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ABSTRACT 

 

DEVELOPMENT OF KINEMATIC TEMPLATES FOR AUTOMATIC 

PRONUNCIATION ASSESSMENT USING ACOUSTIC-TO-ARTICULATORY 

INVERSION 
 

Deriq K. Jones, B.S. 

Marquette University, 2017 

 

Computer-aided pronunciation training (CAPT) is a subcategory of computer-aided 

language learning (CALL) that deals with the correction of mispronunciation during 

language learning. For a CAPT system to be effective, it must provide useful and 

informative feedback that is comprehensive, qualitative, quantitative, and corrective. 

While the majority of modern systems address the first 3 aspects of feedback, most of 

these systems do not provide corrective feedback. As part of the National Science 

Foundation (NSF) funded study “RI: Small: Speaker Independent Acoustic-Articulator 

Inversion for Pronunciation Assessment”, the Marquette Speech and Swallowing Lab and 

Marquette Speech and Signal Processing Lab are conducting a pilot study on the 

feasibility of the use of acoustic-to-articulatory inversion for CAPT. 

 

In order to evaluate the results of a speaker’s acoustic-to-articulatory inversion to 

determine pronunciation accuracy, kinematic templates are required. The templates 

would represent the vowels, consonant clusters, and stress characteristics of a typical 

American English (AE) speaker in the midsagittal plane. The Marquette University 

electromagnetic articulography Mandarin-accented English (EMA-MAE) database, 

which contains acoustic and kinematic speech data for 40 speakers (20 of which are 

native AE speakers), provides the data used to form the kinematic templates. The 

objective of this work is the development and implementation of these templates. 

 

The data provided in the EMA-MAE database is analyzed in detail, and the information 

obtained from the analysis is used to develop the kinematic templates. The vowel 

templates are designed as sets of concentric confidence ellipses, which specify (in the 

midsagittal plane) the ranges of tongue and lip positions corresponding to correct 

pronunciation. These ranges were defined using the typical articulator positioning of all 

English speakers of the EMA-MAE database. The data from these English speakers were 

also used to model the magnitude, speed history, movement pattern, and duration 

(MSTD) features of each consonant cluster in the EMA-MAE corpus. Cluster templates 

were designed as set of average MSTD parameters across English speakers for each 

cluster. Finally, English stress characteristics were similarly modeled as a set of average 

magnitude, speed, and duration parameters across English speakers.  

 

The kinematic templates developed in this work, while still in early stages, form the 

groundwork for assessment of features returned by the acoustic-to-articulatory inversion 

system. This in turn allows for assessment of articulatory inversion as a pronunciation 

training tool. 
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1 INTRODUCTION 

1.1 GENERAL BACKGROUND 

Computer assisted language learning, or computer aided language learning 

(CALL) refers to the use of computers in the learning and teaching of foreign languages 

[1]. The development of CALL is essential in ensuring that people of various 

backgrounds are able to communicate and function effectively, despite language barriers. 

CALL has a long history that traces its roots to as early as the 1960’s [1]. Early 

implementations typically presented a stimulus (usually in the form of on-screen text) to 

the learner, who would provide a response (usually via keyboard). The technological 

advances made as time progressed allowed for increased capabilities of CALL systems, 

including the incorporation of recorded voice and video, as well as speech recognition 

techniques for instruction and evaluation [1]. 

A key component of modern CALL implementations is computer assisted 

pronunciation training (CAPT), which deals in correction of mispronunciation during 

language learning. Useful and informative feedback is an important an important aspect 

of CAPT, as it plays a large role in developing a language learner’s background in the 

new language. T. K. Hansen identified four essential aspects of feedback during CAPT: 

comprehensive, qualitative, quantitative, and corrective [2]. While the majority of current 

systems, which are typically based on automatic speech recognition (ASR) techniques [3] 

[4], can implement the first three aspects, most do not provide meaningful corrective 

feedback. The Marquette Speech and Signal Processing Lab and Speech and Swallowing 
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Lab have developed an acoustic-to-articulatory inversion system with the intention of 

meeting this final criteria [5]. 

Acoustic-to-articulatory inversion is the estimation of articulatory parameters 

from acoustic signals. In other words, this inversion accepts a speech signal then 

estimates and returns a set of articulatory features modeling the position and movement 

of articulators required to produce the speech from the input signal. In order to perform 

this inversion, a system must be trained using both acoustic and kinematic speech data. 

As part of the National Science Foundation (NSF) funded study “RI: Small: 

Speaker Independent Acoustic-Articulator Inversion for Pronunciation Assessment”, the 

Marquette Speech and Swallowing Lab and Marquette Speech and Signal Processing Lab 

are conducting a pilot study on the use of acoustic-to-articulatory inversion for Computer 

Aided Pronunciation Training (CAPT). The acoustic-to-articulatory inversion system 

developed through this project analyzes English speech and predicts the motion of the 

articulators, including the jaw, lower lip, upper lip, and tongue, required to produce the 

corresponding sounds. In order to obtain train the inversion system, speech data was 

collected from several native American English (AE) and Mandarin accented English 

(MAE) speakers to form the Electromagnetic Articulography Mandarin Accented English 

(EMA-MAE) corpus. In order to give the inversion system a frame of reference for 

pronunciation assessment, kinematic templates are needed for the system. These 

templates, through the modeling of EMA data, represent the positioning and movement 

of articulators (specifically, the tongue and lips) for correct pronunciation. Like the 

acoustic-to-articulatory inversion system, the kinematic templates were developed using 

the data from the EMA-MAE corpus.  
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1.2 PILOT STUDY OVERVIEW 

This work focuses on the development and implementation of the kinematic 

templates described in section 1.1. Using these templates, detailed pronunciation 

assessment measures will be implemented for a small set of target pronunciation error 

categories for native Mandarin speakers of English. The pronunciation categories include 

vowels, consonant clusters, and contrastive stress. A consonant cluster is a set of two or 

more adjacent consonants in a word. Stress refers to the pattern of emphasis given to 

certain parts of words and sentences, and a contrastive stress is a stress on a syllable or 

word that is imposed contrary to its typical pronunciation in order to emphasize the word 

or syllable or to contrast it with another word or syllable [6]. The nature of clustering and 

stress, as well as the types of consonant clusters and stress used for data collection, are 

discussed in greater detail in chapter 2. The pilot study is being conducted in order to 

evaluate the effectiveness of these measures for providing meaningful corrective 

feedback. 

The study participants consist of 10 Mandarin accented English speakers. Both 

undergraduate and graduate student clinicians will be trained in using results of the 

pronunciation assessment tool to generate and provide accent reduction to the participants 

using the features returned by the acoustic-to-articulatory inversion system and kinematic 

templates. Speech data collection and pronunciation feedback for the participants will be 

performed during multiple sessions over a 6 week period. Meanwhile, a control group of 

10 participants will undergo conventional accent modification therapy using acoustic 

targets while receiving feedback regarding pronunciation accuracy.  
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Participants will be evaluated based on the amount of pronunciation improvement 

across sessions, with improvement being measured by how close the participants come to 

meeting the targets set by the kinematic templates compared to their pre-therapy 

pronunciation. Additionally, both the participants and clinicians will be surveyed 

regarding their opinion on the effectiveness of the proposed pronunciation assessment 

method in providing meaningful corrective feedback for accent modification. 

1.3 RESEARCH OBJECTIVES 

The research implemented and presented for this Master’s thesis focuses on the 

development of the kinematic templates needed to support the upcoming pilot study. This 

includes the following research objectives: 

 the extraction and analyzation of the speech data in the EMA-MAE corpus 

(specifically, a study of the differences in articulation between Mandarin 

accented English (MAE) speakers and native English (AE) speakers). 

 determination of the feasibility of using the EMA-MAE speech data to create 

kinematic templates that model correct native English pronunciation along the 

midsagittal plane of the vowels, consonant clusters, and contrastive stresses 

used in the corpus prompts. 

 the implementation of said kinematic templates, designed for use with the 

Marquette Speech and Signal Processing Lab’s acoustic-to-articulatory 

inversion system for pronunciation assessment. 
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 the design of visualization plots that display the results of articulatory inversion 

to each speaker, as well as the relationship between those results and the targets 

provided by the kinematic templates. 

While this research has a focus on the use of acoustic-to-articulatory inversion for 

pronunciation assessment, a great deal work also went into the study of differences 

between Mandarin Chinese and English, MAE speech production and the challenges of 

learning a second language, and the analysis and modeling of both MAE and AE speech. 

The research discussed in this thesis may be applied to several fields, CALL and CAPT 

being only a subset of the relevant applications. 

1.4 THESIS ORGANIZATION 

This thesis is organized into 6 chapters. Chapter 2 covers background information, 

including a general overview of speech production, differences between Mandarin 

Chinese and English and their effect on learning English as a native Mandarin Chinese 

speaker, the EMA-MAE corpus mentioned in section 1.1, and the Marquette Speech and 

Signal Processing Lab’s acoustic-to-articulatory inversion system. Chapter 3 provides an 

analysis of the speech data contained in the EMA-MAE dataset, specifically in the 

context of vowel, consonant cluster, and contrastive stress production, and highlighting 

the differences between native English and Mandarin accented English speech data. 

