segments do not contain a large variety of words, either because

they are short, because the speaker repeats a word over and over (“okay... okay...”), or

because the speaker produces other vocal noises like laughing.

4.1.3 OGI Multi-Language Telephone Speech Corpus

(OGIMultilang)

In 1992, the Oregon Institute for Science and Technology (OGI) also published a mul-

tilingual corpus of telephone recordings, called the OGI Multi-Language Telephone

Speech Corpus, to facilitate multi-language ASR research. Just like the NIST corpora,

it has become widely used for speech recognition tasks. Again, the English-, German-,

and Spanish-language subsets were used in this work. They each consist of more than

1000 recordings per language of up to 50 seconds duration, making up a total of about

three to five hours. In this work, the corpus is called OGIMultilang. In contrast to

the NIST corpus, the recordings are somewhat less “clean” with regards to accents and

background noise; the sampling rate is also 8000Hz on a mono channel. The language

annotations were subjected to manual verification. Similar to the NIST corpus, the

audio quality is relatively low, and recordings are sometimes not very varied.

In many experiments, languages were balanced out by randomly discarding utter-

ances to obtain equal numbers. For experiments on longer recordings, results on in-

dividual utterances were aggregated for each speaker and also balanced down to the

1https://www.nist.gov/itl/iad/mig/language-recognition

https://www.nist.gov/itl/iad/mig/language-recognition
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lowest number, producing 118 documents per language (354 in sum).

hh:mm:ss

NIST2003LRE OGIMultilang YTAcap
#Utterances
#Speakers

∅ Duration/Speaker

English

00:59:08 05:13:17 08:04:25
240 1912 1975

- 200 196
- 00:01:34 00:02:28

German

00:59:35 02:52:27 04:18:57
240 1059 1052

- 118 116
- 00:01:28 00:02:14

Spanish

00:59:44 03:05:45 07:21:55
240 1151 1810

- 129 187
- 00:01:26 00:02:43

Table 4.1: Amounts of data in the three used data sets: Sum duration, number of
utteraces, number of speakers, and average duration per speaker.

4.2 Unaccompanied singing data sets

4.2.1 YouTube data set (YTAcap)

As opposed to the speech case, there are no standardized corpora for sung language

identification. For the sung language identification experiments, files of unaccompanied

singing were therefore extracted from YouTube2 videos. This was done for three lan-

guages: English, German, and Spanish. The corpus consists of between 116 (258min)

and 196 (480min) examples per language. These were mostly videos of amateur singers

freely performing songs without accompaniment. Therefore, they are of highly varying

quality and often contain background noise. The language annotations, however, can

be assumed to be correct. The audio was downloaded in the natively provided qual-

ity, but then downsampled to 8000Hz and averaged to a mono channel for uniformity

and for compatibility with the speech corpora for language identification. Most of the

performers contributed only a single song, with just a few providing up to three. This

2http://www.youtube.com

http://www.youtube.com
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was done to avoid effects where the classifier recognizes the singer’s voice instead of

the language.

Special attention was paid to musical style. Rap, opera singing, and other specific

singing styles were excluded because those might distort the results. All the songs per-

formed in these videos were pop songs. Different musical styles can have a high impact

on language classification results. In order to limit this influence as much as possible,

recordings of pop music were selected instead of language-specific genres (such as Latin

American music). This data set is named YTAcap in this work.

For many experiments, these songs were split up into segments of 10-20 seconds at

silent points (3,156 “utterances” in sum). In most cases, these segments were then

balanced for the languages by randomly discarding superfluous segments. In other

experiments, a balanced set of the whole songs was used (i.e. 116 songs per language).

An overview of the amounts of data in the three corpora for language identification is

given in table 4.1.

4.2.2 Hansen’s vocal track data set (ACAP)

This is one of the data sets used for keyword spotting and phoneme recognition. It

was first presented in [27], and consists of the vocal tracks of 19 commercial English-

language pop songs. They have studio quality with some post-processing applied

(equalization, compression, reverb). Some of them contain choir singing. These 19

songs are split up into 920 clips that roughly represent lines in the song lyrics. The

original audio quality is 44,100Hz on a mono channel; for compatibility with models

trained on TIMIT, they were downsampled to 16,000Hz.

13 of the songs were annotated with time-aligned phonemes. The phoneme set is

the one used in CMU Sphinx3 and contains 39 phonemes (it is the same one used in

the TIMIT annotations described above, and can be found in appendix A.1). All of

the songs were annotated with word-level transcriptions. This is the only one of the

singing data sets that has full manual phoneme annotations, which were transcribed

by a single annotator and may contain minor errors. Apart from this, the annotations

are largely reliable and are used as ground truth in this work. This data set will be

referred to as ACAP.

3http://cmusphinx.sourceforge.net/

http://cmusphinx.sourceforge.net/
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4.2.3 DAMP data set

As described, Hansen’s data set is very small and therefore not suited to training

phoneme models for singing. As a much larger source of unaccompanied singing, the

DAMP data set, which is freely available from Stanford University4[153], was used.

This data set contains more than 34,000 recordings of amateur singing of full songs

with no background music, which were obtained from the Smule Sing! karaoke app.

Each performance is labeled with metadata such as the gender of the singer, the region

of origin, the song title, etc. The singers performed 301 English-language pop songs.

The recordings have good sound quality with little background noise, but come from a

lot of different recording conditions. They were originally provided in OGG format at

a sampling rate of 22,050Hz (mono channel), but were also converted to WAV format

and downsampled to 16,000Hz for compatibility. A list of the contained songs can be

found in appendix A.3.3. No lyrics annotations are available for this data set, but the

textual lyrics can be obtained from the Smule Sing! website5. These are, however, not

aligned in any way. Such an alignment was performed automatically on the word and

phoneme levels (see section 5.3).

The selection of songs is not balanced, with performances ranging between 21 and

2038 instances. Female performances are also much more frequent than male ones,

and gender often plays a role when training and evaluating models. For these reasons,

several subsets of the data set were composed by hand.

In order to generate training data sets, the data was balanced by songs so that certain

songs (and their phoneme distributions) would not be overrepresented. Since the least

represented song in the original data set has 21 recordings, 20 to 23 recordings per song

were chosen at random to generate a training data set, which was named DampB. For

each song, as many different singers as possible were selected. Additionally, recordings

with more “Loves” (user approval) were more likely to be selected (however, a large

percentage of the original data set did not have such ratings). This resulted in a data

set of 6,902 recordings.

This process was then repeated, this time only taking recordings by singers of one

gender into account. In this way, data sets of recordings by female and male singers

only were, named DampF and DampM respectively. Due to the gender split, there

4https://ccrma.stanford.edu/damp/
5http://www.smule.com/songs/

https://ccrma.stanford.edu/damp/
http://www.smule.com/songs/
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were fewer recordings of some of the songs available. Male singers in particular are un-

derrepresented in the original data set. Therefore, DampF contains 6,564 recordings,

while DampM contains 4,534. These sizes are roughly in the same range as for the

mixed-gender data set, which enables the comparison of models trained on all three.

These three data sets do not contain balanced amounts of phonemes; therefore, subsets

of them were created where phoneme frames were discarded until they were balanced

and a maximum of 250,000 frames per phoneme were left, where possible. These data

set are named DampBB, DampFB, and DampMB, and they are about 4% the size of

their respective source data sets. Since all of these data sets are still much larger than

the TIMIT speech corpus, another subset of similar size was created for comparison.

On the basis of the balanced DampBB data set, phoneme instances were discarded

until 60,000 frames per phoneme were left, resulting in the DampBB small data set.

For testing new algorithms, two small test data sets were created from the origi-

nal DAMP data set. These are, again, split by gender, and contain one recording

per song, resulting in 301 recordings for the female data set and 300 for the male

one (since there was one song with not enough available male recordings). They are

called DampTestF and DampTestM respectively. For mixed-gender training, testing

was simply performed on both data sets. Additionally, 20 phrases from each of the

test data sets were manually selected for good singing and recording quality. This was

necessary for fine-tuning and analysis of the retrieval algorithms.

To sum up:

DampB Contains 20 to 23 full recordings per song (more than 6000 in sum), both

male and female.

DampBB Same as before, but phoneme frames were discarded until they were bal-

anced and a maximum of 250,000 frames per phoneme were left, where possible.

This data set is about 4% the size of DampB.

DampBB small Same as before, but phoneme frames were discarded until they were

balanced and 60,000 frames per phoneme were left (a bit fewer than the amount

contained in TIMIT ). This data set is about half the size of DampBB.

DampF and DampM Each of these data sets contains 20 to 23 full recordings per

song performed by singers of one gender, female and male respectively.
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Name
Both genders Female Male(#Utterances)

dd:hh:mm:ss

Full DampB DampF DampM
(6,902) (6,654) (4,534)

11:08:34:30 10:19:05:27 07:13:01:06
Balanced DampBB DampFB DampMB

08:49:02 08:29:39 05:53:01
Reduced DampBB small

04:10:13
Test DampTestF DampTestM

(301) (300)
18:15:43 17:58:02

Retrieval DampRetrievalF DampRetrievalM
(20) (20)

01:56 01:52

Table 4.2: Overview of the structure of the DAMP -based phonetically annotated data
sets, number of recordings in brackets, duration in italics (dd:hh:mm:ss).
Note that no number of recordings is given for some data sets because their
content was selected phoneme-wise, not song-wise. For retrieval, the record-
ings are short phrases instead of full songs.

DampFB and DampMB Starting from DampF and DampM, these data sets were

then reduced in the same way as DampBB. DampFB is roughly the same size,

DampMB is a bit smaller because there are fewer male recordings.

DampTestF and DampTestM Contains one full recording per song and gender (300

each). These data sets were used for testing. There is no overlap with any of the

training data sets.

DampRetrievalF and DampRetrievalM 20 hand-picked sung phrases from DampF

and DampM of a few seconds duration with good enunciation and good audio

quality. These were selected for fine-tuning retrieval approaches. An overview

can be found in appendix A.3.4.

An overview of the amounts of data is given in table 4.2.

4.2.4 Retrieval data set by the author (AuthorRetrieval)

This is a data set of 90 short lyrics phrases from the DAMP data set sung with clear

enunciation by the author. The phrases were recorded with a smartphone microphone
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for testing a demo app for the retrieval algorithm. They were then further utilized to

finetune this retrieval algorithm. The recordings are a few seconds in duration with a

sampling rate of 16,000Hz on a mono channel.

4.3 Accompanied singing data sets

4.3.1 QMUL Expletive data set

This data set consists of 80 popular full songs which were collected at Queen Mary

University of London, most of them Hip Hop. 711 instances of 48 expletives were

annotated on these songs. In addition, the matching textual, unaligned lyrics were

retrieved from the internet. The audio is provided at 44,100Hz sampling rate in stereo,

but was also downsampled to 16,000Hz and averaged to a mono track for compatibility

with other models.

4.3.2 Mauch’s data set

This data set was first presented in [139] and is used for alignment evaluation. It

consists of 20 English-language pop songs with singing and accompaniment. Word

onsets were manually annotated. This data set will be referred to as Mauch.

4.3.3 Hansen’s vocal track data set (polyphonic) (ACAP Poly)

This data sets consists of the songs in the ACAP data set described above in section

4.2.2, but with instrumental accompaniment. The annotations are carried over. This

data set is also used for alignment evaluation and denoted as ACAP Poly.

4.4 Keywords

From the 301 different song lyrics of the DAMP data sets, 15 keywords were chosen

by semantic content and frequency to test the keyword spotting algorithms. Each

keyword occurs in at least 50 of the 301 songs, and also appears in the ACAP data

set. The keywords are shown in table 4.3. A list of the number of occurrences in each

data set is given in appendix A.2.
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#Phonemes Keywords

2 eyes
3 love, away, time, life, night
4 never, baby, world, think, heart,

only, every
5 always, little

Table 4.3: All 15 tested keywords, ordered by number of phonemes.
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5 Singing Phoneme Recognition

In common ASR systems, phoneme recognition is performed by training an acoustic

model that is able to determine the probability of phoneme occurrences in unseen au-

dio frames. The result of this is a so-called phoneme posteriorgram - i.e. a matrix of

the probabilities of each possible phoneme over time. In a second step, another model

is applied to this posteriorgram, taking into account the probabilities of phoneme se-

quences and words formed by these phonemes, and thus generating a phoneme string

from the posterior probabilities. This step is called language modeling.

Language modeling is a field of research unto itself, and is a complex task for lyrics.

For this reason, this work focuses on improving the acoustic modeling step. The train-

ing process is performed according to the general schema described in section 2.1. The

specific adaptations are shown in figures 5.1 and 5.2: In training, phoneme annotations

are used to defined the possible classes. A set of around 39 phonemes is common; the

phoneme set used in this work is the one used in CMU Sphinx1 and is listed with

examples in appendix A.1. The used data sets contain annotations of monophones. In

ASR, splitting phonemes into three temporal phases is common, resulting in so-called

senones. This was also tested as described in section 5.3.

The whole training process then results in an acoustic model, which can be used for

classification as shown in figure 5.2. As described, classification results in a phoneme

1http://cmusphinx.sourceforge.net/

Figure 5.1: Schematic of the training procedure for phoneme recognition.

http://cmusphinx.sourceforge.net/
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Figure 5.2: Schematic of the classification procedure for phoneme recognition.

posteriorgram. An example is shown in figure 5.3. The time resolution of the poste-

riograms in this work is 10ms. Instead of language modeling, many of the following

tasks build directly on the posteriogram. For evaluation of the phoneme recognition

itself, Viterbi decoding with evenly weighted transitions is performed on the posterior-

grams. Then, the Phoneme Error Rate (PER) and the Weighted Phoneme Error Rate

(WPER) are used for assessing the quality (see section 2.3.2).

The following chapter describes the systems developed for phoneme recognition in

singing, which serve as a basis for most of the following tasks. All three approaches are

based on this general processing chain. The first one employs traditional GMM-HMM

and DNN models trained on speech as a starting point. The other two use DNNs

for modeling the phonemes, and are trained on different data sets. Since there is no

large data set of singing annotated with phonemes available, speech was made more

“song-like” for the second approach. In the third one presented, lyrics are automatically

aligned to a large singing data set using the GMM-HMM approach, and the resulting

data set is used for model training again.

The approaches are tested on the ACAP data set, where the results are compared

to the manual annotations, and on the DampTestF and DampTestM data sets, which

have automatically generated annotations, as described later in this section. Some

experiments were also performed on the test portion of the TIMIT speech corpus.

Cross validation was not necessary since there is enough dedicated test data available

for this task; this provides a clear separation between training and test data.
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Figure 5.3: Example of a phoneme posteriorgram, the result of classification with an
acoustic model. The posteriorgram represents the posterior probabilities
of each phoneme over time. The time resolution in this example is 10ms.
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5.1 Phoneme recognition using models trained on

speech

As a starting point, models for phoneme recognition were trained on speech data,

specifically the TIMIT corpus. As in many classic ASR approaches, GMM-HMMs

were selected as a basis and trained using the Hidden Markov Toolkit (HTK)[154].

Additionally, Deep Neural Networks (DNN) were trained for comparison with mod-

els trained on the other data sets. They had three hidden layers of 1024 nodes, 850

nodes, and 1024 nodes again. In both cases, 13 MFCCs were extracted, and deltas

and double-deltas were calculated, resulting in a feature vector of dimension 39. As

the output, the described set of 39 monophones was used.

The HMMs were used for aligning text lyrics to audio in some of the following ap-

proaches. To verify the quality of such an alignment, this was tested on the part

of the ACAP singing corpus that has phoneme annotations. On average, the align-

ment error was 0.16 seconds. A small manual check suggests that this value is in the

range of annotator uncertainty. A closer inspection of the results also shows that the

biggest contributions to this error occur because a few segments were heavily mis-

aligned, whereas most of them are just slightly shifted. The DNN models were trained

to perform phoneme recognition using the Theano framework [155]. This system was

evaluated by first generating phoneme posteriorgrams from the test audio using the

DNN models, and then running Viterbi decoding on those to extract phoneme strings.

Then, the Phoneme Error Rate and the Weighted Phoneme Error Rate were calculated

as described above.

The results for DNN models trained on TIMIT are shown in figure 5.4. For val-

idation, the model was tested on the test part of TIMIT, resulting in a Phoneme

Error Rate of 0.4 and a Weighted Phoneme Error Rate of 0.3. Lower values on these

corpora can be found in literature, but those systems are usually more sophisticated

and include language modeling steps and gender- or speaker-adapted models. In this

scenario, those values serve as a validation of the recognition ability of the model on

unseen data, and as an upper bound for the other results.

On the ACAP data set, the Phoneme Error Rate is 0.97 and the Weighted Phoneme

Error rate is 0.76. Performing the same evaluation on the DAMP test data sets gen-

erates even worse results: A Phoneme Error Rate of 1.26/1.29 (female/male), and a
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(a) Phoneme Error Rate (b) Weighted Phoneme Error Rate

Figure 5.4: Mean phoneme recognition results on the test data sets using acoustic mod-
els trained on TIMIT (error bars represent standard error over utterances).

Weighted Phoneme Error Rate of 0.9. This demonstrates that the performance of mod-

els trained on speech leaves room for improvement when used for phoneme recognition

in singing. The difference between both singing data sets can be explained by their

content: ACAP is much smaller, and contains cleaner singing in the sense of both the

recording quality and the singing performance. Songs in this data set were performed

by professional singers, whereas the DAMPTest sets contain recordings by amateurs

who do not always enunciate clearly. Additionally, the phoneme annotations for the

DAMPTest sets were generated from the song lyrics; these do not correspond to the

actual performed phonemes in all cases.

It can be assumed that models trained on better-matching conditions (i.e. singing)

would perform much better at this task. The problem with this approach lies in the

lack of data sets that can be used for these purposes. In contrast with speech, no

large corpora of phonetically annotated singing are available. In the following sections,

workarounds for this problem are tested.

5.2 Phoneme recognition using models trained on

“songified” speech

When there is a scarcity of suitable training data, attempts are often made to generate

such data artificially from existing data for other conditions. For example, this is often

done when models for noisy speech are required [156][157]. Similarly, so-called data
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Figure 5.5: Overview of the “songified” phoneme recognition training process.

augmentation methods are often employed to obtain more training data for machine

learning models [158][159]. Inspired by this, one idea was making existing speech cor-

pora more “song-like” and use these modified data sets to train models for phoneme

recognition in singing. The TIMIT corpus was once again used as a basis for this.

A first approach for transforming speech into singing was proposed by Saitou et al.

in 2007 [160][161]; a system for the opposite procedure is described in [162]. These

sophisticated methods were not employed here because the goal here was not necessar-

ily the generation of realistic-sounding singing. Using simpler, independent operations

to produce “songified” speech allowed for more detailed insights into the role of each

parameter.

An overview of the developed approach is shown in figure 5.5. Five variants of the

training part of TIMIT are generated. MFCC features are then extracted from these

new data sets and used to train models. Similarly, MFCCs are extracted from the

TIMIT test set and from the ACAP data set. The previously trained models are used

to recognize phonemes on these test data sets. Phoneme sequences can be generated

from the results with Viterbi decoding. Finally, the results are evaluated.

Several variants of making the training data more “song-like” were tested. Table 5.1

shows an overview over the five data sets generated from TIMIT using three modifica-

tions. Data set N is the original TIMIT training set. For data set P , four of the eight

blocks of TIMIT were pitch-shifted. For data set T , five blocks were time-stretched

and vibrato was applied to two of them. In data set TP , the same is done, except with

additional pitch-shifting. Finally, data set M contains a mix of these modified blocks.

In detail, the modifications were performed in the following way:

Time stretching For time stretching, the phase vocoder from [163], which is an im-

plementation of the Flanagan-Dolson phase vocoder [164][165], is used. This
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algorithm works by first performing a Short-Term Fourier Transform (STFT) on

the signal, and then resampling the frames to a different duration and perform-

ing the inverse Fourier transform. As described in section 3.1, time variations in

singing mainly affect vowels and durations are often much longer than in speech.

Therefore, the TIMIT annotations are used to only pick out the vowel segments

from the utterances. They are randomly modified to a duration between 5 and

100 times the original duration, and then re-inserted into the utterance. This

effectively leads to more vowel frames in the training data, but since there is

already a large amount of instances for each phoneme in the original training

data, the effects of this imbalance should be negligible.

Pitch shifting To pitch-shift the signal, code from the freely available Matlab tool

AutoTune Toy [166], which also implements a phase vocoder, is used. In this

implementation, the fundamental frequency is first detected automatically. The

signal is then compressed or expanded to obtain the new pitch, and interpolated

to retain the original duration. Using the TIMIT annotations, utterances are

split up into individual words, and then a pitch-shifted version of each word is

generated and the results are concatenated. Pitches are randomly selected from

a range between 60% and 120% of the original pitch.

Vibrato The code for vibrato generation was also taken from AutoTune Toy. It func-

tions by generating a sine curve and using this as the trajectory for the pitch

shifting algorithm mentioned above. A sine of amplitude 0.2 and frequency 6Hz

is used. In singing, vibrato is commonly performed on long sounds, which are

usually vowels. Since spoken vowels are usually short, vibrato cannot be per-

ceived on them very well. Therefore, vibrato is only added on time-stretched

vowels.

The approach was tested on the various test data sets - namely, the test part of

TIMIT, the ACAP data set, and the two test sets selected from the DAMP data set.

Figure 5.6 shows the results for the DNN models. As it demonstrates, results for singing

are generally worse than for speech. The base result for singing is a Weighted Phoneme

Error Rate of 0.8 for ACAP, and of 0.9 for both DAMPTestF and DAMPTestM (with

a model trained on the original TIMIT data set - also see previous section). When

comparing the models trained on the various TIMIT modifications, an improvement

is observed for all variants. In contrast, none of the modifications improve the result

on the speech data at all. The base result here is 0.3. This makes sense since all of the
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N P T TP M
DR1 N N N N N
DR2 N N N N N
DR3 N N N N P
DR4 N N T TP TV
DR5 N P T TP TPV
DR6 N P T TP TV
DR7 N P TV TPV P
DR8 N P TV TPV TPV

Table 5.1: The five TIMIT variants that were used for training (rows are blocks of the
TIMIT training corpus, columns are the five generated data sets). Symbols:
N - Unmodified; P - Pitch-shifted; T - Time-stretched; V - Vibrato

(a) Phoneme Error Rate (b) Weighted Phoneme Error Rate

Figure 5.6: Mean phoneme recognition results on the test data sets using acoustic mod-
els trained on TIMIT and augmented versions thereof (error bars represent
standard error over utterances).
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modifications make the training data less similar to the test data set.

On singing, the Weighted Phoneme Error rate falls by 0.1 to 0.15 when using mod-

els trained on the pitch-shifted data set (TimitP), and by up to 0.08 when using the

time-stretched training data (TimitT ). The improvements for the corpora with both

improvements lie in between. Vibrato does not have a strong influence on the result.

The higher error rates for DAMPTest can, again, be explained with the fact that this

data set has more variation in audio and singing quality.

Pitch shifting might have a stronger effect on the recognition result because it is

a stronger modification in the sense that it generates actual new feature values. In

contrast, time stretching mostly generates new frames with values similar to the ones

in the original data set (and only in between those). Additionally, pitch shifting may

introduce more variety that is closer to sung sounds because singers do not usually

shape long vowels just by stretching out their short versions. Nevertheless, it is inter-

esting to see that both pitch shifting and time stretching improve the result for sung

phoneme recognition. This indicates that more variety in the training data is a step

in the right direction. However, there is still a lot of room for improvement.

5.3 Phoneme recognition using models trained on

a-capella singing

In this section, the most salient tested approach for phoneme recognition in singing is

presented. For this method, acoustic models were trained on actual singing recordings.

A large set of such recordings was already available from the DAMP corpus, but no

annotations were included with them. Such annotations were generated automatically

from text lyrics available on the internet. In the following subsections, this process is

described in detail, some variants are tested, and experiments with these new models

are presented.

5.3.1 Corpus construction

As mentioned above, no lyrics annotations are available for the DAMP data set, but

the textual lyrics can be obtained from the Smule Sing! website2. All of them are

English-language songs. These lyrics are mapped to their phonetic content using the

2http://www.smule.com/songs

http://www.smule.com/songs
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Figure 5.7: An overview of the alignment process. The dotted line represents the op-
tional bootstrapping.

CMU Pronouncing Dictionary3 with some manual additions of unusual words. As with

the other data sets, this dictionary has a phoneme set of 39 phonemes (also see ap-

pendix A.1).

These lyrics are automatically aligned to the DAMP audio using the HMM acoustic

models trained on TIMIT (see section 5.1). Viterbi alignment is performed on the

word and phoneme levels using the HTK framework with MFCCs and their deltas and

double-deltas as features. This is the same principle of so-called “Forced Alignment”

that is commonly used in Automatic Speech Recognition [167] (although it is usually

done on shorter utterances).

Several different alignment strategies were carried out:

One state vs. three states per phoneme Versions with one state per phoneme and

three states per phoneme (so-called “senones”, modeling the start, middle, and

end phases) were tested. Since TIMIT only contains single-phoneme annotations,

this was done by first splitting the phoneme time frames evenly in three, and

then re-training the TIMIT acoustic models and re-aligning the data set (with

the assumption that the transitions between the three states would be “pulled”

to the correct times).

One-pass alignment vs. Bootstrapping On top of a one-pass alignment using the

Viterbi algorithm, bootstrapping the acoustic models to improve the alignment

was also tested. To clarify: The alignment is first performed on the DAMP data

sets using the TIMIT models described above, and then acoustic models are

trained on the resulting phoneme annotations. Then, those models are used to

3http://www.speech.cs.cmu.edu/cgi-bin/cmudict

http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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re-align the DAMP data, which is again used to train another model. This is

done over three iterations. A modified version of the alignment algorithm is used

for performing the alignment with the models trained on the DAMP data sets.

This approach is based on a DTW on the generated phoneme posteriorgrams with

no punishment for very long states. This is similar to the approach described in

section 8.2.

A graphical overview of the alignment process is given in figure 5.7.

Of course, errors cannot be avoided when performing automatic forced alignment. All

in all, there are four combinations of these strategies, which were compared. The next

section describes how this alignment procedure was validated and what strategies per-

formed best.

Since there is usually a large number of recordings of the same song, an approach

using this information to improve the alignment results was also considered, e.g. by

averaging time stamps over the alignments of several recordings. This was not done

in this work because recordings tend to have different offsets from the beginning (i.e.

silence in the beginning), and the singers also do not necessarily pronounce phonemes

at the same time. This might be an avenue for future research, though. A similar

strategy for F0 recognition rather than lyrics alignment was proposed in [168].

5.3.2 Alignment validation

The alignment approach that was used to create the new DAMP -based data sets was

first tested on the ACAP data set. To recap: This approach employs models trained on

the TIMIT speech corpus, which are used for Viterbi alignment of the known phonemes

to the singing. The result of this process is then compared to the manual annotations

by calculating the difference between each expected and predicted phoneme transition.

As mentioned in section 5.1 and shown in figure 5.8, the mean alignment error for

this first approach is 0.16 seconds for the three-state case, and 0.17 seconds for single

phoneme states.

Various models trained on the new DampB, DampF, and DampM training data sets

were then tested for the same task. The results are also shown in figure 5.8. Models

trained on the monophonic alignments of DampB perform slightly (but significantly

with p < 0.05) better at alignment on singing data with a mean error of 0.15 sec-

onds. For the gender-specific models, the error was only calculated for the songs of
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Figure 5.8: Mean alignment error in seconds on the ACAP data set. TIMIT shows the
result for the same models used for aligning the new DAMP -based data
sets. (Error bars represent standard error over the tested songs).

the matching gender in ACAP, resulting in the same average value. Since the gender-

specific models do not produce better results, the other experiments were conducted

with the mixed-gender training set only. The three-state version of the DampB model

performs even better at alignment, with a mean error of 0.1 seconds. This might hap-

pen because dedicatedly training the model for the start and end parts of phonemes

makes the alignment approach more accurate at finding start and end points.

Finally, a model trained on DampB over three iterations was also tested for align-

ment. This model performs much worse at this task with a mean alignment error of

0.26 seconds. This could happen because systematic errors in the original alignment of

the phonemes become amplified over these iterations. The effect is not as pronounced

for the three-state version, but it is still present.

5.3.3 Phoneme recognition

After validating the alignment strategy, phoneme recognition experiments were car-

ried out on both the ACAP and the DampTest data sets. This was possible even

though there are no manual annotations for the DampTest sets because the expected

phonemes are available from the textual lyrics. Again, the Phoneme Error Rate and
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(a) Phoneme Error Rate (b) Weighted Phoneme Error Rate

Figure 5.9: Mean phoneme recognition results on the ACAP data set using acoustic
models trained on TIMIT and the new DAMP -based data sets (error bars
represent standard error over utterances).

(a) Phoneme Error Rate (b) Weighted Phoneme Error Rate

Figure 5.10: Mean phoneme recognition results on the DampTest data sets using acous-
tic models trained on TIMIT and the new DAMP -based data sets (error
bars represent standard error over utterances).
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(a) Phoneme Error Rate (b) Weighted Phoneme Error Rate

Figure 5.11: Mean phoneme recognition results on the DampTest data sets using acous-
tic models trained on TIMIT and the new DAMP -based data sets in
various sizes (error bars represent standard error over utterances).

the Weighted Phoneme Error Rate are used as evaluation measures (see above).

The results for ACAP are shown in figure 5.9. In general, models trained on DampB

performed much better at phoneme recognition than those trained on TIMIT. Com-

pared to these speech-based models, the Phoneme Error Rate falls from 1.06 to 0.77

(significant with p < 0.05), while the Weighted Phoneme Error Rate falls from 0.8 to

0.59. As can be seen from both evaluation measures, using alignments with three states

per phoneme instead of a single state does not improve the results in this case, con-

trasting with the better alignment results. This might happen because more classes

cause more confusion in the model, even though the three-state results were down-

mapped to single phonemes for calculating the evaluation measures. Additionally,

the temporal pronunciation phases may just be too variable in singing, as opposed

to speech. As in the alignment results, using gender-specific models does not provide

an advantage over mixed-gender models. (Results for the gender-specific models were

only evaluated on songs of the matching gender). As already seen in the alignment

validation results, training models on DampB over three iterations actually degrades

the result. Again, this might happen because phoneme alignment errors are amplified

over the iterations. Interestingly, the effect is not as strong for the three-state mod-

els, perhaps because the three classes per phoneme help to alleviate each other’s errors.
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The results of the same procedure on the DampTest sets are shown in figure 5.10.

Results over DampTestF and DampTestM are averaged. The same general trend can

be observed for these results: The Phoneme Error Rate falls from 1.3 to 0.83 when

compared to models trained on TIMIT, with the Weighted Phoneme Error Rate de-

creasing from 0.93 to 0.64. Using three states per phoneme does not contribute to the

result, and neither does the three-iteration bootstrapping process for training acoustic

models. As in the ACAP results, not even the gender-specific models improve the

result. This effect might occur because the range of pitch and expressions is much

wider in singing than in speech, and therefore gender-specific models may not actu-

ally learn as much added helpful information. Addtional experiments indicate that

gender-specific models also do not improve the results when using three states or three

alignment iterations as with the mixed-gender training data.

Going forward, single-state models trained on mixed-gender data (i.e. DampB)

appear to be the best and simplest solution. To gain insight into the role of the com-

position of the training data set, more experiments were conducted with the variants

of DampB described in section 4.2.3. The results are shown in figure 5.11. When

using the smaller, phonetically balanced version of DampB (DampBB), the results

become somewhat (statistically insignificantly) worse, with a Phoneme Error Rate of

0.85 and a Weighted Phoneme Error Rate of 0.66. This is particularly interesting be-

cause this data set is only 4% the size of the bigger one and training is therefore much

faster. With the smallest data set which is only half the size of DampBB, the change

is similar: The Phoneme Error Rate rises to 0.89, the Weighted Phoneme Error Rate

to 0.68. Since this data set has a similar amount of phoneme instances as TIMIT,

this proves that the improvement is actually caused by the acoustic properties of the

training data, rather than just the larger amount of data. (Of course, the size is also

a contributing factor). The reduced versions of DampF and DampM were tested as

well, but once again, they do not provide an improvement over the mixed-gender model.

5.3.4 Error sources

When using an automatic alignment algorithm for generating new annotations, errors

cannot be avoided. To acquire a clearer picture of the reasons for the various misalign-

ments, the audio data where they occurred was analyzed more closely. Some sources

of error repeatedly stuck out:
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Unclear enunciation Some singers pronounced words very unclearly, often focusing

more on musical performance than on the lyrics.

Accents Some singers sung with an accent, either their natural one or imitating the

one used by the original singer of the song.

Young children’s voices Some recordings were performed by young children.

Background music Some singers had the original song with the original singing run-

ning in the background.

Speaking in breaks Some singers spoke in the musical breaks.

Problems in audio quality Some recordings had qualitative problems, especially loud-

ness clipping.

For most of these issues, more robust phoneme recognizers would be helpful. For

others, the algorithm could be adapted to be robust to extraneous recognized phonemes

(particularly for the speaking problem). A thorough manual check of the data would

be very helpful as well.

5.4 Conclusion

In this chapter, new approaches for phoneme recognition in singing were presented.

As a starting point, DNN models are trained on the TIMIT speech corpus. For ver-

ification, these models were evaluated on the test section of TIMIT, resulting in a

Phoneme Error Rate of 0.4 and a Weighted Phoneme Error Rate of 0.3. The results

on the ACAP ı̈¿1
2
singing data set are much worse: A Phoneme Error Rate of 0.97 and a

Weighted Phoneme Error Rate of 0.76, demonstrating the difficulty of phoneme recog-

nition in singing as opposed to speech. The Phoneme Error Rate is even worse on the

DampTest data sets at 1.28, with a Weighted Phoneme Error Rate of 0.9. Generally,

results on the DampTest sets are worse than on the ACAP test set, which presumably

happens because the DampTest sets are performed by amateurs, whose enunciation is

not as clear as that of the professional singers in the ACAP set and who may not al-

ways sing the correct lyrics. Additionally, the recording quality varies much more, and

the annotations contain errors due to the automatic phoneme alignment (as opposed

to the more reliable manual annotations of ACAP).
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In order to better adapt the models to singing, acoustic modifications are performed

on the TIMIT training data - namely, pitch shifting and time stretching. This in-

creases the Phoneme Error Rate on speech test data (the TIMIT test section), but

improves results on sung data. Pitch shifting has a stronger effect than time stretching,

which might happen because this modification results in actual changed feature data,

whereas time stretching mainly produces more frames with feature values similar to or

in between the existing ones. On the ACAP test data, the lowest Phoneme Error Rate

is 0.95, and the lowest Weighted Phoneme Error Rate is 0.7 (with the pitch-shifted

models). On DampTest, those values are decreased to 0.98 and 0.76 respectively.

The best-adapted models for recognizing phonemes in singing should be those trained

on actual singing data. Unfortunately, there are no big annotated singing data sets

like those for speech. For this reason, the DAMP data set, which contains thousands

of recordings of unaccompanied amateur singing, was selected, and the text lyrics were

obtained from the internet. Then, various strategies for aligning the phonetic con-

tent of these lyrics to the audio were tested. In the simplest algorithm, HMM models

trained on TIMIT are used for Viterbi alignment. This also turned out to be one of

the most effective algorithms for the alignment process necessary for constructing this

new singing data set.

The resulting annotations, together with the singing audio data, are then used to

train new DNN models for phoneme recognition. Using more than 6,000 of these

recordings of singers of both genders, the Phoneme Error Rate is lowered to 0.77 on

the ACAP test set, and the Weighted Phoneme Error Rate is lowered to 0.59. On the

DampTest sets, those values decrease to 0.83 and 0.64 respectively. Neither employing

three states per phoneme instead of a single state nor training gender-specific mod-

els provide additional advantages. Iterating the alignment process worsens the result,

possibly because errors in the original alignment become amplified over these iterations.

The influence of training set size was also investigated on the DampTest data. Using

a phonetically balanced subset of DAMP that is just 4% of the size of the originally

selected training set worsens the result by only 0.02 (both in Phoneme Error Rate

and Weighted Phoneme Error Rate). Using an even smaller data set that is roughly

the size of TIMIT increases the Phoneme Error Rate only by a further 0.04 (and the

Weighted Phoneme Error Rate by 0.02), thereby proving that the better recognition

results are caused by the sung content rather than just the size of the training data.
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In future experiments, it would be interesting to analyze this dependency on training

set size further to find out how much data is necessary for a salient model.

A manual error analysis was performed on cases where the phoneme recognition

failed. Errors are frequently caused by linguistically or acoustically difficult segments

in the test data, such as accents, children’s voices, background music, or additional

speaking.

Comparing these results to the state of the art is difficult because of the different

testing data used. Considering raw numbers, it can be assumed that the best results

are in the range of the best state of the art results, for example those by Mesaros et al.

[112] (see section 3.2). In contrast to these approaches, no post-processing is employed.

In the future, integrating such steps as singer adaptation and language modeling would

in all probability serve to improve the approach even more. Another option that has

not been tested yet is the use of triphones (i.e. training tied models for phonemes with

context dependency on their predecessors and successors). This approach is frequently

used in ASR.
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6 Sung Language Identification

Language identification has been extensively researched in the field of Automatic

Speech Recognition since the 1980’s. A number of successful algorithms has been

developed over the years. An overview over the fundamental techniques is given by

Zissman in [169].

Fundamentally, four properties of languages can be used to discriminate between

them:

Phonetics The unique sounds that are used in a given language.

Phonotactics The probabilities of certain phonemes and phoneme sequences.

Prosody The “melody” of the spoken language.

Vocabulary The possible words made up by the phonemes and the probabilities of

certain combinations of words.

Even modern systems mostly focus on phonetics and phonotactics as the distinguishing

factors between languages. Vocabulary is sometimes exploited in the shape of language

models.

In ASR, the standard technique for language identification is Parallel Phoneme

Recognition followed by Language Modeling (PPRLM). In this approach, acoustic

Figure 6.1: Schematic of the training procedure for language identification.
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Figure 6.2: Schematic of the classification procedure for language identification.

and language models are trained for each language (or, in some cases, only the lan-

guage models are different and just one acoustic model is used) . Unseen examples are

then run through each model or combinations thereof, and the result with the highest

likelihood determines the language (e.g. [170] and [171]).

Other approaches directly train models for each language on the feature vectors (e.g.

GMMs). This technique can be considered a “bag of frames” approach, i.e. the single

data frames are considered to be statistically independent of each other. The trained

models then describe probability densities for certain acoustic characteristics of each

language. GMM approaches used to perform worse than their PPRLM counterparts,

but the development of new features has made the difference negligible [172]. They

are, in general, easier to implement since only audio examples and their language an-

notations are required. Allen et al. [16] report results of up to 76.4% accuracy for

ten languages. Different backend classifiers, such as Multi-Layer Perceptrons (MLPs)

and Support Vector Machines (SVMs) [15], have also been used successfully instead of

GMMs.

In this work, an approach that trains directly on the acoustic characteristics using

i-vector extraction and SVMs is presented. The modifications to the general processing

chain are presented in figures 6.1 and 6.2. Additionally, a second approach based on

phoneme posteriorgrams is tested. Statistics from the posteriorgrams are calculated,

and then a second model is trained on these. Similar methods have been developed

in ASR: Berkling presented an approach that uses sequences of recognized phonemes

to discriminate between two languages (English and German), either with statistical

modeling or with Neural Networks [173]. Mean errors of 0.12 and 0.07 on unseen data

are achieved for the statistical approach and the Neural Network approach respectively

when enough training data is available.