Chapter 4 walks through the development of the kinematic templates to be used with the 

acoustic-to-articulatory inversion system for pronunciation assessment, as well as the 

design and implementation of visualization plots to be used to provide feedback to pilot 

study participants. This includes the representation of the results of acoustic-to-
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articulatory inversion, and those results compared to the targets set by the kinematic 

templates. Chapter 5 provides a brief summary of the thesis, as well as several future 

steps for the optimization of the kinematic templates. 
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2 BACKGROUND 

2.1 SPEECH PRODUCTION AND MANDARIN-ENGLISH OVERVIEW 

2.1.1 HUMAN SPEECH PRODUCTION 

The physiological process of speech production starts with the lungs. The lungs 

provide a stream of air that passes through the trachea and oral and nasal cavities. This 

process involves four steps: initiation, phonation, oro-nasal processing, and articulation. 

Initiation occurs when the air is expelled from the lungs. The phonation step occurs at the 

larynx, which holds the vocal folds. The gap between the vocal folds is referred to as the 

glottis, and it can be closed, narrowly opened, or widely opened. When the glottis is 

closed, no air can pass through, meaning no speech can be produced. When the glottis is 

narrowly opened, the vocal folds vibrate when air passes through. This leads to the 

production of voiced sounds. When the glottis is widely opened, the vibration of the vocal 

folds is significantly reduced, leading to the production of unvoiced sounds. Figure 2.1 

shows an example of an open and closed glottis: 

Figure 2.1 – Open and Closed Glottis [7] 
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After passing through the larynx the air passes through the oral or nasal cavity, depending 

on the velum’s position: 

Figure 2.2 – Nasal and oral air flow [8] 

 

In the articulation step, the oral cavity acts as a resonator and the articulators (tongue, 

teeth, lips) are used to determine the speech sound produced [9]. The basic sound unit for 

a language is known as a phoneme. The simplest and most common model of speech 

production combine all these steps into two elements: excitation and vocal tract filtering. 

This is known as the source-filter model [8]: 
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Figure 2.3 – Source-filter model of speech production 

 

 Resonances in the vocal tract lead to concentrations of acoustic energy at certain 

frequencies during speech. These resonant frequencies are known as formants, and each 

formant frequency depends on the shape and size of the cross section of the vocal tract 

during articulation. A larger vocal tract leads to lower formant frequencies (as the size of 

the resonator is increased) [10]. Adult men typically have larger vocal tracts than adult 

women, which leads to men having lower formant frequencies than women for the same 

speech sounds [10]. Formants are denoted as FX, where X is the index of the formant 

frequencies (i.e. F2 denotes the second formant frequency). Formants frequencies can be 

estimated through analyzation of the speech signal, typically through linear predictive 

coding (LPC) analysis [11].  

Different speech sounds are formed by changing the shape of the vocal tract 

during articulation. In other words, the frequency spectrum of speech varies with vocal 

tract shape. As mentioned previously, formant frequencies are determined by the size and 

shape of the vocal tract. This means that different speech sounds each have their own sets 
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of formant frequencies. This allows for certain phonemes to be estimated through the 

analysis of formant frequencies. Vowels are voiced (narrowly opened glottis) phonemes 

that are produced by maintaining a stationary vocal tract. The formants of vowels are 

fairly simple to detect in the frequency spectrum. Consonants are both voiced and 

unvoiced phonemes that are formed through a partial or complete closure of the vocal 

tract. This closure introduces different amounts of turbulence and anti-resonances into the 

frequency spectrum [12]. This significantly complicates the process of extracting 

formants from the speech signal; many consonants’ formant frequencies cannot be 

reliably estimated. As a result, speech processing applications using formants will often 

focus on vowels. A table displaying average values of the first three formants for English 

vowels is shown in Table 2.1. 

Table 2.1 - English Vowel Formant Frequencies [11] 

 

 Depending on the position of the tongue during articulation, the vowel produced 

may be classified as open or closed (low or high tongue position) and front or back. This 

lead to the creation of the vowel quadrilateral (or triangle), which is a diagram that 
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displays the general positions of vowels in the context of these classifications [12]. The 

application of English vowels, written in International Phonetic Alphabet (IPA) format, 

to this diagram is shown in Figure 2.4. 

Figure 2.4 - English Vowel Quadrilateral 

 

Prior research suggests that the first two formants of a vowel are correlated to the 

speaker’s tongue position during articulation. Specifically, F1 is said to be inversely 

related to the height of the tongue (F1 increases as the tongue body lowers) and F2 is said 

to be directly related to the anterior positioning of the tongue (F2 increases as the tongue 

body moves forward) [10]. This information is useful in building expectations for the 

positioning of a speaker’s tongue, given the formants of the vowel being articulated. That 

being said, it is also generally believed that several different articulatory configurations 

can lead in the same acoustic result. This attests to the importance of the shape of the 

entire vocal tract, as opposed to only the articulator positions. 

 An important aspect of articulation is the concept of coarticulation. This occurs 

when speakers adjust their articulatory configurations based on preceding and following 
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sounds in order to simplify the overall articulator motion. Coarticulation is generally 

defined as “the overlapping of adjacent articulations” or as two articulators “moving as 

the same time for different phonemes” [13]. Coarticulation occurs when different speech 

production processes (and the articulators involved) combine with different timing 

patterns [13]. An example of this can be observed when comparing the English words pit 

and pin. Both of these words contain the same vowel, but the pronunciation of the vowel 

(and therefore its formants) are changed towards the end of vowel pronunciation as the 

articulators begin forming the final consonant. Coarticulation significantly complicates 

speech processing applications, especially because each type of coarticulation is different 

depending on the phonetic context. 

2.1.2 MANDARIN ACCENTED ENGLISH  

Many sources of difficulty in learning a new language can be traced back to the 

fundamental differences between the first and second languages (L1 and L2, 

respectively). Many factors contribute to the degree to which an L1 accent transfers to 

speech in L2, but the primary effect lies in the sound system of the first language [14]. 

These effects of L1 are assumed to compete or interfere with the production of L2 [15]. 

Specifically, prior research suggests that language learners tend to have more difficulty 

perceiving and producing L2 contrasts that involve non-familiar phonetic features [16]. 

However, while differences in phonetic context contribute a great deal to inaccurate L2 

production, similarities between the two languages can also lead to incorrect 

pronunciation. Cases of language learners replacing L2 sounds that are similar to a native 

sounds with the L1 sounds themselves have been documented [17].  
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In general, phonetic inaccuracy of Asian L1 speakers when speaking English has 

been well documented [3] [15] [17] [18]. This is especially true for an L1 of Mandarin 

Chinese and L2 of English. As previously mentioned, many sources of difficulty in 

learning a new language stems from fundamental differences between L1 and L2. Unlike 

English, Mandarin Chinese is a tonal language. This means that tone, similar to stress in 

English, can change the meaning of a word, regardless of phonetic segmentation [18]. 

Mandarin Chinese has 4 lexical tones: high-level (1), high-rising (2), dipping (3), and 

high-falling (4). Studies suggest that fundamental frequency (f0) of speech is the primary 

acoustic indicator of tones in Mandarin [19]. Tones in Mandarin have also been shown to 

be distinguished by syllable duration, even when f0 information is not present [19]. In 

English, fundamental frequency and syllable duration (along with intensity and vowel 

quality) are known to be correlates of stress [20]. Given this fact, one might assume that 

L1 Mandarin Chinese speaker may apply the same acoustic properties used for tones to 

produce native English stress. However, prior research indicates that only a subset of 

Mandarin tones map to English intonation patterns [19]. Additionally, articulation of 

unstressed vowels in English are typically less prominent, with their formants moving 

closer to the neutral schwa [21]. This means that the vowels themselves can vary with 

stress. This fact, in addition to the challenge of actually determining where stress should 

be placed based on context, make replication of English stress a largely difficult task. 

According to [15], the American English vowel system has 11 distinct 

monophthong vowels: /i, I, e, ε, æ, ^, u, ʊ, o, ɔ, ɑ/. Meanwhile, while there are conflicting 

opinions concerning the exact size of the Mandarin vowel system [22], [15] reports 6 

vowels in Mandarin Chinese: /i, e, y, u, o, ɑ/. Given this information, there are at least 5 
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vowels in Mandarin Chinese with close English equivalents (the vowels given in beat, 

bait, boot, boat, and bot). This information also indicates that there are several vowels in 

English that do not have a similar sound in Mandarin Chinese. This presents the 

opportunity for, as mentioned earlier in this section, an L2 learner to replace a sound that 

doesn’t exist with the most acoustically similar sound in L1 (as opposed to working 

towards forming a new pronunciation). Additionally, English vowels contain a length 

contrast that doesn’t exist in Mandarin (for example, the difference in length between 

ship and sheep) [15]. As a result, Mandarin speakers may not produce or perceive the 

durational differences present in vowels. Finally, Mandarin Chinese contains several 

diphthongs and triphthongs (combinations of two and three directly adjacent vowels, 

respectively), while American English only contains 5.  