Li, Ma, and Lee present a system where acoustic inputs are tokenized into acoustic
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words, which do not necessarily correspond to phonetic n-grams. Then, language clas-

sifiers are trained on statistics of the acoustic words [174]. They obtain an equal error

rate of 0.05 for six languages using a universal phoneme recognizer for tokenization

and SVMs for backend language recognition. Peche et al. [175] attempt a similar

approach on languages with limited resources. The performance remains good even

when only acoustic models trained on different languages are used. In all of these

approaches, tokenization of some sort is performed using the acoustic models. Since

phoneme recognition on singing is still relatively unreliable, statistics are calculated

directly on the phoneme posteriors in this work.

For evaluation, all test examples are classified into exactly one language class. Then,

the accuracy (i.e. the average retrieval) is calculated:

Accuracy =
TP

N
(6.1)

where TP are the True Positives, and N is the number of all documents. In ASR,

the average cost measure as recommended in [176] is also used widely now; however,

to remain in line with other sung language identification approaches such as those de-

scribed in chapter 3, the accuracy was still used in this work.

In both approaches, the NIST2003LRE and OGIMultilang corpora were used for

testing the algorithms on speech, and the YTAcap data set was used for singing (see

chapter 4). All results are obtained using 5-fold cross-validation - i.e., models are

trained on 4/5 of each data set, then the remaining 1/5 is classified with the model.

This is done 5 times until each utterance has been classified. This was necessary

because the data sets are relatively small, and separating them into training and test

sets would not have provided enough results for a meaningful evaluation.

6.1 Sung language identification using i-vectors

As described in section 2.4.4, i-vector extraction is a feature dimension reduction tech-

nique that was originally developed for speaker recognition, but has since then been

employed successfully for other tasks, including language identification. After the

publication of this approach for i-vector extraction for sung language identification, it

also started being used for other MIR tasks, such as artist recognition and similarity

calculation [177][178].
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Figure 6.3: Overview of the process for language identification using i-vector extrac-
tion.

6.1.1 Proposed system

Figure 6.3 shows a rough overview over the i-vector classification system.

A number of features were extracted from each audio file. Table 6.1 shows an

overview over the various configurations used in training.

Name Description Dimensions
MFCC MFCC, 20 coefficients 20

MFCCDELTA MFCC, 20 coefficients, deltas and double-deltas 60
MFCCDELTASDC MFCCDELTA+SDC 117

SDC SDC with configuration 7− 1− 3− 7 91
RASTA-PLP PLP with RASTA processing, model order 13 with deltas and double-deltas 39

RASTA-PLP36 PLP with RASTA processing, model order 36 with deltas and double-deltas 96
PLP PLP without RASTA processing, model order 13 deltas and double-deltas 39

COMB PLP+MFCCDELTA 99

Table 6.1: Feature configurations used in language identification training.

For classification, Support Vector Machines (SVMs) are tested. The SVM parame-

ters are determined using a grid-search. For each of the data sets, all feature combi-

nations listed in table 6.1 are tested directly and with i-vector processing.

6.1.2 Experiments with known speakers

In the first experiment, SVM models are trained on randomly selected folds of the

training data sets. This means that recordings by the same speaker are spread out

between the training and test data sets. In theory, i-vectors could be particularly

susceptible to capturing speaker characteristics instead of language characteristics,

leading to evaluation results that are not representative of results for unknown speakers.

However, this effect is often ignored in literature [179]. There are use cases where

taking speaker characteristics into account can actually contribute to the language

identification accuracy - i.e., when detection is performed on data where some of the

speakers are known in advance.
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(a) NIST2003LRE (b) OGIMultilang (c) YTAcap

Figure 6.4: Results using SVM models on all three language identification data sets,
with or without i-vector processing, with speakers shared between training
and test sets (error bars represent standard error over training folds).

Figure 6.4 shows the results for the SVM models trained on the NIST2003LRE,

OGIMultilang, and YTAcap data sets. In general, these models are able to capture the

language boundaries well.

SVMs produce good results on the NIST2003LRE data set for all of the features.

They are able to discriminate very well on this small, clean data set. The best result

with i-vector processing is 86% accuracy for MFCC features. When using i-vectors, a

93% accuracy is achieved with PLP features. This may, in fact, be close to the upper

bound for the classification here; further analysis shows that misclassified recordings

often mainly consist of laughter or very few words.

The OGIMultilang corpus is roughly four times as big and more varied than the

NIST2003LRE corpus, making it harder to classify. As shown, the high-dimensional

pure features do not perform as well as on NIST2003LRE, with a maximum accuracy

of 68% for MFCCs and RASTA-PLPs with 36 coefficients. Using i-vector extraction

improves the result by a large margin. Feature-wise, PLPs without RASTA processing

work best at a result of 82% accuracy. MFCC and SDC features did not work quite as

well, but did not hurt the result either when combined with PLPs (COMB result). It

is interesting to see that the i-vector extraction decreased the results for MFCCs, the

feature that worked best without it.

As with all other experiments, the task becomes harder when attempted on singing

data. Similar to the OGIMultilang corpus, the YTAcap corpus provides very complex
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and varied data. The same effects occur with the direct feature training here, too:

RASTA-PLPs with 36 coefficients provide the best results, but the accuracy is not very

high at 68%. i-Vector extraction once again serves to improve the result. The highest

results when using i-vector extraction is a 75% accuracy when using PLP without

RASTA processing, or 77% for the COMB configuration. The same experiment was

also conducted with MLP classifiers (see [180]), but they generally performed worse

than their SVM counterparts. In the case of the small NIST2003LRE data set, strong

overfitting effects were observed.

6.1.3 Experiments with unknown speakers

In order to find out what influence the speaker characteristics had on the result, the

same experiments were then repeated with training and evaluation sets that strictly

separated speakers. This experiment was not performed for the NIST2003LRE ı̈¿1
2
corpus

because no speaker information is available for it. Since the SVM models performed

better in the previous experiment, only these models were tested.

(a) OGIMultilang (b) YTAcap

Figure 6.5: Results using SVM models, with or without i-vector processing, with speak-
ers separated between training and test sets (error bars represent standard
error over training folds).

The results are shown in figure 6.5. In general, all configurations perform worse, in-

dicating that some of the characteristics learned by the models come from the speakers

rather than the languages. Apart from this, the general trends for the features remain

the same, and i-vector extraction still improves the over-all results. On the OGIMul-

tilang corpus, the best result is still obtained with RASTA-PLP features and i-vector

processing, but the accuracy falls by around 8 percent points to 75%. On YTAcap, the
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effect is even worse: From an accuracy of 77% with the mixed condition, the result

decreases to 61% for the separated condition. The reason for this is probably the wider

signal variety in singing as opposed to speech; additionally, YTAcap also possesses a

wider range of recording conditions than the controlled telephone conditions of OGI-

Multilang. Arguably, the solution for this effect would be the use of larger training

data sets, which would be able to cover these acoustic and performance conditions

better. Conversely, as the previous results show, the approach produces better results

when an application scenario can be limited to a range of known speakers, or at least

recording conditions (as in the NIST2003LRE experiment).

6.1.4 Experiments with utterances combined by speakers

All previous experiments were performed on relatively short utterances of a few sec-

onds in duration. In many application scenarios, much more audio data is available to

make a decision about the language. In particular, songs are usually a few minutes in

length, and in many cases, only one result per document (= song) is required. For this

reason, results for the YTAcap data set are taken from the previous experiment and a

majority voting decision is made for each song (and therefore also for each singer). For

the OGIMultilang corpus, results for all utterances by the same speaker are aggregated

in the same fashion, resulting in similar durations of audio. (Again, this experiment

was not performed with the NIST2003LRE corpus due to the lack of speaker informa-

tion).

The results are shown in figure 6.6. Overall, aggregation of multiple utterances

by the same speakers balances out some of the speaker-specific effects seen in the

previous experiment. Taking more acoustic information into account, the models are

able to determine the language with higher accuracy. On the OGIMultilang corpus,

the result is even better than on the condition with known speakers. The best result

rises from 75% accuracy for short utterances to 92% for the aggregated documents

(both with the RASTA-PLP feature). On the YTAcap data sets, the aggregated result

is 69% (compared to 60% for line segments). As suggested in the previous section,

the approach produces results that are usable in practice when the problem can be

narrowed down, e.g. to known speakers or recording conditions. As this experiment

shows, useful results can also be obtained when longer sequences are available for

analysis.
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(a) OGIMultilang (b) YTAcap

Figure 6.6: Document-wise results using SVM models, with or without i-vector pro-
cessing (error bars represent standard error over training folds).

Figure 6.7: Overview of the process for language identification using phoneme statis-
tics.

6.2 Sung language identification using phoneme

recognition posteriors

Another developed approach is based upon phoneme statistics derived from phoneme

posteriorgrams. To obtain representative statistics for model training, relatively long

observations are necessary, but, as described in the previous section, this is the case

for many applications, for example when considering song material (e.g. songs of 3-4

minutes in duration). On the other hand, phoneme posteriorgrams need to be calcu-

lated for a number of other tasks, such as keyword spotting or lyrics-to-audio alignment.



6 Sung Language Identification 88

An overview of the approach is shown in figure 6.7. Posteriorgrams are generated

on the test data sets YTAcap and OGIMultilang using the acoustic models trained

on the TIMIT speech data set and on the DAMP singing data set as described in

section 5.3. To facilitate the following language identification, phoneme statistics are

then calculated in two different ways:

Document-wise statistics Mean and variances of the phoneme likelihoods over whole

songs or sets of utterances of a single speaker are calculated. This results in just

two feature vectors per document (one for the means, one for the variances).

Utterance-wise statistics Means and variances of the phoneme likelihoods over each

utterance are calculated (or, in the case of YTAcap, over each song segment).

For further training, the resulting vectors for each speaker/song (= document)

are used as a combined feature matrix. As a result, no overlap of speakers/songs

is possible between the training and test sets.

Naturally, relatively long recordings are necessary to produce salient statistics. For

this reason, the aggregation by speaker/song is done in both cases rather than treating

each utterance separately. Then, Support Vector Machine (SVM) models are trained

on the calculated statistics in both variants with the three languages as annotations.

Unknown song/speaker documents can then be subjected to the whole process and

classified by language.

6.2.1 Language identification using document-wise phoneme

statistics

In the first experiment, SVM classifiers are trained on the document-wise phoneme

statistics, and classification is also performed on a document-wise basis (i.e., only

one mean and one variance vector per document). The results are shown in figure

6.8. On the singing test set, results are worst when using acoustic models trained on

TIMIT at just 53% accuracy, and become better when using the model trained on

the “songified” TIMIT variant TimitM (see section 5.2), or on the small selection of

the singing training set DampBB small at an accuracy of 59% each. The best result

of 63% accuracy is achieved when the models are trained on the full singing data set.

Surprisingly, the results on the OGIMultilang corpus also improve from 75% with the

TIMIT models to 84% using the DampB models. Since TIMIT is a very “clean” data

set, training on the singing corpus provides some more phonetic variety, acting as a sort
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Figure 6.8: Results using document-wise phoneme statistics generated with various
acoustic models (error bars represent standard error over training folds).

of data augmentation. This is especially important in this context where phonemes are

recognized in three different languages. On both corpora, there is no noticeable bias

of the confusion matrix - i.e., the confusions are spread out evenly. This is particularly

interesting when considering that the acoustic models were trained on English speech

or singing only.

6.2.2 Language identification using utterance-wise phoneme

statistics

Next, language identification was performed with models trained on the statistics of

each utterance contained in the document. The recognition process is still performed on

the whole document. The results are reported in figure 6.9. Phoneme statistics are not

as representative when computed on shorter inputs, but they provide more information

for the backend model training when utilized as a combined feature matrix for a longer

document. The results on singing improve slightly (significant with p < 0.1) to 63%

accuracy with the acoustic model trained on the small singing corpus (DampBB small)

and decrease insignificantly for the DampB model (61%). However, on the speech

corpus, the best result rises to 90%.

6.2.3 For comparison: Results for the i-vector approach

For comparison, models from the previous approach were also trained on the same

time scales. i-Vectors were calculated on the utterance- or the document-wise scale.

This was done for PLP and MFCC features. The resulting i-vectors were then used to

train SVMs in the same manner as in the previous experiments. (The difference here is

that the models are already trained on the aggregated i-vectors, either with those for
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Figure 6.9: Results using utterance-wise phoneme statistics generated with various
acoustic models.

Figure 6.10: Results using utterance- and document-wise i-vectors calculated on PLP
and MFCC features (error bars represent standard error over training
folds).

a whole document or with all i-vectors of the utterances constituting each document

aggregated). The results are shown in figure 6.10.

The best result obtained on YTAcap data set is 68% accuracy. This is only 5 percent

points higher than the approach based on phoneme statistics, which is easier to im-

plement. On the OGIMultilang corpus, the difference is only 3 percent points (93%).

Of course, the advantage of the i-vector approach is that it can also be performed on

much shorter inputs.

6.3 Conclusion

In this section, two approaches to singing language identification were presented: One

based on i-vector processing of audio features, and one based on the computation of
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phoneme statistics from posteriorgrams. In both cases, machine learning models were

trained on the resulting data.

In the first approach, PLP, MFCC, and SDC features are extracted from audio data,

and then run through an i-vector extractor. The generated i-vectors are then used as

inputs for SVM training. The basic idea behind the i-vector approach is the removal

of language-independent components of the signal. This effectively reduces irrelevance

to the language identification tasks and also reduces the amount of training data mas-

sively. The smallest data set is the NIST2003LRE corpus. The SVM backend produces

good results of up to 93% for PLP features with i-vector extraction.

The OGIMultilang corpus is a much bigger speech corpus. Training without i-vector

extraction does not work well for any feature configuration. The best accuracy for

this scenario was 68%. Results of up to 83% are achieved with i-vector processing.

Language identification for singing was expected to be a harder task than for speech

due to the factors described in section 3.1. The results on the YTAcap corpus turn

out to be somewhat worse than those for the OGIMultilang corpus, which is of similar

size. Once again, i-vector extraction improves the results from 63% to 73%.

The same experiment is repeated with no speaker overlap between training and test

sets. The results fall significantly (p < 0.0001), indicating speaker influence on the

model training. In a third experiment, the results are aggregated into documents by

each speaker, which again leads to improved results. The best accuracy on OGIMulti-

lang is 92%, while on YTAcap, it is 69%. Both experiments demonstrate that useful

results can be obtained when limiting the task, e.g. by training on a set of known

speakers or recording conditions, or by analyzing documents of longer durations. Al-

ternatively, a wider range of speakers in the training data would lead to models that

generalize better.

Overall, i-vector extraction reduces irrelevance in the training data and thereby leads

to a more effective training. As additional benefits, the training process itself is much

faster and less memory is used due to its data reduction properties. Most of the state-

of-the-art approaches are based on PPRLM, which requires phoneme-wise annotations

and a highly complex recognition system, using both acoustic and language models.

In this respect, this system is easier to implement and merely requires language anno-
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tations.

The second presented method is a completely new language identification approach

for singing. It is based on the output of various acoustic models, from which statis-

tics are generated and SVM models are trained. In contrast to similar approaches

for speech, no voice tokenization is performed. Since phoneme recognition on singing

is not always reliable, the statistics are calculated directly on the phoneme posteri-

orgrams, although this does not take any temporal information into account. The

acoustic models are trained only on English-language material (speech and singing);

it would be interesting to test this with multi-language training data. Due to the

statistics-based nature of the approach, it is not suited for language identification of

very short audio recordings.

The accuracy of the result for singing is somewhat worse than the results obtained

with the i-vector based approach. However, this new approach is much easier to imple-

ment and the feature vectors are shorter. For many applications, such posteriors need

to be extracted anyway and can efficiently be used for language identification when

long observations are available. The best accuracy of 63% is obtained with acoustic

models trained on the DampB singing corpus.

Interestingly, the best result on the OGIMultilang speech corpus is also obtained

with these acoustic models (and is only 3 percent points below the one obtained with

the i-vector approach). This possibly happens because the singing corpora provide a

wider range of phoneme articulations. It would be interesting to try out these acoustic

models for other phoneme recognition tasks on speech where robustness to varied

pronunciations is a concern.
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7 Sung Keyword Spotting

In [181], three basic principles for keyword spotting in speech are mentioned:

LVCSR-based keyword spotting In this approach, a full transcription of the audio

recording is performed using Large-Vocabulary Continuous Speech Recognition

(LVCSR), which can then be searched for the keyword. This is expensive to

implement and offers no tolerance for transcription errors - if the keyword is not

transcribed correctly, it will never be found later.

Acoustic keyword spotting Acoustic KWS algorithms only search for the keyword

on the basis of its acoustic properties. This approach is easy to implement and

provides some tolerance for pronunciation variations. However, it does not take

any a-priori knowledge about the language into account (e.g. about plausible

word or phoneme sequences).

Phonetic search keyword spotting Again, a full transcription of the audio recording

is performed, but the full lattices are retained instead of just the final transcrip-

tion. A phonetic search for the keyword can then be run on these lattices. This

approach combines the a-priori knowledge of the LVCSR-based approach with

the robustness of the acoustic approach.

As described in section 3.1, there are significant differences between speech and

singing signals, which means that ASR approaches for keyword spotting cannot sim-

ply be transferred to singing. In particular, both LVCSR-based keyword spotting and

phonetic search keyword spotting depend heavily on predictable phoneme durations

(within certain limits). When a certain word is pronounced, its phonemes will usually

have approximately the same duration across speakers. The language model employed

in both approaches will take this information into account. However, phoneme dura-

tions in singing are not as predictable in speech, as figure 3.1 demonstrates. For this

reason, a simpler acoustic approach using keyword-filler HMMs is employed in this

work.
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Figure 7.1: Keyword-filler HMM for the keyword “greasy” with filler path on the left
hand side and two possible keyword pronunciation paths on the right hand
side. The parameter β determines the transition probability between the
filler HMM and the keyword HMM. [183]

Keyword-filler HMMs have been described in [182] and [183]. In general, two sepa-

rate HMMs are created: One for the requested keyword, and one for all non-keyword

regions (=filler). The keyword HMM has a simple left-to-right topology with one state

per keyword phoneme, while the filler HMM is a fully connected loop of states for all

phonemes. These two HMMs are then joined. Using this composite HMM, Viterbi

decoding is performed on the phoneme posteriorgrams. Whenever the Viterbi path

passes through the keyword HMM, the keyword is detected. The likelihood of this

path can then be compared to an alternative path through the filler HMM, resulting

in a detection score. A threshold can be employed to only return highly scored occur-

rences. Additionally, the parameter β can be tuned to adjust the model. It determines

the likelihood of transitioning from the filler HMM to the keyword HMM. The whole

process is illustrated in figure 7.1. Integration with the phoneme recognition system is

shown in figure 7.2. Effectively, the keyword-filler HMM is added as a post-processing

step after classification, and thus performed on the posteriorgrams.

Keyword spotting results are considered correct when they are detected within the

expected songs, and are evaluated according to the F1 measure. This measure is the

harmonic mean of precision P and recall R:

F1 = 2
P ·R
P +R

(7.1)
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Figure 7.2: Schematic of the procedure for keyword spotting.

This measure is especially suited for cases where the classes are not balanced; in key-

word spotting, occurrence of a keyword is much rarer than non-occurrence. In continu-

ous speech recognition, the Figure Of Merit measure is often used [184]; however, since

timing is not an issue in many applications for sung keyword spotting, this measure is

not employed here.

Keyword detection was performed on whole songs, which is a realistic assumption

for many practical applications. The ACAP and DampTest data sets were used for

evaluation with the keyword set described in section 4.4. Song-wise F1 measures were

calculated for evaluation. As in the phoneme recognition experiments, no cross vali-

dation is employed because the training and test data sets serve different purposes.