Table 2.2 displays the consonants of English and Chinese, organized by both 

manner and location of articulation. E represents English, while M represents Mandarin 

Chinese. The consonants highlighted red are those that exist in English, but not Mandarin 

Chinese. Similarly, the consonants highlighted blue are those that exist in Mandarin 

Chinese, but not English. According to this table, there are 15 English consonants that do 

not have a similar sound in Mandarin Chinese. 
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Table 2.2 – Mandarin Chinese and English Consonants [23] 

 

The concept of Mandarin accented English speakers replacing English sounds with 

similar native sounds applies to consonants as well, and even some of the consonants 

shared by both language cause confusion in English due to the difference in usage across 

languages. For example, /l/ exists in both languages, but the consonant only appears in 

the beginning of syllables in Mandarin [23]. This leads to confusion for English syllables 

containing /l/ in the middle or end, resulting in either the realization of /l/ as its preceding 

vowel in a syllable (for example, fool becomes foo-o) or deletion of the consonant 

altogether [23]. Aside from /l/, final consonants in general also suffer from L1 effects. In 

Mandarin, phonemes typically end with a vowel sound (with the only exceptions being 

the front and back nasals/n/ and /ŋ/). Many Mandarin speakers transfer this pattern to 

English by either removing the final consonant of the English syllable or adding an 
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extraneous vowel to the syllable [23]. One of the most significant differences between 

consonant usage in English and Mandarin Chinese is voicing contrasts. Mandarin 

replaces voiced stops with aspiration to indicate stop voicing contrasts (as shown in Table 

2.2, /b/, /d/, and /g/ do not exist in Mandarin), and as a result, Mandarin speakers of 

English tend to have weak voicing for voiced English consonants [23]. The final 

noteworthy difference in consonant usage between English and Mandarin is the treatment 

of consonant clusters. Consonant clusters are common occurrences in English, in all 

possible positions of words. Meanwhile, initial and final clusters do not exist in Mandarin 

[23]. Mandarin speakers of English tend to either remove the final consonant from the 

cluster or to create an additional syllable via the attachment of a reduced vowel (such as 

the neutral schwa) [23]. 

 With these cross-language effects in mind, the EMA-MAE corpus was designed 

and collected. The study aims specifically to reduce the interference of L1 effects on the 

production of vowels, consonant clusters, and contrastive stress and to train Mandarin 

accented English speakers to produce these sounds as native-like (to American English) 

as possible. 

2.2 THE ELECTROMAGNETIC ARTICULOGRAPHY DATABASE 

2.2.1 BACKGROUND 

 In recent years, electromagnetic articulography (EMA) has become an important 

modality for studying the relationship between speech production and acoustics. 

Applications of EMA include, but are not limited to, speech modeling, recognition, and 

synthesis [24] [25] [26]. Through EMA, kinematic information about the articulatory 
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organs (lips, teeth, tongue, jaw, etc.) during speech production may be obtained. This 

information includes position, orientation, speed, and range of motion. This is 

accomplished by attaching sensors to the articulatory organs and having the subject speak 

within a small electromagnetic field surrounding their head. The movement of the sensors 

is tracked in this EM field as the subject speaks. The basic functionality of EMA systems 

are described in more detail by [27]. While early EMA systems were designed for use in 

the midsagittal plane, modern systems operate in 3D [27].  

Commercially available modern EMA systems include the Carstens 

AG500/AG501 and the NDI Wave Speech Research System. Both of these systems 

record both position of their sensors in 3 dimensions and the rotation of the sensors about 

the transverse axis and anterior-posterior axis. The Carstens AG500 can record data for 

up to 12 sensors at once at 200 Hz [28]. Meanwhile, the standard NDI Wave unit can 

track up to 8 sensors at once at 100 Hz, but may be upgraded to sample as many as 16 

sensors at 400 Hz [29]. The Marquette University Speech and Swallowing Lab uses the 

upgraded NDI Wave unit for its EMA applications. 

The NDI Wave consists of a data collection unit and a box containing transmitter 

coils. According to its specifications, the NDI Wave’s position tracking is accurate within 

0.5 mm. This falls within the target range for meaningful analysis of kinematic speech 

data [30]. The Wave can be used with 5 or 6 degree of freedom (5 or 6 DOF) sensors, and 

can be configured to operate using one of two available electromagnetic field sizes: 300 

mm3 or 500 mm3.  The MU Speech and Swallowing Lab collected data in the 300 mm3 

configuration using 5 DOF sensors (with a 6 DOF sensor used for reference).  

2.2.2 DATABASE OVERVIEW 
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A number of EMA datasets have been collected and released, coming from a 

variety of speaker populations for a variety of reasons. The University of Southern 

California’s EMA database was created and shared for the study of expressive speech, 

with a number of target emotions in mind [31]. [32] describes a database collected for the 

study of coarticulation across languages. The Marquette University Electromagnetic 

Articulography Mandarin Accented English (EMA-MAE) corpus is one the most recently 

released databases. As discussed in chapter 1, this database was collected in the interest 

of pronunciation training, with a focus on vowels, consonant clusters, and contrastive 

stress pairs. 

2.2.2.1 SPEAKER SAMPLE AND DATABASE COMPOSITION 

 The EMA-MAE corpus consists of an L1 group of 10 male and 10 female native 

American English (AE) speakers and an L2 group of 10 male and 10 female native 

Mandarin Chinese (MAE) speakers. All of the L1 speakers had an upper-midwestern 

American English dialect. All of the L2 speakers were primary Modern Standard 

Mandarin speakers, and were evenly divided between Beijing and Shanghai dialects (5 

male speakers of Beijing dialect, 5 male speakers of Shanghai dialect, etc.). All speakers 

fell between the ages of 18-40, and had no history of speech, language, or hearing 

pathology, no history of orofacial surgery, and no history of medications that would 

affect motor performance (such as antipsychotics or anti-anxiety medications). 

 The database contains roughly 30-45 minutes of speech from each subject. The 

subjects read from text prompts at the word, sentence, and paragraph level. The prompts 

come from several different sources, with a focus on probable acoustic-phonetic 

confusions typical of Mandarin-accented English speakers (discussed in section 2.1). The 
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corpus contains acoustic data, kinematic data, phonetic transcriptions, and onset/offset 

time labels for all speech. This is accompanied by kinematic data required for each 

speaker’s data calibration. This includes individual biteplate records and palate traces. 

 As described in section 1.2, the study is focuses on three pronunciation error 

categories: vowels, consonant clusters, and contrastive stress. The vowel and consonant 

cluster data were collected at the word level, with each word consisting of a C-V-C, C-V-

C-V, or C-V-C-V-C format, where C is a consonant or consonant cluster, and V is a 

vowel. As an example, consider the word hid, which is among those used in data 

collection at the word level. This word consists of a C-V-C format, as “i” is a vowel, 

while “h” and “d” are consonants. The contrastive stress data was collected at the 

sentence level. As explained in section 1.2, a contrastive stress is a stress on a syllable or 

word that is imposed contrary to its typical pronunciation. In the EMA-MAE dataset, all 

contrastive stress prompts used two-syllable words that, without the differentiation 

provided by stress, would be identical words. An example of this is desert and dessert. In 

desert, the first syllable of the word is stressed, while in dessert, the second syllable is 

stressed. Each of these contrastive stress pairs are placed in sentence prompts for each 

pilot study participant to recite. 

 The database contains data collected using 8 vowels, 43 consonant clusters, and 9 

contrastive stress pairs. The vowels used to create the EMA-MAE corpus are shown in 

Table 2.3. Note that the vowels that do not exist in Mandarin Chinese have been 

highlighted.  
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Table 2.3 – EMA-MAE Database Vowels 

Vowel ID IPA ARPA Typical Word 

1 i iy beat 

2 ɪ ih bit 

3 e ey bait 

4 æ æ bat 

5 u uw boot 

6 ʊ uh hood 

7 o ow boat 

8 ɑ aa bot 

 

Table 2.4 lists the contrastive stress words used in the EMA-MAE dataset. Note that 

when a word has alternate spelling based on stress location, both spellings are included in 

the table. 

Table 2.4 – EMA-MAE Database Contrastive Stress Words 

Stress ID Stress Word 

1 contest 

2 desert/dessert 

3 object 

4 perfect 

5 produce 

6 project 

7 rebel 

8 record 

9 subject 

 

The consonant clusters and contrastive stress prompts are documented in [33].  

2.2.2.2 SENSOR LAYOUT 
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 Articulatory sensors were placed on the lower lip (LL), upper lip (UL), tongue 

dorsum (TD), tongue blade (TB), and middle incisors (MI) in the midsagittal plane. There 

were also two lateral sensors placed at the right corner of the speaker’s mouth (LC) and 

the right central midpoint of the tongue blade (TL). The tongue blade sensor was placed 

about 1 cm posterior to the tip of the subject’s tongue, and the tongue dorsum sensor was 

placed 3 cm posterior to the tongue blade sensor. This sensor configuration is displayed 

in Figure 2.5. 

Figure 2.5 – EMA-MAE Sensor Layout (Mouth Diagram: [34]) 

 

The 6 DOF reference sensor was attached to the midline of a pair of glasses that subjects 

wore during data collection. This sensor is needed to provide a rigid reference for 
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implementing the NDI Wave’s head correction algorithm, which effectively factors out 

the speaker’s head movement during EMA recording. 

2.2.2.3 SPEAKER CALIBRATION 

As discussed in section 2.2.1, the EMA system tracks all movement of the sensors 

within the magnetic field. This presents an issue, as a speaker could easily move their 

head within the field while keeping their articulators stationary (relative to their head). To 

ensure that only movement of the articulators is captured, biteplate calibration is 

performed on each speaker. A biteplate was constructed for each speaker using dental 

impression wax. Two sensors were attached to the biteplate: sensor OS, placed one 

immediately anterior to the central maxillary incisors, and sensor MS, placed about 2-3 

cm posterior to the central maxillary incisors. Prior to data collection, the speakers were 

required to hold the biteplate in their mouth for about 15 seconds in order to determine 

the spatial relations between the biteplate sensors and reference sensor. Biteplate 

correction (described in detail by [5]) was used to define the midsagittal and maxillary 

occlusal planes, and to define the local coordinate origin at the tips of the central 

maxillary incisors. After this correction, the coordinate system is as shown in Figure 2.6. 
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Figure 2.6 – EMA-MAE Dataset Coordinate System [5] 

 

After the palate trace collection, the speaker read a specified paragraph to allow for them 

to adjust to speaking with EMA sensors placed on their articulators. The data obtained 

from this read-through was also used to adjust microphone levels and assess sensor 

adhesion. 

2.2.2.4 PALATE TRACE 

Section 2.1.1 discussed the importance of the vocal tract shape during speech 

production. While the tongue and lip sensors provide a great deal of information 

themselves, the palate forms the upper limit of the vocal tract at the tongue’s location. It 

is crucial to extract a speaker’s palate to form a detailed image of the speaker’s vocal 

tract. The palate trace record was obtained using a probe with a 5 DOF sensor attached to 

the end. The wand was swept across each speaker’s palate, both laterally from left to 

right, and along the midsagittal plane toward the uvula. 

Upon inspection of the kinematic data for each of the subjects, it was noted that in 

many cases, the coordinates of the palate traces indicated that they were located under the 
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tongue sensors (ypalate < ytongue). This is physically impossible, and it is unknown how the 

palate traces came to be distorted in this way. As a result of this issue, the original palate 

traces were discarded, and the tongue sensor data and dental perimeter for each speaker 

were used to recreate the palate traces. 

 The palate recreation was completed using the convex hulls surrounding the 

position data given by the three tongue sensors (TD – tongue dorsum, TB – tongue blade, 

and TL – tongue lateral). Figure 2.7 demonstrates an example of the process. To start, all 

of the positional speech data for a given speaker was aggregated into a single set of data. 

The midsagittal palate trace was obtained by first limiting the data to the points that fall 

into the range of -2.5 < z < 2.5 mm (Figure 2.7-3), then calculating the convex hull of this 

new data (Figure 2.7-1). The upper section outline of this convex hull is a rough estimate 

of the new midsagittal palate trace (Figure 2.7-2). The data was then divided into 100 

“slices” in the Y-Z plane along the midsagittal line, and for each slice, the convex hull of 

the data was calculated (Figure 2.7-4). As previously discussed, the tongue lateral sensor 

is located on the left side of the speaker’s tongue. To obtain a full convex hull 

(encompassing the left side of the mouth as well), this data was reflected across the 

midsagittal plane (Figure 2.7-5). The convex hull was edited to include the dental 

perimeter. With the general shape of the new palate trace established, Bezier smoothing 

[35] and upward shifting (to correct for downward shift cause by the shifting) in the X-Y 

plane were performed to form the general shape of the new palate (Figure 2.7-6). 
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Figure 2.7 – Palate Trace Generation Process 

 

2.2.2.5 ACOUSTIC AND KINEMATIC DATA FORMAT 

 As previously mentioned, speech samples were taken from each speaker at the 

word, sentence, and paragraph level. The acoustic and kinematic data were also stored 

accordingly. Each set of words, sentences, and paragraphs has a corresponding audio and 

kinematic data file. 

Speech audio was collected using a cardioid pattern directional condenser 

microphone, placed 1 m from the center of the EM field generated by the EMA 

equipment. The audio was recorded in .wav format. Using linear predictive coding (LPC) 

analysis [11], the 1st-3rd formants of each speech sample were calculated. The kinematic 

data is organized as large table, with the different columns corresponding to each sensor’s 

status, ID, positional dimension (x, y, z) value, and rotational orientation (q0, q1, q2, q3) 

value, as well as the time stamps (in seconds) during data collection. Full details of the 

methodology and data format are available in the EMA-MAE user manual [33]. 
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Each kinematic and formant data file is accompanied by a label file that lists the 

onset and offset times of relevant acoustic occurrences. These labels were marked and 

index by trained students of the Marquette University Speech and Swallowing lab 

through the observation of speech audio signals and spectrographs of those signals. For 

vowels, which are collected at the word level, the onset and offset time of each vowel 

recited during recording is listed along with a vowel ID number. For consonant clusters, 

the onset and offset time of each consonant cluster occurrence during recording is listed 

along with a cluster ID number. For contrastive stress pairs, the onset and offset time of 

each of the two syllables of each word is listed, along with a stress ID number. These 

labeling files are used for the extraction of the vowels, clusters, and stress pairs used to 

generate templates. 

2.2.3 KNOWN ISSUES AND CONCERNS  

2.2.3.1 MISSING SENSOR DATA 

 When a sensor is not within the NDI Wave sensor range, no position or 

orientation data is recorded for that sensor. This also occurs when the sensor is in range, 

but has too weak a signal for the NDI Wave to accurately capture its location. On 

average, less than 1% of sensor data is missing, but it is not evenly distributed throughout 

the database [33]. 

2.2.3.2 UNRELIABLE SENSOR ATTACHMENT 

 Some well-known disadvantages of using EMA for articulator motion tracking are 

the associated sensor placement issues. By placing sensors in or around a subject’s 
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mouth, the chance of sensors breaking, detaching, or becoming misaligned increases. 

While the MU Speech and Swallowing lab did not encounter the issue of sensors 

breaking, detached and misaligned sensors are a very real concern. In some cases, the 

tongue sensors would end up closer to each other than anticipated, due to stretching and 

compression of the tongue. In other cases, a sensor may become completely detached 

from the tongue. Unless the speaker were to notify the experimenter, this issue could go 

undetected. These issues lead to misrepresentation of articulator locations, and therefore a 

corruption of the kinematic data. While these cases are likely limited and ideally singled 

out due to inconsistency with the rest of a given speaker’s data, the issue is present and 

could have significant effects on the analysis of kinematic data. 

2.2.3.3 UNRELIABLE FORMANT DATA 

 While the speech audio for the EMA-MAE dataset was collected in a sound-

attenuating acoustic booth, noise was not completed removed from the system. The 

primary source of noise was interference between the EMA sensors and the microphone 

used for audio collection. In general, formants F3 and F4 are very difficult to capture 

reliably. The use of unreliable data threatens to corrupt the data analysis and template 

development process. Therefore, all formant operations and analyses in this thesis were 

performed using only formants F1 and F2. While this leads to a loss of information, it 

prevents potential sources of error in formant analysis. 

2.3 THE ACOUSTIC-TO-ARTICULATORY INVERSION SYSTEM 

2.3.1 BACKGROUND 
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 Acoustic-to-articulatory inversion is the estimation of a speaker’s articulatory 

configuration from their speech data. Using the acoustic signal as input, the inversion 

system produces the articulatory positioning and movement. Acoustic-to-articulatory 

inversion has a variety of speech processing applications, including speech coding, 

automatic speech recognition (ASR), computer aided language learning (CALL), and 

computer aided pronunciation training (CAPT) [36] [37] [38]. There have been several 

successful implementations of speaker-dependent acoustic to articulatory inversion [39] 

[40], but most of these implementations must be trained on simultaneous acoustic and 

kinematic data from participating speakers. The Marquette University Speech Lab’s 

acoustic-to-articulatory inversion system performs speaker-independent speech 

inversions without the use of a speaker’s kinematic data, and uses the 20 native English 

speakers from the Speech and Swallowing Lab’s EMA-MAE database (discussed in 

section 2.2) for training and analysis. 

2.3.2 ARTICULATORY FEATURES 

 While sensor position data provides a simple representation of articulator motion, 

there are a number of reasons that it may not be the optimal representation for use in 

acoustic-to-articulatory inversion. Among these is the fact that raw sensor position 

provides barely any information about the shape of the vocal tract during speech 

production. As discussed in section 2.1, the acoustics of speech are largely driven by the 

cross-section of the vocal tract. Given that sensor position data only provides information 

about a small number of locations in the vocal tract, this measure cannot provide 

meaningful information about the corresponding acoustics without any reference to the 

surrounding vocal tract parameters. Also, there are times when information may be 
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represented in a simpler format. For example, when concerned with lip separation, it 

would be much simpler to express the value as the difference in lip heights (ULy-LLy) 

than storing 3 dimensions of two different sensors (UL and LL). 

 The MU Speech Lab defined a conversion of EMA kinematic data to vocal tract 

parameters in order to represent the speaker’s articulatory configurations in a more 

meaningful format. Table 2.5 lists these features. 