7.1 Keyword spotting using keyword-filler HMMs

7.1.1 Comparison of acoustic models

Phoneme posteriorgrams were generated with the various acoustic models described

in section 5.3. The results in terms of F1 measure across the whole DampTest sets

are shown in figure 7.3a. Figure 7.3b shows the results of the same experiment on the

small ACAP data set. Across all keywords, a document-wise F1 measure of 0.44 is

obtained using the posteriorgrams generated with the TIMIT model on the DampTest

data sets. This result remains the same for the TimitM models trained on “songified”

speech. In this experiment, using models trained on the DAMP -based singing data

sets only improves the results marginally, with F1 measures of 0.47 for the DampB

model, and 0.46 with the much smaller DampBB small model. Surprisingly, in this

case, the model trained on the medium-size balanced data set DampBB performs a

little worse than the smallest one; however, this might just be due to some statistical

fluctuation. In general, results on these test data sets are inconclusive. There are

several reasons for this: First, the annotations were generated automatically and the
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(a) DampTest (b) ACAP

Figure 7.3: F1 measures for keyword spotting results using posteriorgrams generated
with various acoustic models (error bars represent standard error over key-
words).

keywords were picked from the aligned lyrics. The singers do not always perform or

pronounce them correctly. Additionally, the keyword approach can be tuned easily for

high recall; then, the precision becomes the deciding factor for F1 calculation. Con-

sidering the size of the data set, keyword occurrences are relatively rare, which makes

obtaining a high precision more difficult and blurs the F1 measures between approaches.

On the hand-annotated ACAP test set, the differences are somewhat more pro-

nounced (but still not statistically significant). The F1 measure is 0.48 for the TIMIT

model, and rises to 0.52 with the DampB model. The TimitM and DampBB models

both produce F1 measures of 0.49. The higher over-all values are caused by the more

accurate annotations and by the higher-quality singing. Additionally, the data set is

much smaller with fewer occurrences of each keyword, which emphasizes both positive

and negative tendencies in the detection.

In general, recalls are usually close to 1, and precisions often in the range of 0.2 to

0.5 (with much lower and higher outliers). For this reason, an approach that could

exploit a configuration with high recalls and then discard unlikely occurrences may

offer an improvement. This idea is explored further in section 7.2.
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7.1.2 Gender-specific acoustic models

Keyword spotting was also performed on the posteriorgrams generated with the gender-

dependent models trained on DampF and DampM (also described in section 5.3).

The results are shown in figure 7.4. Similar to the phoneme recognition results from

Experiment C, the gender-dependent models offer no improvements over the mixed-

gender ones of the same size, and are in the same range as the one trained on much

more data (DampB). The F1 measures for the female test set are 0.48 for the DampB

model, and 0.47 for both the DampBB and the DampFB model. For the male test

set, they are 0.47 for the DampB model, and 0.45 for the other two.

7.1.3 Individual analysis of keyword results

Figure 7.5 shows the individual F1 measures for each keyword using the best model

(DampB), ordered by their occurrence in the DampTest sets from high to low (i.e.

number of songs which include the keyword). There is a tendency for more frequent

keywords to be detected more accurately. This happens because a high recall is often

achievable, while the precision depends very much on the accuracy of the input poste-

riorgrams. The more frequent a keyword, the easier it also becomes to achieve a higher

precision for it.

As shown in literature [185], the detection accuracy also depends on the length

of the keyword: Keywords with more phonemes are usually easier to detect. This

explains the relative peak for “every” in contrast to “think” or “night”. Since keyword

detection systems tend to perform better for longer words and most of the keywords

only have 3 or 4 phonemes, the results achieved so far are especially interesting. One

potential source of confusion are sequences of phonemes that overlap with keywords,

but are not included in the calculation of the precision. Identically spelled parts of

words were included, but split phrases and different spellings were not (e.g. “away” as

part of “castaway” would be counted, but “a way” would not be counted as “away”).

This lowers the results artificially and could be an avenue for future improvement.

Additionally, only one pronunciation for each keyword was provided, but there may be

several possible.
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Figure 7.4: F1 measures for keyword spotting results on the DampTestM and
DampTestF data sets using mixed-gender and gender-dependent models
(error bars represent standard error over keywords).

Figure 7.5: Individual F1 measures for the results for each keyword, using the acoustic
model trained on DampB.
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7.2 Keyword spotting using duration-informed

keyword-filler HMMs

7.2.1 Approach

As mentioned above, a high recall is easily achievable with the described approach,

but the comparatively low precision decreases the over-all result. Therefore, using side

information to reject false positives would be a helpful next step. One such source of

information are the durations of the detected phonemes. As shown in figure 3.1, each

phoneme in the TIMIT speech database has a fairly fixed duration. In singing, the

vowels’ durations vary a lot, but the consonants’ are still quite predictable. Standard

HMMs do not impose any restrictions on the state durations, resulting in a geometric

distribution which does not correspond to naturally observed distributions of phoneme

durations. As first described in [186], introducing restrictions on state durations can

improve the recognition results. In [187], Juang et al. present two basic approaches for

duration modeling in HMMs: Internal duration modeling and Post-processor duration

modeling.

In both approaches, parametric state duration models for each phoneme need to be

calculated first [188]. Several distributions have been tested for this task (e.g. Gaussian

ones), but Burshtein showed that gamma distributions are best at modeling naturally

occurring phoneme duration distributions [189]:

d(τ) = K exp{−ατ}τ p−1 (7.2)

where τ = 0, 1, 2, ... are the possible state durations in frames and K is a normalizing

factor. The parameters α and p are estimated according to

α̂ =
E{τ}

V AR{τ}
, p̂ =

E2{τ}
V AR{τ}

(7.3)

where E is the distribution mean and V AR is the distribution variance. An example

is shown in figure 7.6. In this work, E and V AR are estimated from the phonetically

annotated data sets.

In internal duration modeling, the durations are incorporated directly into the

Viterbi alignment. This means that the Viterbi output will already be a state se-
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Figure 7.6: An example of the empiric duration distribution of one phoneme state (solid
line) and three approximations: Gaussian (dashed), geometric(dash-dot),
and gamma (dotted). [189]

quence that is optimal with regards to the a-priori phoneme duration knowledge. It is,

however, computationally expensive. In previous experiments [190], this approach did

not produce better results than the much easier to implement post-processor duration

modeling. Therefore, this section will focus on that approach.

When using post-processor duration modeling, knowledge about plausible phoneme

durations is imposed on the result of the Viterbi alignment, the obtained state se-

quence. This is computationally cheap, but only results in a new likelihood score

for the calculated sequence and does not provide better possible state sequences. As

described in [187], the state sequence obtained from the Viterbi alignment can be

re-scored according to:

log f̂ = log f + γ
N∑
k=1

dk(τk) (7.4)

where f is the original likelihood of the sequence, γ is a weighting factor, k = 1...N are

the discrete states in the state sequence, τk are their durations, and dk(τk) is, again,

the probability of state k being active for the duration τk.

Using keyword-filler HMMs, only one state sequence per utterance is obtained, which

either contains the keyword or not. It is therefore not possible to compare these
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(a) F1 measures for keyword spot-
ting results on the ACAP data
set with post-processor duration
modeling.

(b) F1 measures for keyword spotting
results on the DampTest data
sets with post-processor duration
modeling.

Figure 7.7: F1 measures for keyword spotting results using posteriorgrams generated
with various acoustic models with post-processor duration modeling (error
bars represent standard error over keywords).

likelihood scores and equation 7.4 cannot be applied directly. To still be able to

integrate post-processor duration modeling, the HMM parameters are tuned to obtain

a high recall value. Then, the duration likelihood (second half of equation 7.4) is

calculated for all found occurrences of the keyword and normalized by the number of

states taken into account:

dl =
1

N

N∑
k=1

dk(τ) (7.5)

Then all occurrences where dl is below a certain threshold are discarded.

For the presented results, duration statistics from the ACAP data set were used,

and only the consonants’ durations were taken into account (since vowel durations

vary much more as shown in figure 3.1). However, additional experiments showed

that the result only varies slightly when using speech statistics instead, and when also

discarding unlikely vowel durations. This probably happens because the keywords do

not contain many states anyway, and because the duration distribution for vowels has

a large variance, allowing for a wide range of durations.
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7.2.2 Results

Results with and without post-processor duration modeling for the ACAP data set

are shown in figure 7.7a. The same acoustic models as in the previous experiment

were tested. As these results show, F1 measures improve for all configurations when

post-processor duration modeling is employed (significant with p < 0.1). The effect is

somewhat stronger for the DAMP models than for the TIMIT model (significant with

p < 0.01). The best result rises from 0.52 to 0.61 with the DampB model. Analysis

of the detailed results shows that the precision can be improved considerably when

detected occurrences with implausible phoneme durations are discarded. However,

this often also decreases the recall, resulting in the shown F1 results. The approach

was also tested on the DampTest data sets for two acoustic models. F1 measures on

these data sets are generally blurry for the reasons described in section 7.1. In this

case, the results are just a little bit higher with post-processor duration modeling.

7.3 Conclusion

In this chapter, an approach for keyword spotting using the new acoustic models

trained on singing was described. Keyword spotting is performed by extracting phoneme

posteriorgrams generated with these new models from the audio, and then running

them through a keyword-filler HMM to detect 15 keywords. On the DampTest data

sets, the resulting F1 measure rises from 0.44 for the models trained on speech (TIMIT )

to 0.47 for the new models. In general, results on the DampTest data sets are incon-

clusive because the effect of the different models is shadowed by issues with the test

data itself - i.e. automatic and thus possibly inaccurate annotations, amateur singing,

and a relatively low frequency of keywords because of the large size of the data sets.

On the smaller, hand-annotated ACAP test set, the results become clearer: The best

F1 measure for the models trained on TIMIT is 0.48, and 0.52 with those trained on

DampB.

This result is especially interesting because most of the keywords have few phonemes.

Gender-dependent models perform similar to mixed-gender models of the same size.

Individual analysis of the keyword results shows that keywords that occur more fre-

quently are detected more accurately. This probably happens because the approach

is able to obtain high recall easily, but precision is an issue. The more frequent a

keyword, the easier obtaining higher precisions becomes. Additionally, keywords with
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more phonemes are detected more accurately than short ones because there is more

information to base detection on.

One idea to improve precision was using additional information to discard implau-

sible detections. This idea was tested in a second approach by integrating knowledge

about phoneme durations. Means and variances of phoneme durations are calculated

from annotated data (in particular, the ACAP singing data set), and then occurrences

with phoneme durations outside of their gamma distributions were ignored. This ap-

proach improved F1 measures by up to 9 percent points on the ACAP test data, with

the best result being 0.61. On the DampTest data sets, the effect is still existent, but

not very pronounced. This is probably because of the blurriness of the result described

above.

This approach was only tested with MFCC features. As preliminary experiments

suggest [93], other features like TRAP or PLP may work better on singing. So-called

log-mel filterbank features have also been used successfully with DNNs [191]. Another

interesting factor is the size and configuration of the classifiers, of which only one was

tested (after a small grid search to validate this choice).

As in the phoneme recognition experiments, there is not much of a difference be-

tween the acoustic model trained on the more than 6,000 songs of the DAMP data set

and the one trained on only 4% of this data. It would be interesting to find the exact

point at which additional training data does not further improve the models. On the

evaluation side, a keyword spotting approach that allows for pronunciation variants or

sub-words may produce better results. Language modeling might also help to alleviate

some of the errors made during phoneme recognition.

These models have not yet been applied to singing with background music, which

would be interesting for practical applications. Since this would probably decrease

the result when used on big, unlimited data sets, specialized systems would be more

manageable, e.g. for specific music styles, sets of songs, keywords, or applications.

Searching for whole phrases instead of short keywords could also make the results better

usable in practice. As shown in [142] and [92] and in the next chapter, alignment of

textual lyrics and singing already works well. A combined approach that also employs

textual information could also be very practical.
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8 Lyrics Retrieval and Alignment

Lyrics retrieval and alignment are related tasks: The retrieval task can be interpreted

as an alignment of all possible lyrics sequences to the query audio, and a subsequent

selection of the best-matching result. This is done in all described algorithms.

In this work, alignment is performed on phoneme posteriorgrams. The lyrics with

their phonetic pronunciation must be known in advance; then, an algorithm finds the

best positions of each phoneme in the sequence in the posteriorgram. Traditionally,

Viterbi decoding is used for this, with the transition matrix shaped such that only

transitions through the expected phonemes are possible. The general process is shown

in figure 8.1.

For retrieval, alignment is performed on a whole database of lyrics instead of just

those for a single song as illusted in figure 8.2. Then, the scores for each alignment are

compared, and the highest one determines the best match.

As a starting point, a traditional HMM-based algorithm for Forced Alignment was

tested. Building on top of the posteriorgrams extracted with the new acoustic models

as described in chapter 5, a new algorithm using Dynamic Time Warping (DTW) was

developed and evaluated for both alignment and retrieval. Next, another processing

step for explicitly extracting phonemes from the posteriorgrams was included; the re-

sulting method was also tested for both alignment and retrieval. The general process

Figure 8.1: Schematic of the procedure for lyrics-to-audio alignment.
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Figure 8.2: Schematic of the procedure for lyrics retrieval.

is shown in figure 8.1.

For alignment evaluation, the approaches were submitted to the MIREX 2017 chal-

lenge for lyrics-to-audio alignment1, in which the algorithms were tested on Hansen’s

data set, both in the singing-only and polyphonic conditions (ACAP and ACAP Poly,

see sections 4.2.2 and 4.3.3), and on Mauch’s alignment data set (Mauch, see sec-

tion 4.3.2). In this challenge, the mean absolute error in seconds was used as the

evaluation measure. For its calculation, all absolute deviations between the expected

phoneme start and end timestamps and the automatically detected ones are calculated,

averaged over the whole song, and once again over all songs. The measure was sug-

gested in [142]. The full results can be viewed on http://www.music-ir.org/mirex/

wiki/2017:Automatic_Lyrics-to-Audio_Alignment_Results and in appendix A.4.

All three developed approaches performed competitively, with the phoneme-based ap-

proach performing best out of all submitted systems.

For evaluation of the retrieval results, the accuracy when taking the first N number

of results into account (also called recognition rate in the state of the art) is calculated.

For clarification: The first N results are checked for occurrence of the expected result;

then, the percentage of queries for which the correct result was detected is calculated.

(In literature, this is sometimes called the retrieval rate or recognition rate.) An al-

ternative measure for tasks like this is the Mean Reciprocal Rank (i.e. the average

inverse of the position where the expected result occurs); once again, the previously

described measure was used for comparability with the state of the art. Retrieval is

tested on the AuthorRetrieval, DampRetrieval, and DampTest data sets. Since these

are dedicated test sets and model training is performed on much larger data sets, no

cross validation is necessary.

1http://www.music-ir.org/mirex/wiki/2017:Automatic_Lyrics-to-Audio_Alignment

http://www.music-ir.org/mirex/wiki/2017:Automatic_Lyrics-to-Audio_Alignment_Results
http://www.music-ir.org/mirex/wiki/2017:Automatic_Lyrics-to-Audio_Alignment_Results
http://www.music-ir.org/mirex/wiki/2017:Automatic_Lyrics-to-Audio_Alignment
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This chapter also presents a practical application for lyrics alignment: Automatic

expletive detection in rap songs.

8.1 HMM-based lyrics-to-audio alignment

For this algorithm, monophone HMMs are trained on the TIMIT speech data using

the HTK framework [154]. Then, Viterbi alignment is run to align the phonemes to

the singing audio. These are the same models used to align lyrics to the DAMP audio

data to generate the training data set described in section 5.3. The results in the

MIREX challenge are shown in figure 8.3. The detailed results for all tested songs are

given in appendix A.4.

On the unaccompanied data set, the mean error is 5.11s, while the median error is

0.67s. The large difference comes about because one of the tested songs (“Clocks”)

produced high error values in every approach. Considering only the other songs, the

highest error is 1.45s, and all others are lower than 1s. This is a good result, especially

considering that the approach is relatively simple and trained on speech data only. A

manual check suggests that the results are usable in practice.

On the accompanied version of the same data set, the average error is 13.96s and

the median error is 7.64s. On the Mauch data set, the mean error is at 17.7s and

the median error is at 10.14s. Once again, the error varies widely across the songs.

As expected, the result is worse since no measures were taken make the approach

robust to background music. Interestingly, other submitted approaches that employ

source separation did not fare much better on this data set either, suggesting that the

core algorithm may be better. It would be interesting to see results for the HMM-

based algorithm on polyphonic music with a source separation step (or at least a Vocal

Activity Detection step) included.

8.2 Posteriorgram-based retrieval and alignment

A new approach is based on the posteriorgrams generated with the DNN acoustic

models described in section 5.3; the procedure is shown in figure 8.4. In order to align

lyrics to these posteriorgrams, binary templates are generated from the text lyrics on

the phoneme scale. These can be seen as oracle posteriorgrams, but do not include
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Figure 8.3: MIREX results on all three data sets using the HMM-based approach (error
bars represent standard error over the tested songs).

Figure 8.4: Overview of the DTW-based lyrics alignment and retrieval method.
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any timing information. Between this template and the query posteriogram, a simi-

larity matrix is calculated using the cosine distance. On the resulting matrix, DTW is

performed using the implementation from [30] to obtain the alignment. An example

is shown in figure 8.5.

Two optimizations were made to the algorithm. The first one is a sub-sampling of

the phoneme posteriorgrams by the factor 10 (specifically, the mean for 10 consecutive

frames is calculated). This increases the speed of the DTW for comparisons and also

produces better results. Longer windows were also tested, but this had a negative

impact on the result. Secondly, squaring the posteriorgrams before the similarity cal-

culation produces slightly better results. This makes the posteriorgrams more similar

to the binary lyrics templates. Binarizing them was also tested, but this emphasized

phoneme recognition errors too much.

In the retrieval case, the binary templates are generated for all possible lyrics in

the database, and the DTW calculation is performed for each of them with the query

posteriorgram. The DTW cost is used as the measure to obtain the best-matching

lyrics. Since the phoneme durations in the actual recording and the lyrics templates

have different lengths, the length of the warping path should not be a detrimental

factor in cost calculation. Therefore, the accumulative cost of the best path is divided

by the path length and then retained as a score for each possible lyrics document. In

the end, the lyrics document with the lowest cost is chosen as a match (or, in some

experiments, the N documents with the lowest costs).

As an additional experiment, both the textual lyrics corpus and the sung inputs were

split into smaller segments roughly corresponding to one line in the lyrics each (around

12,000 lines). The retrieval process was then repeated for these inputs. This allowed

an evaluation as to how well lyrics can be retrieved from just one single sung line of the

song. (Sub-sequence DTW could also be used for this task instead of splitting both

corpora.)

8.2.1 Alignment experiments

The results for this approach in the MIREX challenge are displayed in figure 8.6, with

the detailed results given in appendix A.4. Overall, errors are much higher than with
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(a) Phoneme posteriorgram (b) Phoneme template

(c) Similarity matrix with cheapest path
(blue)

Figure 8.5: Example of a similarity calculation: (a) Phoneme posteriorgrams are cal-
culated for the audio recordings. (b) Phoneme templates are generated
for the textual lyrics. (c) Then, a similarity matrix is calculated using
the cosine distance between the two, and DTW is performed on it. The
accumulated cost divided by the path length is the similarity measure.
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Figure 8.6: MIREX results on all three data sets using the DTW-based approach (error
bars represent standard error over the tested songs).

the HMM-based approach: The mean error is 9.77s for the ACAP data set, 27.94s

on the ACAP Poly data set, and 22.23s on the Mauch data set. This presumably

happens because in contrast to the HMM approach, the algorithm does not have any

information about phoneme priors and transition probabilities, neither implicitly nor

explicitly. DTW on the posteriorgram is a relatively rudimentary method for perform-

ing alignments. Nevertheless, a manual check of the results suggests that the algorithm

is still able to produce usable results in many cases, with many song-wise alignment

errors for the ACAP data set still being below 1s. In particular, it works acceptably

when the posteriorgram is not too noisy. This is also corroborated by the retrieval

results for unaccompanied queries presented in the following. As a future step, incor-

porating phoneme transition information (e.g. in the form of DNN-HMMs) could help

mitigate some of the noise in the posteriorgram caused by model inaccuracies or by

background music.