Table 2.5 – Acoustic-to-Articulatory Inversion System Features [5] 

 

Humans have unique vocal tract sizes and shapes, especially across gender (see section 

2.1.1 for a discussion on this topic). Without horizontal normalization, the sensor x 

positions are relative to a given speaker and are therefore meaningless when comparing 

to or modeling a different speaker or speaker group. The distance from the central 

incisors to the middle of the back molar was used as a horizontal normalization scalar for 

each speaker. This distance is thought to be related to the speaker’s vocal tract length, 
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and is introduced to the system to reduce cross-speaker horizontal variance. The 

horizontal features (those along the X-axis), VT1, VT3, VT5, and VT7, were each 

calculated directly from the corresponding sensor position divided by this scalar. The 

vertical features (those along the Y-axis), VT2, VT4, and VT6, were calculated directly 

as the vertical distance between the sensor position and the palate height at the same x 

position. VT8 was calculated as the vertical lip separation, rescaled to a [0,1] working 

space. Equations (2.1)-(2.8) show the exact calculations required to convert sensor 

positions to articulatory features. 
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𝑚𝑎𝑥

 
 

 

(2.8) 

 

P(x,z) represents the speaker’s palate’s y location corresponding to the x and z locations 

of the sensor being converted. For example, P(x,y) in equation (2.2) is the y value of the 

palate at the x and z locations of the TD sensor. H represents the horizontal normalization 
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scalar. Note that in order to avoid outliers and measurement error, the minimum and 

maximum lip separation values were recorded as the 5th and 95th percentiles of all vertical 

lip distance measurements for each speaker. 

2.3.3 HIDDEN MARKOV MODEL BASED INVERSION SYSTEM 

 The Speech Lab acoustic-to-articulatory inversion system starts with a hidden 

Markov model (HMM) based inversion system. Parallel acoustic and articulatory data are 

used to train the acoustic and articulatory HMMs separately, and the HMMs are aligned 

by state sequences for each phonetic unit. During inversion, the speech signal is input to 

the acoustic HMM to derive an optimal HMM state sequence via the Viterbi algorithm 

[11]. The corresponding aligned articulatory HMMs are used to recover the articulatory 

motion. This is described in further detail by Ji [5]. Figure 2.8 displays a diagram of an 

HMM based inversion system. 
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Figure 2.8 – HMM-Based Acoustic-to-Articulatory Inversion System [5] 

 

2.3.4 SPEAKER ADAPTATION 

 The baseline HMM based acoustic-to-articulatory inversion system is a speaker 

dependent system, meaning that parallel acoustic and articulatory training is implemented 

on data from a single subject. This acoustic-articulatory mapping varies from subject to 

subject, so this inversion method is unlikely to perform well without articulatory data 

from the target speaker. This is problematic, since many of the most important 

applications of acoustic-to-articulatory inversion would necessarily require inversion on 

subjects for whom no articulatory data is available to use for training. The HMM based 

inversion system was extended using the idea of speaker adaptation to create a new 
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system that can accomplish inversion on a new speaker using only a small amount of 

acoustic data and no kinematic data [5]. 

2.3.4.1 REFERENCE SPEAKER WEIGHTING 

 Reference speaker weighting (RSW) is a rapid speaker adaptation approach that 

implements adaptation using about 5-10 seconds of speech [41]. RSW uses speaker-

dependent models as a starting point towards estimation of the parameters of a new 

speaker. Specifically, RSW creates a model of a new speaker as a weighted combination 

of reference speakers, and the weights are determined using the adaptation data. A 

diagram describing the basic idea of RSW is shown in Figure 2.9. 

Figure 2.9 – Reference Speaker Weighting [5] 

 

2.3.4.2 PARALLEL REFERENCE SPEAKER WEIGHTING 

 Parallel reference speaker weighting (PRSW) extends RSW used in the acoustic 

domain to estimate articulatory parameters. RSW is performed using the new speaker’s 

speech signal, and the derived weights are used in the articulatory domain during 

inversion. A diagram showing the operation of PRSW is shown in Figure 2.10. 
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Figure 2.10 – Parallel Reference Speaker Weighting [5] 

 

Note that PRSW assumes that the speaker combination used in the acoustic domain 

matches that of the articulatory domain. A detailed explanation of the implementation of 

PRSW can be found at [5]. 

 During initial experiments, 13 of the 20 native English speakers’ inversion results 

were shown to be superior to the RSW-based speaker independent model, and very close 

to the HMM based speaker-dependent model. Further experiments showed that 

implementations that used a subset of reference speakers based on acoustic model 

similarity, as well as implementations that used a subset of reference speakers based on 

speaker-dependent inversion performance both performed better than the baseline RSW 

system. This means that PRSW is capable of recovering a good articulatory configuration 

for a target speaker, provided that the set of reference speakers are selected according to 

acoustic and articulatory consistency. The results of the analyses are described in detail 

by Ji [5]. 
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3 DATA EXTRACTION AND ANALYSIS 

As explained in section 2.2, all kinematic and formant data is accompanied by 

labeling files that allow for the vowels, consonant clusters, and contrastive stress data to 

be extracted. The analysis in this thesis focuses on the midsagittal plane, so all kinematic 

data was extracted in two dimensions (x and y, which define the midsagittal plane, as 

shown in Figure 2.6). Each phonetic category has its own acoustic and articulatory 

characteristics, and were therefore extracted and analyzed in different ways. This chapter 

explains in detail how each of the three categories were handled. 

3.1 RELEVANT ARTICULATORS AND SENSORS 

As discussed in chapter 1, the kinematic templates designed for pronunciation 

training aim to model the movement and positioning of articulators in the midsagittal 

plane. Specifically, this refers to the articulators that have sensors along the midsagittal 

plane: tongue dorsum (TD), tongue blade (TB), upper lip (UL), and lower lip (LL). While 

there are other sensors that provide additional information, this research only uses these 

four midsagittal sensors. Figure 3.1 displays a midsagittal view of the articulators and the 

placement of the sensors (displayed as red circles) being used for template formation. 
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Figure 3.1 – EMA Sensors Used For Template Creation 

 

For all phonetic categories (vowels, consonant clusters, and contrastive stress), these data 

from these four sensors was extracted for all analyses. In addition to information from the 

EMA sensors, the palate trace of the speaker is also crucial for analyzing and 

characterizing the speech data. As discussed in chapter 2, the shape of the vocal tract’s 

cross section plays a large role in determining the sound produced during articulation. 

The palate forms the ceiling of the vocal tract during oral articulation, and therefore 

provides important information about the vocal tract shape.  

3.2 CONVERSION TO “FEATURE SPACE” 

As discussed in section 2.3, the acoustic-to-articulatory inversion system returns 

the estimated articulatory parameters as a set of palate-referenced features. Table 2.5 

displayed these features, as well as how they are defined. In order to compare the results 

of the acoustic-to-articulatory inversion to the kinematic templates, the two forms of data 

must be presented in the same format. To complete this requirement, all extracted 
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kinematic data from the EMA-MAE corpus is re-referenced in the format of articulatory 

features using the conversion methods described in section 2.3.2. This conversion places 

all extracted EMA data in feature space. Only a subset of features from Table 2.5 are 

used for data extraction and analysis, as this analysis is only applied to the midsagittal 

plane. Table 3.1 lists the features specifically used for data analysis and template 

creation.  

Table 3.1 – Articulatory Features Used for Analysis and Template Creation 

Feature Feature Description 

VT1 Tongue Dorsum (TD) Normalized Horizontal Position 

VT2 Tongue Dorsum (TD) Vertical Height to Hard Palate 

VT5 Tongue Apex (TB) Normalized Horizontal Position 

VT6 Tongue Apex (TB) Vertical Height to Hard Palate 

VT7 Normalized Horizontal Lip (UL) Protrusion 

VT8 Normalized Vertical Lip (UL,LL) Separation 

 

As Table 3.1 displays, two of the features (VT2 and VT6) are referenced to the 

palate. This means that the palate traces of the speakers (described in section 2.2.2.4) are 

also needed to perform the conversion to feature space. Before extracting any speech data 

for a speaker, their palate data is extracted. The palate referenced tongue sensors are 

located along the midsagittal plane, so only the midline trace of the palate is needed. 

According to the coordinate system defined in Figure 2.6, the midline palate trace is 

located at z=0. For each speaker’s palate trace, all data points located at -0.3 < z < 0.3 

were extracted and resampled such that all speakers have the same number of x-y data 

points in their palate trace (arbitrarily chosen to be 200 points). Having the same sized 
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palate trace for each speaker allowed for ease of calculating an average palate trace, 

which was used for template visualizations (see section 4.2.3 for details). 

After the data is converted to feature space, the lips are expressed in terms of 

protrusion and separation. UL and LL become the two dimensional LS, whose x is 

normalized lip protrusion (taken from the x position of UL) and whose y is normalized 

lip separation (taken from the vertical distance between UL and LL, in accordance with 

equation (2.8)). Table 3.2 shows the relationship between the EMA sensor dimensions 

and the articulatory features of the inversion system.  

Table 3.2 – Relationship Between Sensors and Articulatory Features 

Sensor  

Dimension 

Feature  

Value 

TDx VT1 

TDy -VT2 

TBx VT5 

TBy -VT6 

LSx VT7 

LSy VT8 

 

Figure 3.2, which displays the sensor positions of a speaker for a given point in time, 

demonstrates the conversion from Euclidean space to feature space. The left plot shows 

the original data as extracted from the EMA-MAE corpus files, the middle plot shows the 

tongue sensors in feature space, and the right plot shows the aggregate LS sensor in 

feature space. 
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Figure 3.2 - Conversion to Feature Space 

 

Note that through palate-referencing and expressing tongue heights as negative 

values, the palate’s location is moved to y=0. Recall that the LS features use a [0,1] 

normalization. Given that this sensor uses a different scale than the tongue sensors, it 

needed to be plotted separately. 

Note that while data must be presented in feature space for use with the acoustic-to-

articulatory inversion system, the data analysis also benefits from this conversion (for the 

same reasons described in section 2.3.2). Feature space provides both a more compact 

and more intuitive data representation in the context of data analysis and comparison, and 

its normalization accounts for cross-speaker variability that threatens to corrupt any 

comparisons across speakers or speaker groups. 

3.3 STATISTICAL ANALYSIS OVERVIEW 

The wide variety of acoustic and articulatory parameters that factor into speech 

production (discussed in chapter 2), coupled with cross speaker variability, introduces a 

degree of unknown into the problem of analyzing and modeling those articulatory 
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parameters. In order to account for this unpredictability, a probabilistic analysis is 

introduced to the study of speech data. Specifically, Student’s t-tests and analysis of 

variance are used to assess the differences (or lack thereof) in articulation within and 

between speaker groups.  

3.3.1 STUDENT’S T-TEST 

A Student’s t-test (or independent samples t-test) is used to compare two means and 

determine if they are different from each other, as well as the significance of the 

difference between groups [42]. Specifically, Student’s t-tests are used to determine if 

two means are different due to significant differences between the groups, or just by 

chance (in other words, whether the results can be re-produced through several repeated 

trials). While there are many variations of the t-test that differ based on the state of the 

sample data, t-tests are, in general, used for comparing groups of data with small sample 

sizes (typically less than 30) [42]. This work uses Welch’s t-test, which should be used 

when the two populations being compared are not assumed to have equal sizes or 

variances [42].  

In t-tests, the differences between groups is determined using the t-value (or t-

score) [43]: 
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where xi is the set of data values for group i, si is the unbiased estimator of the variance 

for group i, and ni is the sample size of group i. The t-score is evaluated in order to 

determine whether the groups are significantly different using the Student’s t-distribution, 
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which is a family of curves in which the number of degrees of freedom determines the 

particular curve used for a calculation. In a normal Student’s t-test (where the sample 

sizes and variances of the two groups are assumed to be equal), the number of degrees 

(DOF) is equal to one less than the sample size of either group [44]: 

 𝑑𝑓𝑖 = 𝑣𝑖 =  𝑛𝑖 − 1 (3.2) 

  

where dfi (or vi) is the number of DOF for group i. The degrees of freedom are indicative 

of the number of independent pieces of information in a sequence of numbers. Note that 

in order to perform these calculations, the means of the two groups must be known. For 

this reason, the sample size is decremented by 1 to form the number of DOF (because 

while N-1 pieces of information are allowed to vary freely, the mean is known). In a 

Welch’s t-test, the number degrees of freedom is estimated using the Welch-Satterthwaite 

equation [43]:  
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(3.3) 

 

where v (or df) is the overall number of DOF, vi is the number of DOF for group i, and si 

and Ni are as defined in equation (3.1). The probability distribution function of the t-

distribution is as follows [43]: 
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(3.4) 

 

where Г is the gamma function. 
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In order to form a metric for determining statistical significance, an alpha value 

(or significance level) must be chosen [45]. In hypothesis testing, the alpha level is the 

probability of rejecting the null hypothesis (the assumption that the means of the two 

groups are equal) when it is true [42]. In other words, the alpha level is the probability of 

a false positive. In choosing an alpha value, one also chooses the confidence level. The 

confidence interval of a set of sample data is a range of values that is likely to contain 

some population parameter (often, the mean) [45]. The probability that a confidence 

interval will contain the population parameter is known as the confidence level (C) [45]. 

The confidence interval is determined through the selection of C, and the confidence 

level corresponds to the percentage of the area under the probability distribution function 

of the normal distribution: 

Figure 3.3 – Confidence Level Demonstration [46] 

 

Note that the concept of confidence intervals and levels is founded on the Central Limit 

Theorem (CLT), which states that the distribution of a large sample size (typically, more 

than 30 samples) of a population tends to approach a normal distribution [46]. In 

confidence analysis, the sample data is treated as if it is normally distributed. For a given 
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C value, the probability of observing a value outside of the area under the curve is the 

alpha value: 

 𝛼 = 1 − 𝐶 (3.5) 

 

where α is the alpha level and C is the confidence level. A commonly used alpha level is 

0.05, or 5% (corresponding to a confidence level of 0.95 or 95%) [42]. To determine 

whether there are significant differences between groups, the t-value must be compared 

against the critical value (c). For t-test operations, the critical value is obtained using a t-

distribution table, which lists the critical value given the number of DOF and alpha level 

[43].  

After calculating the t value and obtaining the critical value, the t-distribution may 

be used to calculate a p-value [42]: 

 𝑝 = Pr (𝑇 > 𝑐) (3.6) 

 

where T is any given f(t) returned from the t-distribution of equation (3.4), and p is the p-

value. When the p-value is less than the alpha value, the null hypothesis may be rejected 

[42]. In other words, a lower p-value than alpha value indicates that the means of the two 

groups being compared are indeed significantly different. One should note that this is 

only a convention, and that a low p value does not guarantee that the groups are different; 

it just confirms that they are very likely to be different. 

3.3.2 ANALYSIS OF VARIANCE 

Analysis of variance (ANOVA), like t-tests, is a method of comparing the means 

of a variable across different groups. The main difference between ANOVA and t-tests is 

that while t-tests are used for comparisons of two groups, ANOVA is used for 
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comparisons of 3 or more groups. Similar to t-tests, there are several variations of 

ANOVA. This study makes use of one-way (or one-factor) ANOVA, which compares 3 

or more groups (or levels) for a single independent variable. For an ANOVA, the null 

hypothesis is that the means of all groups involved are equal. 

In ANOVA, the t-value and t-distribution of t-tests are replaced with the F-value 

and F-distribution. The F-value is described as the ratio of variance between groups 

(effect or treatment variance) to the variance within groups (error variance) [44]: 

 
𝐹 =

𝐸𝑓𝑓𝑒𝑐𝑡/𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝐸𝑟𝑟𝑜𝑟 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒
=

𝑉𝑎𝑟𝑏𝑒𝑡𝑤𝑒𝑒𝑛

𝑉𝑎𝑟𝑤𝑖𝑡ℎ𝑖𝑛
 

 

(3.7) 

 

 After observing this ratio, it is clear that the F value is a measure of the differences 

between different groups compared to the amount of variation within each group. By 

accounting for the individual speaker group variation (error), the analysis can focus on 

the differences between each group. Similar to the t-distribution, the F-distribution is a 

family of distributions in which the number of degrees of freedom determine which 

distribution is used. The probability density function of the F-distribution is as follows 

[44]: 

 

 

 

(3.8) 

 

where d1 is number of DOF between groups, d2 is the number of DOF within groups, and 

B is the beta function. 

In ANOVA, each group (or level) has its own number of degrees of freedom, 

following the same definition as equation (3.2). In ANOVA, the total DOF is made up of 
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the DOF between groups and the DOF within groups. The same is true for the total 

variance: 

Figure 3.4 – ANOVA Variance and DOF Structure [44] 

 

Note that variance may be expressed as the ratio of the sum of squares (SS) to the number 

of degrees of freedom: 

 

𝑉𝑎𝑟 =  
𝑆𝑆

𝑑𝑓
=  

∑(𝑥 − �̅�)

𝑛 − 1
=
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(∑ 𝑥)2

𝑛
𝑛 − 1

 

 

(3.9) 

 

To determine the variance estimate, the sum of squares and number of degrees of 

freedom must first be determined, both within and between groups. The procedure, as 

described by [44] is as follows: 

For ease of calculations, define a correction factor (CF): 

 
𝐶𝐹 =

(𝑆𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑥)2

𝑇𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎𝑙𝑙 𝑥
=

(∑ ∑ 𝑥𝑖
𝑙
𝑖=1 )

2

∑ 𝑛𝑖
𝑙
𝑖=1

 

 

(3.10) 

 

where xi is the sequence of values for group i, ni is the length of xi, and l is the number of 

groups. Given the definition of the sum of sum of squares in equation (3.9), the correction 

factor may be used to calculate the total sum of squares: 
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𝑆𝑆𝑡𝑜𝑡𝑎𝑙 = (𝑆𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑥)2 − 𝐶𝐹 = (∑ ∑ 𝑥𝑖

𝑙

𝑖=1

)

2

− 𝐶𝐹 

 

(3.11) 

 

Next, calculate the SS between groups, and use that to calculate the SS within groups: 

 

𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛 = ∑
(∑ 𝑥𝑖)

2

𝑛𝑖

𝑙

𝑖=1

− 𝐶𝐹 

 

(3.12) 

 

 𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛 = 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 − 𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛  (3.13) 

 

The total number of DOF is defined as one minus the total length of all data, and the 

number of DOF is defined as one minus the number of groups. These may be used to 

calculate the number of DOF within groups: 

 

𝑑𝑓𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑛𝑖

𝑙

𝑖=1

− 1 

 

(3.14) 

 

 𝑑𝑓𝑏𝑒𝑡𝑤𝑒𝑒𝑛 = 𝑙 − 1 (3.15) 

 

 𝑑𝑓𝑤𝑖𝑡ℎ𝑖𝑛 = 𝑑𝑓𝑡𝑜𝑡𝑎𝑙 − 𝑑𝑓𝑏𝑒𝑡𝑤𝑒𝑒𝑛  (3.16) 

 

With the between and within SS and df values calculated, the variance estimates may be 

calculated using equation (3.9): 

 
𝑉𝑎𝑟𝑏𝑒𝑡𝑤𝑒𝑒𝑛 =

𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛

𝑑𝑓𝑏𝑒𝑡𝑤𝑒𝑒𝑛
 

 

(3.17) 

 

 
𝑉𝑎𝑟𝑤𝑖𝑡ℎ𝑖𝑛 =

𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛

𝑑𝑓𝑤𝑖𝑡ℎ𝑖𝑛
 

 

(3.18) 
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Finally, the F value may be calculated using equation (3.7). Obtaining the p-value from 

the F-distribution is identical to the process of obtaining p-value from the t-distribution in 

a t-test (described in section 3.3.1). After choosing an alpha value, an F-distribution table 

is used to determine the critical value, and the p-value calculation becomes a slight 

variation of equation (3.6): 

 𝑝 = Pr (𝐹 > 𝑐) (3.19) 

 

where F is any given f(t) returned from the F-distribution of equation (3.8), and c is the 

critical value obtained from the F-distribution table.  