8.2.2 Retrieval experiments on whole-song inputs

In the first retrieval experiment, similarity measures were calculated between the lyrics

and recordings of whole songs using the described process. This was tested with

phoneme posteriorgrams obtained with all five acoustic models on the female and the

male test sets (DampTestF and DampTestM ). The accuracy was then calculated on

the Top-1, -3, and -10 results for each song (i.e., how many lyrics are correctly de-

tected when taking into account the 1, 3, and 10 lowest distances?). The results on

the female test set are shown in figure 8.7a, the ones for the male test set in figure 8.7b.
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(a) DampTestF (b) DampTestM

Figure 8.7: Accuracies of the results for lyrics detection on the whole song for the
DampTest sets using the DTW-based approach with five different acoustic
models, and evaluated on the Top-1, -3, and -10 results (error bars represent
standard error over the tested queries).

These results show that phoneme posteriorgrams obtained with models trained on

speech data (TIMIT ) generally produce the lowest results in lyrics retrieval. The

difference between the two test sets is especially interesting here: On the male test

set, the accuracy for the single best result is 58%, while on the female set it is only

39%. Previous experiments showed that the phoneme recognition itself performs con-

siderably worse for female singing inputs, which is compounded in the lyrics retrieval

results. This may happen because the frequency range of female singing is even fur-

ther removed from that of speech than the frequency range of male singing is [192].

Even female speech is often performed at the lower end of the female singing frequency

range. The frequency range of male singing is better covered when training models on

speech recordings (especially when speech recordings of both genders are used).

This effect is still visible for the TimitM models, which is the variant of TIMIT that

was artificially made more “song-like”. However, the pitch range was not expanded too

far in order to keep the sound natural. The results improve significantly (p < 0.0001)

when acoustic models trained on any of the DAMP singing corpora are used. The

difference between the male and female results disappears, which supports the idea

that the female pitch range was not covered well by the models trained on speech.

Using the models trained on the smallest singing data set (DampBB small), which is

slightly smaller than TIMIT, the results increase to 81% and 83% for the single best

result on the female and the male test set respectively. With the models trained on
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the DampBB corpus, which is about twice as big, they rise slightly (not statistically

significant) more to 85% on the female test set. Gender-specific models of the same

size do not improve the results. Finally, the results obtained with the acoustic models

trained on the largest singing corpus (DampB) provide the very best results at accu-

racies of 87% and 85% (female/male).

For some applications, working with the best N instead of just the very best result

can be useful (e.g. for presenting a selection of possible lyrics to a user). When the

best 3 results can be taken into account, the accuracies on the best posteriorgrams

rise to 89% and 88% on the female and male test sets respectively. When the best 10

results are used, they reach 92% and 89%.

8.2.3 Lyrics retrieval experiments on line-wise inputs

In the second retrieval experiment, the same process was performed on single lines of

sung lyrics as inputs (usually a few seconds in duration). Costs are calculated between

the posteriorgrams of these recordings and all 12,000 available lines of lyrics. Lines

with fewer than 10 phonemes are not taken into account. Then, evaluation was per-

formed as to whether a line from the correct song was retrieved in the Top-N results.

In this way, confusions between repetitions of a line in the same song do not have

an impact on the result. However, repetitions of lyrical lines across multiple songs

are a possible source of confusion. The results for the female test set are shown in

figure 8.8a, the ones for the male test set in figure 8.8b. Again, a difference between

both test sets is visible when generating posteriograms with the TIMIT models. The

accuracy on the best result is 14% for the male test set, but just 7% for the female test.

The results for the DAMP models show the same basic tendencies as before, al-

though naturally much lower. For the single best result, the accuracies when using the

DampB model are 38% and 36% on the female and male test sets respectively. For this

task, gender-dependent models produce slightly higher results than the mixed-gender

ones of the same size (but not statistically significant).
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(a) DampTestF (b) DampTestM

Figure 8.8: Accuracies of the results for lyrics detection on separate lines of sung lyrics
for the DampTest sets using the DTW-based approach with five different
acoustic models, and evaluated on the Top-1, -3, -10, -50, and -100 results
(error bars represent standard error over the tested queries).

Figure 8.9: Overview of the phoneme-based lyrics retrieval process.

8.3 Phoneme-based retrieval and alignment

Next, another step was introduced to improve the previous approach and make it more

flexible. This step serves to compress the posteriorgrams down to a plausible sequence

of phonemes, which can then be used to search directly on a textual lyrics database.

Text comparison is much cheaper than the previous comparison strategy, and enables

quick expansion of the lyrics database. In parallel, the lyrics database is prepared by

converting it into phoneme sequences as described in section 5.3.1. The key algorithms

are (a) how to generate plausible phoneme sequences from the posteriorgrams, and

(b) how to compare these against the sequences in the database. These parts will be

described in more detail in the following. An overview is given in figure 8.9.
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Symbolic mapping As described before, starting from the sung recording used as a

query, MFCC features are extracted and run through the acoustic model trained on

singing to recognize the contained phonemes. This produces a phoneme posteriorgram,

such as the one shown in figure 5.3; i.e., probabilities of each phoneme over each time

frame. These probabilities contain some noise, both due to inaccuracies in the model

and due to ambiguities or actual noise in the performance.

In ASR, HMMs are commonly used for obtaining phoneme sequences from the out-

put of an acoustic model. This was not done in this work for various reasons. One

of them is the lack of reliable training data; the same data as for the acoustic models

could be used, but may lead to errors in the model due to the relatively small number

of individual songs, and this could also amplify errors in the automatic annotation.

In addition to this, the presented approach is more flexible and allows taking knowl-

edge about phoneme performances in singing into account, such as occurrences of long

phonemes and the most frequent confusions between phonemes. Nevertheless, a HMM

approach could also be tested in the future.

The following steps are undertaken to obtain a plausible phoneme sequence from the

posteriorgram:

1. Smoothing First, the posteriorgram is smoothed along the time axis with a window

of length 3 in order to remove small blips in the phoneme probabilities.

2. Maximum selection and grouping Then, the maximum bin (i.e. phoneme) per

frame is selected, and consecutive results are grouped. An example is given in

figure 8.10a.

3. Filtering by probability and duration These results can then be pre-filtered to dis-

card those that are too short or to improbable. This is done with different

parameterizations for vowels and consonants since vowels are usually longer in

duration. This yields a first sequence of phonemes, each with duration and sum

probability information, which is usually too long and noisy. In particular, a lot

of fluctuations between similar phonemes occur.

4. Grouping by blocks and filtering through confusion matrix This problem is

solved by first grouping the detected phonemes into blocks, in this case vowel

and consonant blocks (shown in figure 8.10b). Then, a decision needs to be

made as to which elements of these blocks are the “true” phonemes and which
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(a) Original phoneme sequence (b) Grouped into blocks (with probabilities in
italics)

(c) Filtered result

Figure 8.10: Example of the block grouping of the phoneme sequence and subsequent
filtering by probabilities and confusions.

ones are noise. This is done by taking each phoneme’s probability as well as the

confusion between phonemes into account. The confusion is calculated in advance

by evaluating the classifier on an annotated test set; the result covers both the

confusion by inaccuracies in the classifier as well as perceptual or performance-

based confusions (e.g. transforming a long /ay/ sound into /aa/ - /ay/ - /iy/

during singing). An example of such a confusion matrix is shown in figure 8.11.

The product of the probabilities and the confusions are calculated for the highest

combinations up to a certain threshold, and all other detected phonemes are

discarded. This results in a shorter, more plausible phoneme sequence (figure

8.10c).

Distance calculation Then, the distances between the extracted phoneme sequence

and the ones provided in the lyrics database are calculated. First, an optional step

to speed up the process is introduced. Each sequence’s number of vowels is counted

in advance, and the same is done for the query sequence. Then, only sequences with

roughly the same amount of vowels are compared (with some tolerance). This slightly

decreases accuracies, but drastically speeds up the calculation time.
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Figure 8.11: Example of a confusion matrix for an acoustic model. (Note that /pau/

confusions are set to 0).
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The similarity calculation itself is implemented with a modified Levenshtein dis-

tance. Again, the classifier’s confusion between phonemes is taken into account. These

confusions are used as the Levenshtein weights for substitutions. Surprisingly, using

them for insertion weights improves the results as well. This probably happens because

of the effect described above: A singer will in many cases vocalize an phoneme as mul-

tiple different ones, particularly for vowels with long durations. This will result in an

insertion in the detected phoneme sequence, which is not necessarily a “wrong” classi-

fication by the acoustic model, but does not correspond to the expected sequence for

this line of lyrics. For this reason, such insertions should not be harshly penalized. For

deletions, the weight is set to 0.5 to balance out the lower insertion and substitution

weights.

8.3.1 Alignment experiments

MIREX results for this approach are shown in figure 8.12; the detailed results can

be found in appendix A.4. Over-all, this approach produces much lower error values

than the other two, and was in fact the winning algorithm in the competition. This

confirms that the phoneme detection strategy is a feasible alternative to the HMM-

based approach. On the ACAP data set, the mean error is at 2.87s and the median

is 0.26s. On ACAP Poly, these values are 7.34s and 4.55s respectively, and on Mauch,

they are 9.03s and 7.52s. Once again, the results are much higher on polyphonic data

than on unaccompanied singing, for which the models were trained. However, the

error is still lower than with the submitted methods that include source separation.

Therefore, future experiments that also employ pre-processing of this kind would be

very interesting. Looking at the song-wise results, songs with heavier and noisier

accompaniment generally receive higher errors than others.

8.3.2 Retrieval experiments: Calibration

For calibrating the algorithm’s parameters quickly, two smaller data sets were used:

DampRetrieval, which consists of 20 female and 20 male hand-selected sung segments

with clear pronunciation and good audio quality, and AuthorRetrieval, which consists

of 90 small performances of phrases in the DAMP data set by the author. Both are

described in sections 4.2.3 and 4.2.4. This was done to ensure that the results were not

influenced by flaws in the data set (such as unclear or erroneous pronunciation or bad

quality). Lyrics can still come from the whole DAMP lyrics set, resulting in 12,000
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Figure 8.12: MIREX results on all three data sets using the phoneme-based approach
(error bars represent standard error over the tested songs).

lines of lyrics from 300 songs.

Figure 8.13 shows an overview over the experimental results. Accuracies are reported

for the Top-1 result (i.e. the one with the lowest Levenshtein distance), the Top-3, and

the Top-10 results. Queries were allowed to be one to three consecutive lines of songs,

increasing the number of“virtual”database entries to around 36,000 (12,000 lines as 1-,

2-, and 3-grams). It should be noted that a result counts as correct when the correct

song (out of 300) was detected; this was done as a simplification because the same line

of lyrics is often repeated in songs. For possible applications, users are most probably

interested in obtaining the correct full song lyrics, rather than a specific line. Picking

random results would therefore result in an accuracy of 0.3%.

The various improvement steps of the algorithm were tested as follows:

Baseline This is the most straightforward approach: Directly pick the phonemes with

the highest probabilities for each frame from the posteriorgram, group them by

consecutive phonemes, and use the result of that for searching the lyrics database

with a standard Levenshtein implementation. This results in accuracies of 25%,

10%, and 23% for the Female, Male, and Author test sets respectively.

Posteriorgram smoothing This is the same as the baseline approach, but the poste-

riorgram is smoothed along the time axis as described in paragraph 8.3. This

already improves the result by around 40 percent points for each test set.

Filtering blocks by probabilities and confusions This includes the last step described

in paragraph 8.3. The result is improved further by 13% to 25% accuracy.
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(a) DampRetrievalF (b) DampRetrievalM

(c) AuthorRetrieval

Figure 8.13: Results of the phoneme-based retrieval algorithm with various improve-
ment steps for three small calibration data sets.

Substitution and insertion weights Finally, the modified Levenshtein distance as de-

scribed in paragraph 8.3 is calculated. When using the confusion weights for

phoneme substitutions only, the result increases further, and even more so when

they are also used for the insertion weights. The final Top-1 accuracies are 100%,

75%, and 81% for the three test sets respectively.

8.3.3 Retrieval experiments: Full data set

The full algorithm was also tested on the full DampTest data sets in the same way

as the DTW-based approach. The results for retrieval using whole songs as queries

are shown in figure 8.14. All the steps presented in the previous section are included

in the calculation of these results. As in the DTW-based approach, the material on

which the acoustic model is trained plays a huge role. When using models trained on
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TIMIT, the accuracy of the Top-1 result is just 58% on the female test set, and 75%

on the male one (this mirrors the discrepancy between female and male results already

seen in the previous approach). Interestingly, the model trained on TimitM actually

performs worse for this approach with accuracies of 44% and 62% for the female and

male test sets respectively. Since this approach is based on extracting salient phonemes

from the posteriorgrams, it is possible that the time-stretched and pitch-shifted train-

ing data causes too much noise in the model’s results, or a stronger bias towards vowels.

As previously seen, the models trained on the DAMP data sets perform much better

at this task. On both the female and male test sets, the best result is an accuracy

of 94% with the model trained on DampB. The models trained on less data gradually

perform a few percent points worse. Interestingly, training on gender-specific data once

again does not improve the result. As suggested before, this could be due to the higher

variety in timbre and pitch across songs and singers compared to variation between

genders.

The accuracies for the Top-3 and Top-10 results follow a similar pattern. For the

DAMP -based models, the increase is not very high because the Top-1 result is already

close to an upper bound. Analysis of the non-retrieved songs mainly shows discrepan-

cies between the expected lyrics and the actual performance, such as those described

in section 5.3.4. This means that the most effective way to improve results would lie

in making the algorithm more robust to such variances (versus improving the detec-

tion itself). Over-all, the results are significantly higher than with the DTW approach

(p < 0.05).

Figure 8.15 shows the analogous results when using single line queries for retrieval.

The trend across the different classifiers runs parallel to the whole song results, with

the TimitM models performing worse than the TIMIT models, and both being out-

performed by the DAMP -based models. The best Top-1 result is 55% for the female

test set, and 52% for the male one. For the Top-10 results, the retrieval results are

70% and 67% respectively. Once again, lines with fewer than 10 phonemes were ex-

cluded; however, lines can still occur in more than one song. Considering this fact

and the previously mentioned interfering factors, this result is already salient. When

comparing these results to the ones for the calibration data set, it becomes clear that

performance is highly dependent on the quality of the queries. In a practically usable

system, users could be asked to enunciate clearly or to perform long segments.
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(a) DampTestF (b) DampTestM

Figure 8.14: Accuracies of the results for lyrics detection on the whole song for the
DampTest sets using the phoneme-based approach with five different
acoustic models, and evaluated on the Top-1, -3, and -10 results (error
bars represent standard error over the tested queries).

.

(a) DampTestF (b) DampTestM

Figure 8.15: Accuracies of the results for lyrics detection on separate lines of sung
lyrics for the DampTest sets using the phoneme-based approach with five
different acoustic models, and evaluated on the Top-1, -3, -10, -50, and
-100 results (error bars represent standard error over the tested queries).
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Figure 8.16: Data flow in the expletive detection approach.

8.4 Application: Expletive detection

Lots of song lyrics contain expletives. There are many scenarios in which it is neces-

sary to know when these words occur, e.g. for airplay and for the protection of minors.

During broadcasting, they are commonly“bleeped”or acoustically removed. The align-

ment strategies described previously are employed for the practical scenario of finding

such expletives automatically. The test data set is the one compiled by Queen Mary

University, described in section 4.3.1.

A direct keyword spotting approach was also considered, but this did not generate

sufficient results since most of the expletives only consist of 2 or 3 phonemes. Keyword

spotting becomes notoriously hard for such short keywords as described in chapter 7.

Since textual lyrics are usually easily available on the internet, a new approach utilizing

those was developed:

1. Automatically align textual lyrics to audio (as described above)

2. Search for pre-defined expletives in the result

3. If necessary, remove those expletives. A stereo subtraction approach was used,

which works adequately for this case since the removed timespans are short.

Alternatively, keywords can be masked with a bleep or similar.

The data flow is shown in figure 8.16.

The alignment is performed using the HMM-based alignment described in section

8.1, and the DTW alignment from section 8.2 using the DNN acoustic models trained

on TIMIT and on DampB. Accuracies are then calculated by evaluating how many

of the annotated expletives were recognized at their correct timestamps (with various

tolerances). The results are shown in figure 8.17. Once again, the model trained on

the DAMP singing data produces the best results; with a tolerance of 1 second, 92%
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Figure 8.17: Results for the expletive detection approach at various tolerances.

of the expletives are detected at the correct positions.

In this small practical example, only two alignment strategies were tested, but there

are others that could provide better results. Whenever the alignment failed, it was

mostly due to solo instruments. In order to remedy this, vocal detection (and possibly

source separation) could be employed prior to alignment. Additionally, a more sophis-

ticated removal approach could be implemented to remove the expletives.

Lyrics collected from the internet are often incorrect, e.g. because repetitions are

not spelled out, because of spelling errors, or because they refer to different versions of

a song. This approach could be expanded to allow for some flexibility in this respect.

At the moment, these lyrics need to be provided manually. In the future, those could

be retrieved automatically (for example by using the approaches described above).

8.5 Conclusion

In this section, three approaches to lyrics-to-audio alignment and retrieval and one

practical application were presented. The first one uses HMMs trained on speech for

alignment. The mean alignment error in the 2017 MIREX challenge was 5.11s on

unaccompanied singing, and 13.96s and 17.7s on two polyphonic data sets. A manual

check on some examples suggests that the algorithm is already usable in practice in

many cases, even for polyphonic music. It was also used to generate the annotations
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for the DAMP training data sets as described in section 5.3.

The second algorithm is based on Dynamic Time Warping. In its first step, phoneme

posteriorgrams are extracted with the various acoustic models described in chapter 5,

in particular those trained on TIMIT speech data, the time-stretched and pitch-shifted

version TimitM, and several of the DAMP -based data sets whose annotations were gen-

erated with the previous approach. Then, a one-hot binary template is generated from

the lyrics to be aligned, and an optimal alignment between this and the posteriorgram

is computed via DTW. In the MIREX challenge, this approach achieved a mean align-

ment error of 9.77s on the unaccompanied singing data, and of 27.94s and 22.23s on

the two polyphonic data sets.

The same approach can also be used for retrieving lyrics from a text database with

a sung query. To this end, binary templates are generated for all possible lyrics, and

the alignment is performed for all of them. Then, the result with the lowest DTW

cost is selected as the winner. When the whole song is used as the input, an accuracy

of 86% for the single best result is obtained. If the 10 best results are taken into

account, this rises to 91%. When using only short sung lines as input, the mean Top-1

accuracy for retrieving the correct song lyrics of the whole song is 37%. For the best

100 results, the accuracy is 67%. An interesting result was the difference between the

female and the male test sets: On the female test set, retrieval with models trained on

speech was considerably lower than on the male set (39% vs. 58% on the song-wise

task). This may happen because the frequency range of female singing is not covered

well with speech data only. When using acoustic models trained on singing, this dif-

ference disappears and the results become significantly higher in general. Even for a

model trained on less data than that contained in TIMIT, the average accuracy is 82%.

The third approach is also based on posteriorgrams generated with the models from

chapter 5. However, instead of operating directly on them, phoneme sequences are

extracted. This is done by selecting the phoneme with the highest probability in each

frame and compressing this sequence down to discard unlikely phoneme occurrences.