When the p-value is less than the alpha value, the null hypothesis is rejected, 

meaning all of the groups are not the same. Note that this does not mean that all groups 

are significantly different from each other, but instead that at least two of the total 

number of groups are different from each other. To determine which two groups are 

different from each other, t-tests must be performed on the groups. If the statistical 

relationship between every set of two groups is desired, the ANOVA may be bypassed, 

and t-tests may be performed immediately. Performing several t-tests complicates the 

process of determining statistical significance. This issue is discussed in section 3.3.3. 

3.3.3 MULTIPLE COMPARISONS 

When a large number of statistical tests are performed, some will result in p-values 

that are less than alpha values, purely by chance. Note that the p-value indicates the 

chance of obtaining the observed result when the null hypothesis is true (and not the 

probability that the null hypothesis is true), and each subsequent test presents another 
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opportunity for a false positive to occur. In order to account for this inflated probability, 

the Bonferroni correction [47] is introduced to the analysis during multiple tests: 

 𝛼𝑁 =
𝛼

# 𝑡𝑒𝑠𝑡𝑠
 

 

(3.20) 

 

where αN is the new alpha value and α the original alpha value. When determining 

statistical significance in this case, the p-values must be less than αN to reject the null 

hypothesis. 

3.4 VOWEL EXTRACTION AND ANALYSIS 

3.4.1 VOWEL EXTRACTION 

All vowel data was extracted from the word-level prompts described in the EMA-

MAE Dataset Manual [33]. As discussed in section 2.1.1, English vowels (aside from 

diphthongs) are formed by maintaining a stationary vocal tract during articulation. This 

means that the articulators (and by extension, the sensors placed on them) should barely 

move during vowel production. In other words, the formants and sensors positions should 

each have one data point for each vowel. In order to avoid the coarticulation effects 

described in section 2.1.1, the vowel data is extracted from the middle of the vowel 

pronunciation (as far away from either adjacent consonant as possible). In order to obtain 

a maximally stable representation of the vowel midpoint, the values over the middle 20 

ms of the vowel pronunciation were averaged to obtain single data points for each sensor 

and formant.  

As discussed in section 2.1.1, formant analysis is typically more reliable and 

suitable for vowels than for most consonants, and in this work, formants are only studied 
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in the context of vowels. During the overview of the EMA-MAE corpus in section 2.2, 

the fact that interference led to significant suppression of formants greater than F2 was 

discussed. In order to avoid data corruption due to the reduced liability of these higher 

order formants, only F1 and F2 are studied in the formant analysis. For each occurrence 

of each vowel in the word-level prompts, the average F1 and F2 values are calculated 

from the middle 20 ms of the vowel pronunciation.  

3.4.2 VOWEL FORMANT ANALYSIS 

3.4.2.1 FORMANT NORMALIZATION 

As discussed in section 2.1.1, the formants produced by a speaker are dependent 

on the size and shape of their vocal tract. No two humans have the exact same vocal tract 

shape and dimensions. This means that even if two people are articulating a sound in 

roughly the same way, the formants produced by these two people will still be different. 

Ideally, physiological differences like this would be removed from the analysis, allowing 

for a focus on the accuracy of articulation during cross-speaker comparisons. There are a 

number of formant normalization techniques that address this very issue. Popular 

normalization techniques include the Gerstman, Lobanov, Nordstrom, and Nearey 

methods [48] [49].  

 In a study conducted by [48], a multivariate analysis of variance (MANOVA) of a 

number of normalization techniques showed that when comparing across vowel, gender, 

and region, the Lobanov method proved to reduce anatomical/physiological differences 

most effectively while also preserving most of the sociolinguistic variation in acoustic 

measurements. For this reason, the Lobanov method was chosen as the formant 
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normalization method for the data of the EMA-MAE corpus. The Lobanov normalization 

method calculation is as follows [49]: 

 

 

 

(3.21) 

 

where Fi is the ith formant, Fi
N is the normalized value of Fi, µi is the mean value of the 

speaker’s ith formant frequency, and σi is the standard deviation of the speaker’s ith 

formant frequency. After each formant value was extracted as described in section 3.4.1, 

it was normalized using this method. 

 After normalization, the new F1 and F2 values are no longer expressed in Hertz. 

In order to display the values in the typical formant ranges, functions were used to scale 

them [50]: 

 
𝐹1′ = 250 + 500

𝐹1
𝑁 − 𝐹1−𝑚𝑖𝑛

𝑁

𝐹1−𝑚𝑎𝑥
𝑁 − 𝐹1−𝑚𝑖𝑛

𝑁  
 

(3.22) 

 

 
𝐹2′ = 850 + 1400

𝐹2
𝑁 − 𝐹2−𝑚𝑖𝑛

𝑁

𝐹2−𝑚𝑎𝑥
𝑁 − 𝐹2−𝑚𝑖𝑛

𝑁  
 

(3.23) 

 

where Fi
N is the normalized value of the ith formant, Fi’ is the scaled version of Fi

N, and 

Fi-min(max)
N is the minimum (or maximum) value of the ith formant for all speakers. Note 

that these scaling functions do not maintain the exact relationships between the formant 

values (they become distorted) when transforming the data into a familiar format. 

Therefore, these functions are only used for plotting formant data (specifically, for 

comparison to the vowel quadrilateral), and are not involved in any analysis of the 

formants. 
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3.4.2.2  DATA ANALYSIS OVERVIEW 

Several different calculations were made on the normalized formants obtained 

from each speaker’s data. Among these, the calculations most relevant to this study are: 

 the mean and standard deviation of the formant values (F1 and F2) of each vowel 

for each speaker. 

 the convex hull surrounding all F1-F2 combinations for each speaker, as well as 

the area of this convex hull. 

 ANOVAs and t-tests comparing both the formants of each vowel and the total 

convex hull areas across L1 and gender. 

There were two different kinds of ANOVAs performed, both across the same speaker 

groups: native English-speaking males (ENGM), native English-speaking females 

(ENGF), native Mandarin-speaking males (MANM), and native Mandarin-speaking 

females (MANF). Each of these four groups contains 10 speakers. This corresponds to 4 

different groups, and 40 total data points. Plugging these values into equations (3.14)-

(3.16) yields df values of 3 DOF between and 36 DOF within. Given the df values and 

the formant data, the ANOVA results may be calculated by hand. However, R was used 

for the ANOVA and all other statistical analysis calculations. The first ANOVA performs 

vowel-by-vowel comparisons of F1 and F2 across the speaker groups above. The second 

ANOVA performs comparisons of the sizes of the F1-F2 for all vowels (effectively a 

comparison of the total vowel working spaces) across the same groups. 

For all statistical analyses, a confidence level of 0.95 (or 95%) was chosen. By 

equation (3.5), the corresponding alpha value is 0.05 (or 5%). As explained in section 3.3, 
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the alpha value sets the threshold for determining statistical significance, and 0.05 is the 

most commonly used value. As previously discussed, Bonferroni correction is used to 

account for the increased risk of type 1 error when performing multiple t-tests. With 4 

speaker groups, 6 t-tests are required for individual comparisons (ENGM-ENGF, ENGM-

MANM, ENGM-MANF, ENGF-MANM, ENGF-MANF, MANM-MANF). Using 

equation (3.20), the new alpha value may be calculated: 

 
𝛼𝑁 =

𝛼

# 𝑡𝑒𝑠𝑡𝑠
=  

0.05

6
= 𝟎. 𝟎𝟎𝟖𝟑 

 

(3.24) 

 

For individual t-tests, the obtained p value must be less than 0.0083 to reject the null 

hypothesis.  

The results of these calculations described above were analyzed with the primary 

intent of comparing native English (AE) speaker formant production to that of Mandarin 

accented English (MAE) speakers, with intra-language comparisons provided for frame 

of reference. 

3.4.2.3 COMPARISON EXPECTATIONS 

 Given the background information covered in section 2.1, there were a number of 

expectations regarding the results of the analysis. Due to the fact that formants values are 

determined by the size and shape of the vocal tract, and because men typically have 

larger vocal tracts than women, the formants produced by men are usually lower than 

those of women. However, this is a physiological difference between speaker groups, and 

should be significantly reduced by the Lobanov formant normalization (leaving only 

sociolinguistic differences). Therefore, with AE speakers producing their native language 

(assumed to be spoken correctly at all times), comparisons between ENGM and ENGF 
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were expected to yield no statistical significance (no significant differences in formant 

production expected).  