This process takes the known phoneme confusions of the classifier into account. Sev-

eral improvement steps were added. The extracted phoneme sequence is then aligned

to the expected one (from the known lyrics) using the Levenshtein distance. In the

MIREX challenge, this algorithm produced the best results with a mean error of 2.87s
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on unaccompanied singing, and 7.34s and 4.55s on polyphonic music.

For lyrics retrieval, the extracted phoneme sequence is compared to all the sequences

in the lyrics database using the Levenshtein distance, and the result with the lowest

distance is selected. On the same test data as above, the approach achieves an accu-

racy of 94% for whole-song inputs. With line-wise inputs, the accuracy is 54% for the

Top-1 result, and 88% for the Top-100. Once again, there is a pronounced difference

between the female and male results with models trained on speech, which disappears

with singing-based models. Tests on a smaller database of hand-selected clean audio

samples resulted in much higher accuracies for single-line queries. This suggests that

the system can perform much better when provided with clean inputs; this would be

feasible in a real-world application.

Finally, the HMM and DTW alignments were tested in an application scenario: The

extraction of expletives from popular music. To this end, known lyrics were aligned

to polyphonic song recordings containing such words. Then, the found time segments

were masked with other sounds, or stereo subtraction was performed to remove the

singing voice. At a tolerance of 1 second, 92% of the expletives were detected in their

correct positions, making the system usable for practical applications.

In all experiments, analysis of the errors showed the same possible sources as de-

scribed in section 5.3.4. Many of them had to do with enunciation issues (clarity,

accents, or children’s voices) or issues with the recording itself (background music,

clipping, extraneous speaking). These problems would not be as prevalent in pro-

fessional recordings. However, some of them could be fixed with adaptations to the

algorithm. In polyphonic alignment experiments, errors also occurred due to prominent

instruments, in particular during instrumental solos. As described in section 3.1, this

is also an issue in other MIR tasks related to singing, such as Vocal Activity Detection.

As described, the developed algorithms are in many cases ready for practical ap-

plications. In the future, it would be interesting to see them integrated into existing

systems. There are also ways to make them more robust, e.g. to errors in the lyrics

transcriptions or to mistakes or variations by the singers. No special steps have been

taken so far to adapt them to polyphonic music; Vocal Activity Detection or source

separation could be performed in the pre-processing.
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So far, the retrieval approaches were only tested on a relatively small lyrics database

containing 12,000 lines of lyrics across 300 songs. For larger databases, scalability can

become an issue. One partial solution was already integrated into the phoneme-based

method. To take this one step further, both retrieval algorithms could first perform a

rough search with smaller lyrical “hashes” to find possible matches, and then perform

a refinement as presented. This is similar to techniques that are already used in audio

fingerprinting [193]. Alternatively, the phoneme-based approach could be expanded to

retrieve lyrics from the internet instead of from a fixed database, e.g. with Semantic

Web techniques.
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9 Conclusion

9.1 Summary

In this work, ASR algorithms for various tasks were applied and adapted to singing.

Five such tasks were considered: Phoneme recognition, language identification, key-

word spotting, lyrics-to-audio alignment, and lyrics retrieval. Two strategies for im-

proving speech recognition technologies for singing in general were identified: Training

better-matching acoustic models for phoneme recognition, and making specific algo-

rithms more robust to singing - either by balancing possible deficits that occur because

of the singing-specific characteristics, or by exploiting knowledge about sung vocal pro-

duction.

The main bottleneck in almost all tasks is the recognition of phonemes in singing.

Three approaches for this were tested: Recognition with models trained on speech,

recognition with models trained on speech that was made more “song-like” (“songi-

fied”), and recognition with models trained on singing. The main issue in this area of

research is the lack of large training data sets of singing with phoneme annotations.

For this reason, the “songified” approach was developed, which slightly improved re-

sults over the models trained on pure speech when applied to sung recordings. For

training on actual singing data, the large DAMP data set of unaccompanied amateur

singing recordings was chosen. Phonemes obtained from the matching textual lyrics

were automatically aligned to these recordings, and new acoustic models were trained

on the resulting annotated data set. These models showed large improvements for

phoneme recognition in singing.

This training strategy is the main contribution of this work, and forms the basis for

all the subsequent tasks. As proposed in the introduction, various algorithms for the

individual tasks were then tested and adapted by improving robustness when applied

to singing instead of speech, or by taking useful knowledge about singing into account.

Robustness was, for example, increased by using i-vector extraction for language iden-
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tification, by employing keyword-filler HMMs to keyword spotting, and by adapting

alignment approaches to enable varying phoneme durations. Singing characteristics are

exploited, for example, by basing language identification methods on long recordings,

by integrating phoneme duration knowledge into keyword spotting, and by including

known phoneme confusions in singing into the alignment and retrieval algorithms.

The following paragraphs will sum up the individual adaptations to the tasks in

detail:

For language identification in singing, the state-of-the-art i-vector approach from

ASR was tested and produced good results. It is especially suited to singing because it

implements a strategy for removing irrelevant and repetitive information, such as sig-

nal components caused by the channel. These results improve to a level that is usable

in practical applications when long recordings are available, which is usually the case

for singing. In addition to this method, a new approach based on phoneme statistics

was developed. In this approach, phoneme posteriorgrams are first generated with the

models trained in the phoneme recognition experiments, then statistics are calculated,

and different models are trained on those. This approach does not perform quite as well

as the i-vector method, but is easier to implement under certain circumstances (when

phoneme recognition needs to be performed anyway). Long recordings are necessary

to calculate meaningful statistics, but, once again, this is not a problem on singing data.

Keyword spotting for singing is a task that has not frequently been a subject

of research, and there is still a lot of room for improvement. In this work, keyword-

filler HMMs were tested. In contrast to other state-of-the-art methods, this approach

does not rely on highly stable phoneme durations, which are very common in speech,

but not in singing. The method detects keywords with high recall, but often poor

precision. Knowledge about probable phoneme durations was obtained from analyz-

ing sung recordings and added in a post-processing step. This improved results for

frequently-occurring keywords. The performance may not be good enough for prac-

tical applications yet, but these approaches show promise for future research. The

length of the keyword (number of phonemes) is a major deciding factor. Searching for

long keywords or phrases is already possible in practice, and this is a probable usage

scenario for music collections.

Lyrics-to-audio alignment is a relatively well-researched topic. In this work, the
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new acoustic models were also applied to this task, alongside a traditional HMM-based

approach. Two methods for utilizing phoneme posteriorgrams for alignment were de-

veloped. The first one calculates a DTW between the posteriorgram and a binary

representation of the expected lyrics. The resulting path is the alignment. Since no

knowledge about the duration of the constituting phonemes is available in the text,

and these durations vary widely in singing, the algorithm is modified to not punish

such variations. The second approach first extracts a plausible phoneme sequence from

the posteriorgram, taking known phoneme confusions in singing into account and com-

pressing extended productions of similar phonemes. Then, the Levenshtein distance

between this symbolic (phonetic) representation and the phonemes obtained from the

textual lyrics is calculated, and the alignment path is the result. The HMM and DTW

approaches perform acceptably, while the Levenshtein approach produces much better

results. These algorithms are suited for practical applications. One such example was

described: The automatic detection and removal of expletives in songs.

Lyrics retrieval from a textual database based on sung queries is performed with

the same algorithms as the alignment. Alignment is performed between the posterior-

gram generated from the audio and all possible lyrics. Then, the ones with the best

scores/lowest distances are selected as the result. Once again, the DTW approach

performs feasibly, while the Levenshtein approach produces very good results that are

practically usable, even on short queries. Additionally, it allows for fast search and

optimizations on large lyrics databases, which is a so-far underresearched use case.

9.2 Contributions

Major research contributions of this work include:

A new large data set of phonetic annotations for unaccompanied singing As

described in sections 4.2.3 and 5.3, the pre-existing DAMP data set of unaccompanied

singing was used as a basis for this. The matching textual lyrics were scraped from

the internet, and automatically aligned to the audio with an HMM model trained on

speech. Various strategies were tested for this. The resulting phoneme annotations are

not 100% accurate, but the data set is very large and these inaccuracies balance out,

as the experiments building on the data demonstrate. Various configurations for this

data set were composed for different purposes, including female and male singing test

sets.
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Acoustic models trained on this data set New acoustic models (DNNs) were then

trained on the generated training data sets (section 5.3). The performance of these

models was thoroughly compared to others, and they generally performed better when

applied to singing phoneme recognition. They were also integrated into the other tasks

(language identification, keyword spotting, lyrics-to-audio alignment and retrieval) and

demonstrated improvements in almost all cases.

A novel approach for language identification based on phoneme statistics In ad-

dition to an i-vector-based approach from ASR, a completely new method for language

identification was developed on the basis of phoneme posteriorgrams. This approach

is particularly suited to singing because long recordings are often available in music

applications. As described in section 6.2, phoneme statistics are calculated on these

posteriorgrams over long time frames (e.g. whole songs), and then new models are

trained on these statistics. Unseen recordings can then be subjected to the same pro-

cess to determine their languages. The results of this approach were not quite as good

as those of the i-vector algorithm, but they show promise. This method is easier to

implement than the one using i-vectors when long audio sequences are available, and

when phoneme posteriorgrams need to be extracted from them for other purposes.

A new method for flexibly integrating knowledge about phoneme durations into

keyword spotting The presented approach for keyword spotting is based on keyword-

filler HMMs. In order to improve its results, the algorithm was expanded to take a-

priori knowledge about the plausible durations of individual phonemes into account

(see section 7.2). This was implemented via post-processor duration modeling: The

model is tuned to return many results (resulting in a high recall), and then those

with improbable phoneme durations are discarded to improve the precision. Influence

of individual phoneme durations is easily turned on or off. This form of duration

modeling has not been applied to keyword-filler HMMs before.

A novel method for extracting plausible phoneme sequences from posteriorgrams

The described phoneme recognition approaches result in phoneme posteriorgrams, and

many algorithms operate directly on them. However, there are also applications where

a fixed phoneme sequence is required. In section 8.3, a new method for extracting

such sequences from posteriorgrams is presented. Traditionally, HMMs would be used

for this task, but they have a number of disadvantages in the use case at hand. The
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results of this phoneme extraction method are further used in this work for alignment

and retrieval.

Two new approaches for lyrics-to-audio alignment In addition to classic HMM-

based lyrics-to-audio alignment, this thesis presents two novel approaches that operate

on posteriorgrams: One based on DTW, and one based on Levenshtein distance cal-

culation. This enables them to make use of the new acoustic models. The developed

algorithms were submitted to the MIREX 2017 challenge for lyrics-to-audio alignment,

where the Levenshtein-based approach outperformed the other submissions.

Two first approaches to lyrics retrieval based purely on sung queries The same

two approaches for lyrics-to-audio alignment can be applied to the task of lyrics re-

trieval. This is an application that has only rarely been the subject of research so

far. This thesis describes the implementation of the presented methods for retrieval of

textual song lyrics from a database with sung queries.

9.3 Limitations and future work

Suggestions for the individual tasks and approaches are described in the corresponding

chapters. This section focuses on the over-all field of ASR for singing.

In general, phoneme recognition is still the major bottleneck for many of the de-

scribed tasks. This thesis shows possible ways to improve this recognition. Future

research approaches may employ even larger data sets of singing for training, prefer-

ably with more reliable phonetic annotations (e.g. manual annotations). Alternatively,

models could be trained in an unsupervised or semi-supervised way with large amounts

of unannotated data and small sets of reliably annotated data. New machine learning

techniques could be tested as well, such as CNNs, RNNs, or end-to-end models, or

methods for unsupervised pre-training like autoencoders. Unusual or unclear pronun-

ciations, accents, and unusual voices (e.g. children’s voices) also lead to unsatisfactory

results in many tasks. New models trained on a larger variety of data would improve

robustness. The same applies to problems with the audio quality or channels, and

recording conditions not seen during training.

Some of the algorithms require exact annotations (e.g. alignment and retrieval).

This is not always a given in a real-world scenario, where singers will perform differ-
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ent words, additional vocalizations, unexpected repetitions etc. In a future step, it is

possible to make the developed algorithms more robust to such changes by loosening

constraints on the expected words or allowing loops in the sequence of words.

Most of the presented approaches have so far only been applied to unaccompanied

singing. A major step forward would be the adaptation to polyphonic music. This was

already done for alignment and retrieval, but could be improved significantly. There

are several possible routes that future research could take. First, acoustic models could

be trained on accompanied singing instead. This would require large amounts of real-

istic training data, and probably more sophisticated models in order to represent the

more complex structures. Second, source separation could be integrated to extract the

singing track from the audio, and only perform the analysis on this part. As a third

alternative, Vocal Activity Detection could be applied beforehand to only analyze the

segments where actual singing occurs. In the presented experiments, instrumental so-

los in particular frequently led to misalignments or recognition errors.

Finally, the developed algorithms could be employed for the applications described

in section 1.1. It would be highly interesting to see them integrated into other MIR

systems, e.g. for genre or regional classification or for mood detection. The other

practical scenarios could also make good use of them, for example in karaoke systems,

in audio identification, or in cover song detection. Search algorithms or similarity cal-

culation based on the analyzed characteristics could be used in practical MIR systems.
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A Appendix

A.1 Phoneme set

The employed phoneme set is based on ARPABET [150], and is also used in CMU
Sphinx1 and in the TIMIT annotations [151]. It contains 39 phonemes. The listing in
table A.1 is taken from the Sphinx documentation:

Phoneme IPA Sym-

bol

Example Translation

aa A odd aa d

ae æ at ae t

ah 2 hut hh ah t

ao O ought ao t

aw aU cow k aw

ay aI hide hh ay d

b b be b iy

ch tS cheese ch iy z

d d dee d iy

dh D thee dh iy

eh E Ed eh d

er 3~ hurt hh er t

ey eI ate ey t

f f fee f iy

g g green g r iy n

hh h he hh iy

ih I it ih t

iy i eat iy t

jh dZ gee jh iy

k k key k iy

l l lee l iy

m m me m iy

n n knee n iy

ng N ping p ih ng

ow oU oat ow t

oy oI toy t oy

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict

http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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p p pee p iy

r ô read r iy d

s s sea s iy

sh S she sh iy

t t tea t iy

th T theta th ey t ah

uh U hood hh uh d

uw u two t uw

v v vee v iy

w w we w iy

y j yield y iy l d

z z zee z iy

zh Z seizure s iy zh er

Table A.1: Phoneme set used throughout this work.

A.2 Keywords

Table A.2 contains a list of the keywords used for the keyword spotting tasks in this
work. It also shows the keywords’ pronunciations with number of phonemes and the
number of occurrences in the ACAP and DampTest data sets.

Keyword Pronunciation #

Phonemes

#Occ.

ACAP

#Occ.

DampTest

love l ah v 3 156 748

baby b ey b iy 4 84 467

never n eh v er 4 106 246

heart hh aa r t 4 80 207

life l ay f 3 77 165

think th ih ng k 4 65 202

every eh v er iy 4 60 163

night n ay t 3 59 162

always ao l w ey z 5 49 122

world w er l d 4 54 113

eyes ay z 2 56 89

away ah w ey 3 69 187

time t ay m 3 102 243

only ow n l iy 4 58 164

little l ih t ah l 4 53 121

Table A.2: Set of keywords used in the keyword spotting tasks with pronunciation,
number of phonemes, and number of occurrences in the ACAP data set
and the DampTest data sets.
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A.3 Data sets

A.3.1 Links to the YTAcap songs

The following table lists the IDs of the videos on http://www.youtube.com that were
used to generate the YTAcap data set for singing language identification. The full
URL is formed by pre-pending http://www.youtube.com/watch?v= to the ID. Please
note that this list was created in 2012, and videos may not be available any longer.

English German Spanish

0Etj1j0G1HI 051PuPcvGXM 01rWqAmipLo

0V7Am6ZowM0 0eU5piFUrh4 0NEk0aVONfo

1IYjoYG8O6g 0vYEgQr6XsM 0vGblvchoqw

1gN BXUa1pE 1Io79wz1HPg 0z73yLt4r2s

1uto5cAJ7JE 2HTna6FFaf4 18kJKv7fZyo

2 sFPBAq69E 2Tdl6Zxy5BM 1IKxPEE52OQ

3cjjETCrk5Q 2eZV9-goQl4 1LVNr2ABe-I

3oAawKMZrJ8 3hL2GH-XGrg 1QzvHBjXUeU

4j kHq 2EqY 4YYYjCKbrFA 1dtsE0CGk58

4yx8bpJXvfE 5uA87nebFNo 1h0Y2GKmkpU

5P30UtOkR98 6P aok YaF4 1lhAwKtC HA

5VtZwpu68bA 6mn78r3JTf8 1vTMNKD6u0k

5sDXzTFDmcw 6tdqMoOmb7I 25 OmbxR0AE

61tZQxgyslU 71pTFZKqU00 2BGWJT9oWFY

6FDRq2UkbU4 735rb-y-E9Y 2a8G4mIscJw

6W-4KM1Bh4w 8 MKu hBH20 3AyylrG4j c

6j7qDjXXy5s 8tz-fY4 rIY 3Q9KbjohXR8

6qbrwu-gYXg 9-rs2NbvLM8 3Uw3uGnBpv8

7Ll73o2oPsU 9iiNcg1Vo6A 3aJo70bfxpI

7n1Kurj5DoA A-NDpqmFaZc 3id3ij6UTxg

8C7XmDFtMd8 A0NGgnLy3oA 3vDpw2IIIgM

8K8-JeThiyk A3TnoPKpCqA 4GFTBVMQdsM

8mMjQVeGeH0 ATeDuGRtBpY 58VWYsiumAs

8mf1je4N1MM AsiEpUUi3VU 5EygGxuaEJw

913d-ZUevlM AyUQdo8-ca0 5USj1Nh7t1s

9KUX0w-wNJI BXqyNQpmWEM 5kGsASMR3Vo

9nuJnNdEdKc CigIPV c JM 64jknG0EfPg

AQUJ yvhIpg CkVn3e90ZmQ 7DX6fs5zdfw

AjqAF-cMhLk E0ZRN6z5Epg 8DtHjRYOf-0

Bj6YCDLTFw EDTyGgpwsWc 8Ff s83LCq4

CM5lkWQHnoE Ea9cDpJIxJE 8H5bKJk6j8g

CO6QMRV-Rn4 Fdx-iIegUq8 8JymxjeJxGU

CP4Mvx0jtRM GBuf6tJaAsY 8ZZ9GvWcYS8

CQoADIX6r3c H1iuZFpVqDU 9LRMZcABlU8
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D7q18pMi0BY HZ1RUOHW4vQ 9Q2ahLvQdGw

D cF3Xn1oEU JAqGCIYRbMk 9iEcH4tvew0

DvvnskRPCKQ JmC44NnxID4 ALcyPQp6MaE

EIi5jrbKETw K7 9KJ1H7so AiZ8uU4JhYo

ERLMNVIm3ug Kk8J8Ugzd1A B17oafBr dI

F2h4ABL0FUs KkNeQgwC8e8 CVMLShBfiP4

FkTTLv K -8 Krm5-5WDrDE Ck A5-saNU

G3RoSdcy-x4 KyLXLJVX1SA DeytgA94IDU

G82CvOH8D14 L0GHWCNUQK4 DfksCfRtSmY

Ghk5Cia6ekM LYCTjMAS3Bg DqmgMY-70sI

GodyygWDpek LzzUxuq4LCA Dvq5TTBTp40

GqCYQMNN0ks MZ43kZPwywg EeTP5XwqSyo

GtTgKzOx1gA N7SIGXl6u0o F0TDfVZiOBg

Gwz6P2gsp Y N9lzHVS7 C0 F9eL0oxLBjg

H3GdU7cLrjo O3jec1vlbOo FEE9KERZovU

HMKRY Jyxks OER2e4-w368 GIObQf19GXc

HjOC4P9ovjA OuKqZyBIYAo GOEiGQ7RlgQ

HurjdE2ry0o PhQzx2IW G4 GP2UomvOUgk

I5o7k x0vwY QA4l q6HuGw H2mXZIunNpk

IBaZQtLKZ k Qvg1tIaTrc0 H5dhyhOcFKI

IHOwfQsrjtQ Ra7hF1ZJ CY IAbXYQlz v8

IZisx1p6QJU TLfitdm7KT0 IL0W8DTjkMc

IbRpHgNpYsI TUYRUfR3nls JI52mwGIuGs

ImsQAWkoxg TnIyQdHRmDI JQTvisnmvKk

IpkbpAbkDIg Ts6A6RR3dVQ JVNRdGsa6rw

J5ftgv3BHd0 Uc97016ScmM JyzGr1pjrZk

JHL62QDtTB0 V3F7TfiqOcA LaMQ3qGGIEk

JMYxs6gooao VRKkQXVYIhk LvX8gZEnqkE

JO9wyuVfbD4 WGqH91-Vtpk Lz9Ztx04YKg

JuXDcCO9Ds4 WJvrZP50vts MELXF9E RUs

K1aiMNdrlUg X37jDiiXCM4 M FIpjLG7Ic

K9iPEoAbOio X4iwbgRXKvk N2LMCIcSG8w

KjC9qUN3yz4 X0SqViRKH4 NV6C5BgHpFQ

L04SUurMfG0 jgaKt-hh1E NiJcUeB-jkY

L8Vl05blL U po0UMyKOJ4 OCQ9l4oQ5tI

Ldft2mDyK3g aB48LiXRxyI OEwXady1LYU

Lgqdp7RHS0s adTvK02FcBc OMAjbgbgyqA

LjtWvf-Q9rs bTN5ltEqyp8 Or l4D3d2Rk

LqVzlJqK63M bgFvyNMgj4Q P0QsWO5CjUA

LzzrH4X-Tfg cF1rLiZLCDo P978 D2KU Y

MGburXoemRY cdIKwN0JtHk PNcqRRvtt7Q

MW3QgexqaCY dMvUNlprrWc Pm EUWf LyI

MoCb8KDv9k dma-KHqbhr8 Pw-9oSroQNs
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MvtWociP 18 eR16KXkGzA8 Q6KEL0 t2-M

NFGviYQiFII eaeS-t24PYU Q9g1Nw7ubSI

NTLm8D9L6dg eb-psejW3qk QcvV2HwRn 0

O-9BotdD9xg f 2L50a7Qf4 QeeFDwaaJjQ

OA1egRiv2fY fko0ZFgFDy0 RJgvf RMQYU

OSJ2vY4iMUw h2bJcbAxLXE S6JYr18vzHQ

OkM0bfuJU3o hEqQj4ZskXs S8WdHaepufc

OkOQCWKyC7c iJtWrAmSsmk SKH69nNPHPI

OykxqG-4BbQ jCx1 wEOBOE SX GlrVvZrg

PRtzf-l2iDk kBg j4YYLVk SfvMpYwhyc0

Pcb7I7-gQNA kgIlQObqDTk SsJIc4KlZoI

PlVKF6JJ4xE l4JcgU4ZOMI T7wjg-teZR4

PniKj-dSL5A lNKW624AwTc THEGo JIrSM

Q26t 7AopZo lhVHpSUSTLg TykvEinDRQQ

QRJ 6JaTGLI llKcF2sy8Kc U4cQIn7fXG4

QjKs2Qxmt5c m6ToAmRuW7Q Un2ZSvFgc70

Qvm i0MZHbI mzx3u2SW tA UoY44kksjV4

R-6o0gWkX8U ndw3-gmSGoE Uy9cXGrU8Ro

R5UOX4JhlIM oCtjjekZUYg WL-mNud6EqY

RNokB071frc ofDDUyZO7Gs Wmygy5VFuGE

RrjLqGRwbNs omaowxzbPuc Y1s0SKXFPUo

SXDCoYsq3q4 oq1kUR8D1LE YBbbXX5eWTI

Sb2sTtQYIBs pg0GOlQWirQ YZvbQFojujA

TgvmkWsrhUM q4iV 6IHRKk ZOnk4LF6fM

TyvpprJ4oiI qu37HjY4Vhw ZhixuUUsX8c

Ud -38UsxWI sKX-c-YW-hU 49Y0j ehgA

UgUgiD5o79c troRgJeGzq0 CKmhhxzv40

V9m0xiTKLc0 ukpfCgdXrBE aHkR7aIosXk

VN49ug6Myc4 x3ZXVIJsXfQ bUeb4oR8ZJ8

VSX17QtHhHU xGS9d4RdvMs cgPbNnJ01r8

VkqvucQlqpI xaoB5FVMd5M cpiOte96Fks

W–i8xt1YeQ xj5zOlhqq7w cs7gJF15oAM

W2HwbGsYiQM xvufjYH2-h0 d7mV519bpaU

WE1-qIAzTIo xwMWjccMGbo dHs lyaBLzY

XdpgKoWGCc8 xyM3jt3NvRM dOLQtcQwC8E

XmER3o7e378 y5yL90GvV1g dRKBrwpDFkk

YlgGKAfTkr0 ykFB4uRdC s dWbX9nzVL9w

Z64EQpg3NAc zFaIvUNO2cs ddWiUtDJU0g

Z7HkWqwzD3I zRBnTvsFgw0 e2SdXuargrs

Zf219ojN9-4 eZkqnXujr9k

Zs3Dc2LHrWk elDYQFD19RY

5H0bH5xEBY fJaZkGw4tmk

I6p0BxEFBk gSbFsY3k 7c
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6SVhuzGtagg hoAnYHumgp8

mAJzWEQ8qQ hpF15BblllQ

aTbnDpA-O2s i-L42kh 6os

a xY-ygZweo i9DIJO9S93c

bnfboHHE rc izjhS54Tk5I

bsfgprLcC7E jI6znjXUbz8

cPk59Rh8F3I jdW2wSkVA9U

cQYFuKLcAqs jkdj1GEmn78

ceUmCF1SWqw jm1fK7VjKSA

ckMyV5 gJZE k4BxYgTTn6c

e-flDUF5p0Q kXNp-WuJock

eAWjHIeYwDE lHvT-S9AkjA

eInIWR4VGFE l PEHry-dPM

eKeeJytYzHI mZtlJvNHAvU

frOdnyWiz44 n11MX1aBadw

g0Y5d-B1hM0 n4KT1Avkqq8

g6uKANq9c6M nEhBtBOA-2E

gme UzNXwTk nIyR4rFxMjI

grAMUFnUYQw oZOzkay1GZs

h5aE-xpeyDQ pMSe7pb-dRM

hH5G7C8Hj-w plZaeKjxrh4

i1BTgCd2oOA qXMYAAT5RZs

iJWGNG7TxQk qriW2UfovN8

idD-cvfKT0U qyvNJI0w4d8

iklsH1a6VKQ r-E9FQQ0Q6I

jpBvDaG9oi4 rpv0VR3Pei8

jzeRWTekkuk rx4LI022q28

k0GhTaWYrQo s–yg 2Dijc

k4xRBmrJvLc s-vO0SsJ3C4

kMo0H-19-Ds s6eKgncyVjQ

kXHJH742wFI sF-bbPpMlGY

kkrxVtOpNII sN TA 04OFI

l3mbigRjqNk sR37oYPYUg

lJRDw53PmOM s AE8EIT UU

lfrnSPSqbGw su5tmhU-XWc

lhVSFF1i2 c szoQHxTFz98

lrg5GEQ8Jrw t2o-RdQBr0U

mCpFxN8-wZQ tRZKF9ji5Dc

mcEbVc0P3HU tgeqcB3wCow

mdIdJ 7-kwM tn5qVbwVemY

nM-Y5scZeNE uCYRqzIdno0

nZLiwfTALdw uLtFgMXOM8E

nyl4DkN2BTY uReM42ilasA
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qQK2aA5l6Zg uTKwYD12-N0

qSe1-hfYn3U uU4cYT-w7Wk

qW2jplF-gTc uURah2jjzXY

q vbueFu 8E urzAA6j9p-Y

qdmNhKoFWIw utaYpgBACRM

qyNIuXPDKW0 uydkjfyLYkE

qyRpIJ5x844 v1Cyf7CTO2w

rF5vYT4D6Kk v3qymv087ok

rgeK2k7DTJM vAWlag2XU9E

s5cl6d vIVA vWFwTPhGSj4

sEuGSkeuVD0 v PMeW7Wgn8

shalynntSLA wAfc-CoRK8k

sn1jYpwGwXM wHUBFj1eRaw

svZh-Sv3RVA wbs5kkU toc

syOgD4uzckE whyT9oZxBnQ

t0kT00Evc6Y xi4uG0scevI

u Kx-FmIuGw xtuPiEukh9Y

uplAoM2JQKc xuQLKFLPp6M

uvtoieki4vw y9TA3Zjp9wQ

vOI9i1e-eX8 yRObnYLH1QA

vQBKvXuywLA yhtvr5hoy5Y

vW9ib–AWv4 yqdLJ2ePmlA

veZNUBbbF9g zFq6PKGL-RQ

vuHguigYmi0 zdS79QzfKAY

wAsbX6JHYnU

wvdUoUu9sns

xR9bD7OEo M

yEvQkkuGvEE

yG5lLYVSFFc

yH5pcXrNC34

yvJNb2slxAY

zEN3zenkTOE

zdMNrFWVeA0

Table A.3: List of YouTube IDs used for the YTAcap data set.
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A.3.2 Songs in the ACAP data set

Table A.4 shows a list of all the songs in the ACAP data set, and includes information

whether phoneme annotations for these songs are available or not.

Title Artist Phoneme annotations avail-

able

Africa Toto Yes

Beautiful Stranger Madonna Yes

Beggin’ Frankie Valli & The Four Sea-

sons

No

Clocks Coldplay Yes

Complicated Avril Lavigne No

Forca Nelly Furtado Yes

I Kissed A Girl Katy Perry Yes

Love Me Two Times The Doors Yes

No One Alicia Keys No

No Rain Blind Melon No

Rehab Amy Winehouse Yes

Rolling In The Deep Adele Yes

She’s Leaving Home The Beatles No

Smells Like Teen Spirit Nirvana Yes

Sunrise Norah Jones Yes

This Afternoon Nickelback Yes

Trick Me Kelis Yes

Umbrella Rihanna No

Viva La Vida Coldplay Yes

Table A.4: Songs in the ACAP data set.

A.3.3 Songs in the DAMP data set

Table A.5 is a list of all titles in the DAMP data set. The column “#Perf.” displays
the number of performances in the original data set. For the subsets used in this work,
around 20 performances of each song were used for balance. For the DampTest data
sets, one performance of each song was randomly selected (avoiding overlap with the
training sets).

Title Artist #Perf.

Let It Go From “Frozen” 2038

Stay Rihanna ft. Mikky Ekko 946

Say Something Great Big World 903

Cups From “Pitch Perfect” 767

When I Was Your Man Bruno Mars 579
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Miley Cyrus The Climb 552

My Heart Will Go On Celine Dion 485

Let Her Go Passenger 468

I Won’t Give Up Jason Mraz 462

Hallelujah Rufus Wainwright 460

Apologize OneRepublic 449

Part Of Your World From “The Little Mermaid” 419

Demons Imagine Dragons 398

Because Of You Kelly Clarkson 379

Killing Me Softly The Fugees 337

Counting Stars OneRepublic 325

Summertime Sadness Lana Del Rey 312

Grenade Bruno Mars 305

Beautiful Christina Aguilera 293

A Thousand Miles Vanessa Carlton 284

Over The Rainbow From “The Wizard Of Oz” 284

The Wind Beneath My Wings Bette Midler 267

Hey There Delilah Plain White T’s 262

Colors Of The Wind From “Pocahontas” 256

Adore You Miley Cyrus 239

I Dreamed A Dream From “Les Miserables” 239

Hero Mariah Carey 236

Crazy Patsy Cline 228

Radioactive Imagine Dragons 228

I’m Yours Jason Mraz 221

Human Christina Perri 217

The A Team Ed Sheeran 215

Call Me Maybe Carly Rae Jepsen 207

The Rose Bette Midler 205

Happy Pharrell Williams 204

Amazing Grace Elvis 201

Pompeii Bastille 199

Neon Lights Demi Lovato 197

Bubbly Colbie Caillat 195

Don’t Know Why Norah Jones 186

If I Ain’t Got You Alicia Keys 178

You Are Not Alone Michael Jackson 177

Stand By Me Ben E. King 174

Ain’t No Sunshine Bill Withers 170

Before He Cheats Carrie Underwood 170

Alone Heart 161

At Last Etta James 160

Just The Way You Are Bruno Mars 157
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You Raise Me Up Josh Groban 157

On My Own From “Les Miserables” 156

Twinkle Twinkle Little Star Traditional 153

Clarity Zedd ft. Foxes 152

Kiss Me Sixpence None The Richer 152

Lean On Me Bill Withers 150

She Will be Loved Maroon 5 149

House Of The Rising Sun The Animals 149

Valerie Amy Winehouse 149

Total Eclipse Of The Heart Bonnie Tyler 148

Landslide Fleetwood Mac 147

More Than Words Extreme 144

Boyfriend Justin Bieber 143

America The Beautiful K. L. Bates & S. A. Ward 140

All I Want For Christmas Mariah Carey 140

What Makes You Beautifule One Direction 135

Somewhere Only We Know Keane 134

Reflection From “Mulan” 132

From This Moment On Shania Twain 132

...Baby, One More Time Britney Spears 131

Love You Like A Love Song Selena Gomez & The Scene 131

I Believe I Can Fly R. Kelly 131

Burn Ellie Goulding 130

F**kin’ Perfect P!nk 127

It Will Rain Bruno Mars 127

You Know I’m No Good Amy Winehouse 125

Fireflies Owl City 124

I Hope You Dance Lee-Ann Womack 124

This Little Light Of Mine Traditional 124

Danny Boy Traditional 124

Your Song Elton John 123

Breakaway Kelly Clarkson 123

Airplanes B.o.B. ft. Hayley Williams 122

Need You Now Lady Antebellum 120

Stay With Me Sam Smith 119

Zombie The Cranberries 117

Sweater Weather The Neighbourhood 115

Count On Me Bruno Mars 108

Love The Way You Lie Eminem ft. Rihanna 106

It’s All Coming Back To Me Now Celine Dion 106

Jesus, Take The Wheel Carrie Underwood 104

Applause Lady Gaga 104

Wanted Hunter Hayes 103
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Wake Me Up Avicii ft. Aloe Blacc 103

O Holy Night Traditional 102

Saving All My Love For You Whitney Houston 99

Bad Romance Lady Gaga 98

All By Myself Eric Carmen 98

Hey Brother Avicii 98

You Are So Beautiful Joe Cocker 97

Songbird Eva Cassidy 97

How Great Thou Art Traditional 97

Toxic Britney Spears 95

Naturally Selena Gomez & The Scene 95

Rehab Amy Winehouse 94

I’ll Be Edwin McCain 94

A Whole New World From “Aladdin” 93

Forget You CeeLo Green 91

Mama’s Broken Heart Miranda Lambert 91

Wherever You Will Go The Calling 90

Baby Justin Bieber 90

Hush, Little Baby Traditional 89

The Alphabet Song Traditional 89

Have I Told You Lately (I Love You) Rod Stewart 88

True Colors Cyndi Lauper 88

How You Remind Me Nickelback 87

Georgia On My Mind Ray Charles 87

Love Song Sara Bareilles 87

Give Your Heart A Break Demi Lovato 86

Breakeven (Falling To Pieces) The Script 86

Want U Back Cher Lloyd 86

Ironic Alanis Morissette 84

My Favorite Things From “The Sound Of Music” 84

All Out of Love Air Supply 84

Castle On A Cloud From “Les Miserables” 84

Uninvited Alanis Morissette 84

Always On My Mind Willie Nelson 83

My Girl The Temptations 83

I Will Survive Gloria Gaynor 83

Bingo Traditional 82

Can’t Fight This Feeling REO Speedwagon 82

Ben Michael Jackson 80

Brave Sara Bareilles 80

The Worst Jhene Aiko 79

L O V E Frank Sinatra 79

You Found Me The Fray 79
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Marry You Bruno Mars 79

I Want It That Way Backstreet Boys 78

Fly Away Amanda Brown 76

And I Am Telling You From “Dreamgirls” 76

One Of Us Joan Osborne 73

You And I Lady Gaga 71

Try P!nk 71

Stay Lisa Loeb 71

Home Phillip Phillips 71

Hand In My Pocket Alanis Morissette 70

Circle Of Life From “The Lion King” 70

Can You Feel The Love Tonight From “The Lion King” 70

The First Cut Is The Deepest Sheryl Crow 69

You’ve Got A Friend In Me From “Toy Story” 69

How To Save A Life The Fray 69

Let Me Love You Mario 69

All Star Smash Mouth 68

Head Over Feet Alanis Morissette 68

Row Row Row Your Boat Traditional 67

Top Of The World Carpenters 67

All The Man That I Need Whitney Houston 67

Never Say Never The Fray 67

All The Small Things blink-182 66

Just A Kiss Lady Antebellum 66

You Oughta Know Alanis Morissette 66

Lights Ellie Goulding 66

I Look To You Whitney Houston 66

Blurred Lines Robin Thicke ft. T.I. + Pharrell

Williams

65

Billionaire Travie McCoy ft. Bruno Mars 54

Sway Michael Bubl̈ı¿ 1
2 65

Careless Whisper George Michael 65

As Long As You Love Me Backstreet Boys 64

Lucky Britney Spears 64

Santeria Sublime 63

Super Bass Nicki Minaj 62

Heart Attack Demi Lovato 62

Always Be My Baby Mariah Carey 62

Piano Man Billy Joel 61

Kryptonite 3 Doors Down 61

Do You Hear What I Hear Traditional 61

Beauty And The Beast From “Beauty And The Beast” 61

Just The Way You Are Billy Joel 61
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Love Somebody Maroon 5 61

Drink A Beer Luke Bryan 60

Love Me Again John Newman 60

More Than This One Direction 60

Locked Out Of Heaven Bruno Mars 59

The Star-Spangled Banner Whitney Houston 58

Silent Night Traditional 57

Alejandro Lady Gaga 57

Best Song Ever One Direction 57

Achy Breaky Heart Billy Ray Cyrus 57

The Greatest Love Of All Whitney Houston 56

Sitting On The Dock of The Bay Otis Redding 56

Everybody Hurts R.E.M. 56

Glad You Came The Wanted 56

Losing my Religion R.E.M. 55

Gorilla Bruno Mars 55

Blue Christmas Elvis Presley 55

Eye Of The Tiger Survivor 54

Girls Just Want To Have Fun Cyndi Lauper 54

Safe And Sound Capital Cities 54

Don’t Rain On My Parade Barbra Streisand 54

Can’t Remember To Forget You Shakira ft. Rihanna 53

Two Black Cadillacs Carrie Underwood 53

Every Rose Has Its Thorn Poison 53

Body Party Ciara 53

American Pie Don McLean 53

This Love Maroon 5 52

Simple Man Lynyrd Skynyrd 53

A Horse With No Name America 52

15 Seconds Of Fame Johnny Burgos 52

Under The Sea From “The Little Mermaid” 52

Fallin’ For You Colbie Caillat 51

One Thing One Direction 51

Oops, I Did It Again Britney Spears 51

Frere Jacques Traditional 51

Somebody To Love Queen 51

Sometimes Britney Spears 50

It’s Time Imagine Dragons 50

Baby, I Love Your Way Peter Frampton 50

Good Girl Carrie Underwood 50

Just When I Needed You Most Randy VanWarmer 50

Yesterday Once More Carpenters 49

A Holly Jolly Christmas Lady Antebellum 48
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The Lazy Song Bruno Mars 48

Treasure Bruno Mars 48

Paparazzi Lady Gaga 47

Worshipper Hunter Sparkman 47

All-American Girl Carrie Underwood 46

Borderline Madonna 46

Don’t Let The Sun Go Down On Me Elton John 46

Candle In The Wind Elton John 46

Dark Side Kelly Clarkson 46

We’ve Only Just Begun Carpenters 46

Adorn Miguel 45

Whatcha Say Jason Derulo 46

I Wanna Dance With Somebody Whitney Houston 45

Name Goo Goo Dolls 44

Down Jay Sean ft. Lil Wayne 44

I Want To Hold Your Hand The Beatles 44

Hit Me With Your Best Shot Pat Benatar 44

Secrets OneRepublic 43

Kiss The Girl From “The Little Mermaid” 43

Young Girls Bruno Mars 42

Endless Love Lionel Richie & Diana Ross 42

That’s The Way It Is Celine Dion 42

Runaway Train Soul Asylum 42

The Way You Look Tonight Tony Bennett 41

Gangsta’s Paradise Coolio 41

Betcha By Golly, Wow The Stylistics 40

Climax Usher 40

Disturbia Rihanna 40

Closing Time Semisonic 39

The Way I Am Ingrid Michaelson 39

Umbrella Rihanna 39

OMG Usher ft. will.i.am 39

Summer Calvin Harris 39

Bye Bye Bye NSYNC 39

God Bless The USA Lee Greenwood 39

When A Man Loves A Woman Percy Sledge 38

Won’t Go Home Without You Maroon 5 38

Behind Blue Eyes The Who 38

King Of Anything Sara Bareilles 37

Rainy Days And Mondays Carpenters 37

For The First Time The Script 37

Animal Neon Trees 37

Born This Way Lady Gaga 37
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Merry Christmas, Darling Carpenters 36

Friends In Low Places The Nashville All Stars 36

Linger The Cranberries 36

The Edge Of Glory Lady Gaga 36

Didn’t We Almost Have It All Whitney Houston 36

Cooler Than Me Mike Posner 36

Faith George Michael 35

Jingle Bell Rock Bobby Helms 35

#thatPOWER will.i.am ft. Justin Bieber 35

New York, New York Frank Sinatra 34

Poker Face Lady Gaga 34

The Little Drummer Boy K. Davis 34

Cruise Florida Georgia Line 34

The One I Love R.E.M. 34

Lovefool The Cardigans 34

No Air Jordin Sparks ft. Chris Brown 34

Feel Like Makin’ Love Bad Company 34

Save The Last Dance For Me The Drifters 33

Breakfast At Tiffany’s Deep Blue Something 33

Stronger Britney Spears 33

Twist And Shout The Beatles 32

I’m A Slave 4 U Britney Spears 32

Baby Love The Supremes 32

Home Daughtry 32

Stronger (What Doesn’t Kill You) Kelly Clarkson 30

Send In The Clowns From “Pippin” 30

Bed Intruder The Gregory Brothers 29

Summertime From “Porgy And Bess” 29

Rocket Man Elton John 29

Drift Away Dobie Gray 29

Seasons Of Love From “Rent” 29

You Make Me Feel Brand New Stylistics 28

In My Head Jason Derulo 27

Making Memories Of Us Keith Urban 27

She’s Always A Woman Billy Joel 26

Luka Suzanne Vega 22

Broken Wings Mr. Mister 22

You Drive Me Crazy Britney Spears 21

Say Somethin’ Austin Mahone 21

Table A.5: All songs in the DAMP data set.
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A.3.4 Phrases in the DampRetrieval data sets

Tables A.6 and A.7 contain listings of the lyric phrases selected for the DampRe-
trievalF and DampRetrievalM data sets respectively. The songs were taken from the
DampTestF and DampTestM data sets and are therefore contained in table A.5 above.

Phrase Song

All those flames that burned before him Alejandro

Can’t read my, can’t read my, no, he can’t read my poker

face

Poker Face

I’m getting tired and I need somewhere to begin Somewhere Only We Know

Up above the world so high Twinkle, Twinkle, Little Star

I may not make it through the night, I won’t go home without

you

Won’t Go Home Without You

Somebody once asked, could I spare some change for cash, I

need to get myself away from this place

All Star

I’m a thousand miles away, but girl, tonight you look so

pretty, yes, you do

Hey There, Delilah

The sun goes down, the stars come out Glad You Came

And don’t be alarmed if I fall head over feet Head Over Feet

There is wonder in most everything I see Top Of The World

And you cast your fear aside and you know you can survive Hero

I love you like a love song, baby, I Love You Like A Love Song

Oh, oh, baby, I reconsider my foolish notion Faith

But I can I dream and in my dreams Merry Christmas, Darling

She’s better off, but maybe worse 15 Seconds Of Fame

Dance with me, make me sway Sway

And I’d gladly stand up next to you and defend her still today God Bless The USA

Now I know we said things, did things that we didn’t mean Love The Way You Lie

What you don’t understand is I’d catch a grenade for you Grenade

When he come up in the club he blazin’ up Super Bass

Table A.6: Phrases in the DampRetrievalF data set.

Phrase Song

So hush, little baby, don’t you cry Summertime

I’m your biggest fan, I’ll follow you until you love me, papa,

paparazzi

Paparazzi

Behind your make-up, nobody knows who you even are Cooler Than Me

I should’ve changed my stupid lock I Will Survive

Come sit beside me, my only son Simple Man

They say bad things happen for a reason Breakeven

You’ll still be standing next to me Safe And Sound

Now I can see that we’re falling apart I Want It That Way
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I’m forced to fake a smile, a laugh, every day of my life Because Of You

Sleep out in the rain When A Man Loves A Woman

So let’s pretend we’re running out of time Neon Lights

Jesus, take the wheel Jesus, Take The Wheel

I never loved no one but you Baby Love

I’ll get him hot, show him what I’ve got Poker Face

Who died and made you king of anything King Of Anything

Every little thing that you have said and done As Long As You Love Me

I’m high, but I’m grounded Hand In My Pocket

Every day I sit and I ask myself, how did love slip away You Are Not Alone

And I won’t denied by you, the animal inside of you, oh Animal

What would I give if I could live out of these waters Part Of Your World

Table A.7: Phrases in the DampRetrievalM data set.

A.3.5 Phrases in the AuthorRetrieval data set

The following table displays the phrases performed in the AuthorRetrieval data set.

The songs were taken from the DAMP data set as well. (The list does not add up to

90 entries because some phrases were repeated).

Phrase Song

Hey, I just met you, and this is crazy Call Me Maybe

Yeah, I wanna dance with somebody, I wanna feel the heat

with somebody

I Wanna Dance With Somebody

Whatcha say Whatcha Say

Summertime and the living is easy Summertime

Summertime, summertime sadness Summertime Sadness

And they she’s in the class A team, stuck in her daydream The A Team

Saying “I love you” is not the words I want to hear from you More Than Words

I heard there was a secret chord that David played and it

pleased the lord

Hallelujah

’Cause darling, I would catch a grenade for you Grenade

Out of the sea, wish I could be, part of that world Part Of Your World

It’s the circle, the circle of life Circle Of Life

I’m never gonna dance again, guilty feet have got no rhythm Careless Whisper

There’s a land that I heard of once in a lullaby Over The Rainbow

Because of you I never stray too far from the sidewalk Because Of You

So wake me up when it’s all over Wake Me Up

Lost and insecure, you found me, you found me You Found Me

I waited ’til I saw the sun Don’t Know Why

Don’t call me name, don’t call me name, Alejandro Alejandro

Nothing I can say, a total eclipse of the heart Total Eclipse Of The Heart
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I don’t care ’bout anything but you Lovefool

If I can fall into the sky A Thousand Miles

You drive me crazy, I just can’t sleep You Drive Me Crazy

All you gotta do is stay Stay

Come along if you feel like a room without a roof Happy

I’m on the top of the world looking down on creation Top Of The World

And she will be loved She Will Be Loved

’Cause you make me feel like I’ve been locked out of heaven Locked Out Of Heaven

When the sun shine, we shine together, told you I’d be here

forever

Umbrella

Can you sing with all the voices of the mountain Colors Of The Wind

Can’t remember to forget you Can’t Remember To Forget You

Start spreading the news, I’m leaving today New York, New York

Million fireflies, I’m weird ’cause I hate goodbyes Fireflies

Didn’t we almost have it all Didn’t We Almost Have It All

Only know your lover when you let her go Let Her Go

I’m not that innocent Oops, I Did It Again

When I’m gone, when I’m gone, oh, you’re gonna miss me

when I’m gone

Cups

Say something, I’m giving up on you Say Something

If our love is tragedy, why are you my clarity Clarity

Even if the sky is falling down, I know that we’ll be safe and

sound

Safe And Sound

And that’s the way it is That’s The Way It Is

Oh, I want some more, oh, what are you waiting for Animal

Tale as old, song as old as rhyme, beauty and the beast Beauty And The Beast

I’m not gonna write you a love song Love Song

And the way you look tonight The Way You Look Tonight

Sing us a song, you’re the piano man Piano Man

And I am telling you I’m not going And I Am Telling You

Ooh baby, I love your way Baby, I Love Your Way

I want your love and I want your revenge, you and me could

write a bad romance

Bad Romance

When I met you in the summer, summer, to my heartbeat’s

sound

Summer

Save the last dance for me Save The Last Dance For Me

And when the hero comes along Hero

Hey there, Delilah, what’s it like in New York City Hey There, Delilah

I love you just the way you are Just The Way You Are (Billy Joel)

When Marimba rhythms start to play Sway

And I’m all out of love, I’m so lost without you All Out Of Love

Well, I guess it would be nice if I could touch your body Faith

I hope you don’t mind, I hope you don’t mind Your Song
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So why don’t we go somewhere only we know Somewhere Only We Know

All the small things All The Small Things

I believe I can fly, I believe I can touch the sky I Believe I Can Fly

Let it go, let it go, can’t hold it back anymore Let It Go

Can you feel the love tonight Can You Feel The Love Tonight

On my own, pretending he’s beside me On My Own

Love me, love me, say that you love me Lovefool

I was lost [sic] to my own devices Pompeii

Oops, I did it again, I played with your heart, got lost in the

game

Oops, I Did It Again

I dreamed a dream in time gone by I Dreamed A Dream

And it’s too late to apologize Apologize

Don’t tell me not to fly, I’ve simply got to Don’t Rain On My Parade

Come home in the morning light, my mother says “when you

gonna live your life right”

Girls Just Wanna Have Fun

I’m on the edge of glory The Edge Of Glory

Since I’ve come on home, well, my body’s been a mess, and

I miss your ginger hair and the way you like to dress

Valerie

When a heart breaks, no, it don’t break even Breakeven

Been spending most their lives living in a gangsta’s paradise Gangsta’s Paradise

My heart will go on and on My Heart Will Go On

Five hundred twenty-five thousand six hundred minutes Seasons Of Love

O holy night, the stars are brightly shining O Holy Night

Table A.8: Phrases in the AuthorRetrieval data set.

A.3.6 Songs in the Mauch data set

The songs in the Mauch data set for lyrics alignment evaluation are listed in table A.9.

Title Artist

Knowing Me, Knowing You Abba

Eternal Flame The Bangles

Call Me Blondie

Warwick Avenue Duffy

Ordinary World Duran Duran

Do You Want To Franz Ferdinand

Toy Soldiers Martika

Guiding Light Muse

The Dock Of The Bay Otis Redding

We Are The Champions Queen

RM-P082 12.210 (RWC database)

RM-P084 1.519 (RWC database)

Addicted To Love Robert Palmer
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Black Magic Woman Santana

Back For Good Take That

What’s Love Got To Do With It Tina Turner

Africa Toto

With Or Without You U2

She Zweieck

Table A.9: Songs in the Mauch data set.

A.3.7 Songs in the QMUL Expletive data set

Table A.10 shows a list of the songs in the QMUL Expletive data set, all of which
contain expletives. This data set was used for expletive detection.

Title Artist

Hanging On Ellie Goulding ft. Tinie Tempah

Talk That Talk Rihanna ft. Jay Z

Pink Matter Frank Ocean ft. Andre 3000

You Da One Rihanna

Airplanes (pt. 2) Bob ft. Eminem

Mockingbird Eminem

Get Yourself Back Home Gym Class Heroes

Bangarang Skrillex

The Best Nicki Minaj

Read All About It Professor Green ft. Emilie Sande

Traktor Wretch 32 ft. L Marshall

Love The Way You Lie Eminem ft. Rihanna

Crew Love Drake ft. The Weeknd

Heartbeat Childish Gambino

Castle Walls TI ft. Christina Aguleria

Drop The World Lil Wayne ft. Eminem

Empire State Of Mind Jay Z ft. Alicia Keys

Hitz Chase & Status ft. Tinie Tempah

Remember Me Daley ft. Jessie J

Fire Fly Childish Gambino

Made In America Jay Z ft. Kanye West

Roman’s Revenge Nicki Minaj ft. Eminem

Strange Clouds Bob ft. Lil Wayne

Lord Knows Drake ft. Rick Ross

Poetic Justice Kendrick Lamar ft. Drake

Best I Ever Had Drake

Good Morning Kanye West

Encore Jay Z

I Need A Doctor Eminem ft. Dr. Dre
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6 Ft 7 Ft Wiz Khalifa

My Band D12

Purple Pills D12

Bass Down Low Dev ft. Tinie Tempah

Shot For Me Drake ft. The Weeknd

The Way I Am Eminem

Spacebound Eminem

Without Me Eminem

Run This Town Jay Z ft. Kanye West

That’s My Bitch Jay Z ft. Kanye West

AYO TECHNOLOGY 50 Cent ft. Justin Timberlake

Like Toy Soldiers Eminem

Cleaning Out My Closet Eminem.

Stan Eminem ft. Dido

? Labrinth

Pizza Boy Chip ft. Meek Mill

Beautiful Chip

Superman Eminem

25 To Life Eminem

My Name Is Eminem

No Love Eminem ft. Lil Wayne

Lose Yourself Eminem

The Real Slim Shady Eminem

All Of The Lights Kanye West ft. Various

LOST IN THE WORLD Kanye West ft. Gil Scot Heron

Dark Fantasy Kanye West

Jesus Walks Kanye West

Paris (NIGGERS In) Jay Z ft. Kanye West

Lighters Eminem ft. Royce Da 5”9

Evil Deeds Eminem

Yellow Brick Road Eminem

Mosh Eminem

Puke Eminem

My First Single Eminem

Rain Main Eminem

Big Weenie Eminem

Crazy In Love Eminem

Ass Like That Eminem

Cold Winds Blow Eminem

Hailie’s Song Eminem

Lose Yourself Eminem

Murder To Excellence Jay Z ft. Kanye West

Why I Love You Jay Z ft. Kanye West
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Welcome To The Jungle Jay Z ft. Kanye West

Arena Bob ft. T.I

Thrift Shop Macklemore

Who Gon Stop Me Jay Z ft. Kanye West

Prime Time Jay Z ft. Kanye West

Otis Jay Z ft. Kanye West

No Church In The Wild Jay Z ft. Kanye West

Lift Off Jay Z ft. Kanye West

Table A.10: Songs in the QMUL Expletive data set.

A.4 Results of the MIREX 2017 Lyrics-to-Audio

alignment challenge

A.4.1 Results on the ACAP data set

Table A.11 displays the results on the ACAP data set in the MIREX challenge.

“HMM”, “DTW”, and “LEV” correspond to the three approaches described in chapter

8. “DMS1” and “DMS2” are the two approaches submitted by other parties. Table

A.12 show the individual song results.

Submission Mean error (s) Median error (s) St. dev. error (s)
HMM 13.96 7.64 12.73
DTW 27.94 19.58 31.86
LEV 7.34 4.55 7.71

DMS1 26.70 14.94 29.97
DMS2 10.57 2.02 23.30

Table A.11: MIREX results on the ACAP data set.

A.4.2 Results on the ACAP Poly data set

Similarly, table A.13 shows the results on the ACAP Poly data set, with “HMM”,

“DTW”, and “LEV” being the approaches for alignment described in this work. Table

A.14 contains the individual song results.
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Song HMM DTW LEV DMS1 DMS2
Clocks 41.51 73.56 21.89 34.71 34.71

I Kissed A Girl 0.18 0.27 0.14 0.16 0.16
Rehab 0.04 0.29 0.07 0.11 0.11

Rolling In The Deep 0.86 3.93 1.06 1.22 1.22
Sunrise 0.67 0.47 0.76 0.36 0.36

This Afternoon 0.99 1.82 0.26 1.32 1.32
Trick Me 0.17 0.11 0.14 0.19 0.19
Umbrella 1.45 2.04 1.3 1.72 1.72

Viva La Vida 0.12 5.47 0.21 0.37 0.37

Table A.12: Individual MIREX song results on the ACAP data set.

Submission Mean error (s) Median error (s) St. dev. error (s)
HMM 13.96 7.64 12.73
DTW 27.94 19.58 31.86
LEV 7.34 4.55 7.71

DMS1 26.70 14.94 29.97
DMS2 10.57 2.02 23.30

Table A.13: MIREX results on the ACAP Poly data set.

A.4.3 Results on the Mauch data set

Last, the MIREX results on the Mauch data set are shown in table A.15, and the

song-wise results are displayed in table A.16.
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Song HMM DTW LEV DMS1 DMS2
Clocks 42.76 107.72 22.69 65.43 76.2

I Kissed A Girl 7.64 6.59 0.49 5.72 1.46
Rehab 6.04 5.78 0.5 5.66 0.55

Rolling In The Deep 2.99 31.66 2.66 19.39 7.53
Sunrise 3.24 4.26 4.55 14.94 2.02

This Afternoon 2.65 24.2 3.29 17.31 0.7
Trick Me 18.13 1.8 6.4 9.91 0.39
Umbrella 16.33 49.87 5.61 95.47 2.65

Viva La Vida 25.82 19.58 19.83 6.44 3.63

Table A.14: Individual MIREX song results on the ACAP Poly data set.

Submission Mean error (s) Median error (s) St. dev. error (s)
HMM 17.70 10.14 17.01
DTW 22.23 16.38 22.08
LEV 9.03 7.52 7.23

DMS1 14.91 10.14 15.30
DMS2 11.64 5.12 13.31

Table A.15: MIREX results on the Mauch data set.

Song HMM DTW LEV DMS1 DMS2
Knowing Me, Knowing You 9.4 4.25 4.72 18.91 4.31

Eternal Flame 38.27 6.68 23.56 4.01 3.08
Call Me 34.34 5.98 8.37 8.11 4.08

Warwick Avenue 7.2 16.04 2.33 3.35 9.4
Ordinary World 12.78 53.46 6.8 6.25 4.32
Do You Want To 5.52 18.41 2.66 5.28 42.67

Toy Soldiers 20.05 30.37 10.32 11.15 17.6
Guiding Light 66.17 94.14 28.46 35.62 48.8

The Dock Of The Bay 0.92 1.38 1.78 3.66 0.38
We Are The Champions 6.43 18.5 6.8 9.12 5.43

RM-P082 43.13 14.4 9.91 12.43 12.21
RM-P084 9.52 12.17 8.09 15.19 1.51

Addicted To Love 10.75 20.84 4.51 8.32 4.82
Black Magic Woman 39.87 16.72 15.86 21.84 16.83

Cecilia 5.94 7.43 9.36 5.18 29.23
Back For Good 3.09 3.93 0.75 4.13 1.73

What’s Love Got To Do With It 10.85 6.86 10.58 30.02 9.7
Africa 4.65 41.39 6.96 12.42 2.39

With Or Without You 19.57 51.36 17.84 70.16 11.79
She 5.61 20.24 0.94 13.05 2.48

Table A.16: Individual MIREX song results on the Mauch data set.
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B Erklärung

Ich versichere, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne

Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen

Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Anga-

be der Quelle gekennzeichnet. Bei der Auswahl und Auswertung folgenden Materials
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