Mandarin accented English (MAE) speakers are a different case. Three of the 

vowels contained within the EMA-MAE corpus (/ih/, /ae/, /uh/) do not exist in Mandarin 

Chinese. As explained in section 2.1, MAE speakers have been known to replace 

unfamiliar sounds with the most familiar sound in their native language. The mean 

formants of these vowels are expected to be farther from their English counterparts than 

the other vowels. There are also a number of factors that introduce a degree of 

unpredictability into the data. These include coarticulation effects and MAE speakers’ 

distorted perception of English vowel duration (both discussed in section 2.1). Each MAE 

speaker may handle these complications differently, which would lead to a wide array of 

formant placements. Therefore, comparisons between MANM and MANF are not 

expected to yield any statistical significance, but comparisons across L1 are expected to 

vary, especially across vowels that don’t exist in Mandarin Chinese. 

3.4.2.4 RESULTS 

Figure 3.5 displays the average normalized formant values of each EMA-MAE 

vowel across all AE speakers, both scaled and unscaled. The data points of the four 

corner vowels of the vowel quadrilateral are boxed. Note that the axes of the plots are 

changed to reflect the correlation between the vowel quadrilateral and formant 

frequencies. 
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Figure 3.5 – Average Normalized Vowel Formants: Native English 

 

Given the vowel quadrilateral of Figure 2.4 and the idea that formants are related to 

tongue positioning, as discussed in section 2.1, a few of the vowels land in slightly 

unexpected locations. Specifically, /ih/ and /uh/ were expected to have lower F1 values, 

and /ow/ was expected to have a greater F2. Different experimental data usually yields 

slight differences in formant measurements across English speakers [22] [21] , so small 

differences were expected. It is also worth noting these formants are the result of 

normalization designed to factor out physiological differences across speaker groups. The 

reduction of these differences may have resulted in formant shifts that result in a less 

similar formant distribution than un-normalized data. This can be checked via 

comparisons between normalized and un-normalized formant data, but that is not the 

focus of this study. In general, this formant distribution supports the idea that the vowel 

quadrilateral is related to formant frequencies. 



55 

 

 Figure 3.6 displays the normalized average formant frequencies of each vowel for 

both AE speakers and MAE speakers in the same window. The corner vowels are marked 

with large circles, and groups are differentiated by point and line type. 

Figure 3.6 - Average Normalized Vowel Formants: English vs. Mandarin 

 

Treating the AE formants as targets for “correct” pronunciation, brief observation shows 

that most of the MAE formants fell within the general area of their targets. Two vowels, 

/ih/ and /uh/, landed fairly far from their English counterparts. The most interesting vowel 

is this figure is /uh/, which not only deviates from the AE target significantly, but also 

overlaps with the MAE formants of /uw/. This implies that MAE speakers pronounce 

these two vowels nearly identically. Both /ih/ and /uh/ are among the vowels that do not 
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exist in Mandarin Chinese, so these may be cases of MAE speakers replacing unfamiliar 

sounds with nearby native-like sounds (as discussed in section 2.1).  

Table 3.3 and Table 3.4, which display means and standard deviations 

(respectively) of the formants of each vowel for AE and MAE speakers, provides a more 

detailed comparison of the two groups. These tables include an ENG-MAN (English 

minus Mandarin) section, which display the difference in formant values between the AE 

and MAE speakers. 

Table 3.3 – Mean Normalized Vowel Formants: English vs. Mandarin 

 F1 F2 

 Vowel ENG MAN ENG-MAN ENG MAN ENG-MAN 

1 (/iy/) -1.205 -1.006 -0.199 1.300 1.265 0.035 

2 (/ih/) 0.131 -0.500 0.631 0.541 0.944 -0.403 

3 (/ey/) -0.396 -0.002 -0.393 1.112 0.822 0.290 

4 (/ae/) 1.147 1.330 -0.182 0.305 0.199 0.107 

5 (/uw/) -0.850 -0.521 -0.329 -0.905 -0.831 -0.074 

6 (/uh/) 0.122 -0.530 0.652 -0.684 -0.805 0.121 

7 (/ow/) -0.008 0.031 -0.039 -1.233 -1.057 -0.176 

8 (/aa/) 1.502 1.106 0.395 -0.576 -0.800 0.223 

 

Table 3.4 – Standard Deviation of Normalized Vowel Formants: English vs. Mandarin 

 F1 F2 

 Vowel ENG MAN ENG-MAN ENG MAN ENG-MAN 

1 (/iy/) 0.196 0.140 0.056 0.075 0.100 -0.025 

2 (/ih/) 0.192 0.219 -0.027 0.092 0.167 -0.075 

3 (/ey/) 0.193 0.347 -0.153 0.087 0.115 -0.028 

4 (/ae/) 0.152 0.161 -0.009 0.147 0.155 -0.007 

5 (/uw/) 0.195 0.281 -0.086 0.148 0.130 0.018 

6 (/uh/) 0.257 0.292 -0.035 0.117 0.170 -0.054 

7 (/ow/) 0.198 0.236 -0.037 0.075 0.114 -0.039 

8 (/aa/) 0.315 0.274 0.041 0.121 0.129 -0.009 
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Similar to the plot of Figure 3.6, Table 3.3 shows that the F1 value of /ow/, and the F2 

values of /iy/ and /uw/ for MAE speakers are very close to meeting their AE counterparts. 

Meanwhile, the F1 values of /ih/ and /uh/ for MAE speakers are especially far from their 

AE counterparts. It can be observed that in general, there is greater difference in F1 

values than F2 values across groups. Section 2.1 discussed the fact that first and second 

formants are thought to be related to tongue height and front/back-ness (respectively). F1 

is said to increase as tongue height decreases. Applying this to the ENG-MAN section of 

the F1 values, this indicates that when the difference is positive, MAE speakers’ tongues 

were placed higher than AE speakers on average (vice-versa when the differences are 

negative). Most of the vowels have negative differences, which may suggest that MAE 

speakers generally place their tongues higher during articulation of English vowels. 

Meanwhile, F2 is said to increase as the tongue moves forward. Applying this to the 

ENG-MAN section of the F2 values, this indicates that when the difference is positive, 

MAE speakers’ tongues were placed further back than AE speakers on average. Overall, 

the smaller differences among F2 than F1 indicate that MAE speakers place their tongues 

closer to the target front/back-ness than to the target height during articulation.  

 In Table 3.4, the differences in standard deviation of normalized formant values 

between the two groups is almost always negative (-0.034 on average). This indicates that 

the formants produced by MAE speakers vary more widely than AE speakers on average. 

Extending this idea using the concept of correlation between tongue position and formant 

frequencies, this suggests that MAE use a wider range of tongue positions (both vertically 

and horizontally) than AE speakers to produce the same vowels. This makes sense, given 

that MAE are speaking English as their second language. Section 2.1 discussed the fact 
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that L1 effects tend to interfere with L2 speech production (especially for languages as 

different as English and Mandarin Chinese). MAE speakers are aiming for a target 

pronunciation despite L1 speech habits when speaking English, while AE speakers place 

their articulators in a typical position naturally. 

 As described in section 3.4.2.2, two types of ANOVAs were performed on the 

formant data. The first ANOVA compared the means of the formants for each vowel 

across both L1 and gender (creating four groups: ENGM, ENGF, MANM, MANF). 

Table 3.5 displays the F values obtained from the ANOVA, and Table 3.6 displays the 

corresponding p values. Recall that the alpha value for all ANOVAs was chosen as 0.05. 

For the differences between groups to be statistically significant, the corresponding p 

value must be less than 0.05. In these tables, the comparisons with p values that fell 

below the alpha value (meaning that the group means have significant differences 

between them) are highlighted in orange. 

Table 3.5 – ANOVA: Cross-Language, Cross Gender Comparison of Vowel Formants [F-Values]  

  F-value 

Vowel F1 F2 

1 (/iy/) 4.394 0.634 

2 (/ih/) 33.80 28.83 

3 (/ey/) 8.446 33.03 

4 (/ae/) 4.953 6.800 

5 (/uw/) 6.254 2.574 

6 (/uh/) 30.03 3.002 

7 (/ow/) 0.360 12.63 

8 (/aa/) 14.53 11.78 
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Table 3.6 - ANOVA: Cross-Language, Cross Gender Comparison of Vowel Formants [p-Values]  

  p-Value 

Vowel F1 F2 

1 (/iy/) 0.0098 0.5980 

2 (/ih/) 0.0000 0.0000 

3 (/ey/) 0.0022 0.0000 

4 (/ae/) 0.0056 0.0010 

5 (/uw/) 0.0016 0.0691 

6 (/uh/) 0.0000 0.0431 

7 (/ow/) 0.7823 0.0000 

8 (/aa/) 0.0000 0.0000 

 

Although not the same comparisons, elements of these results support the conclusions 

made from Figure 2.1 and Table 3.3. Those results showed that the F1 values of /ow/ 

across L1 were very similar, as were the F2 values of /iy/ and /ih/. The fact that the 

groups yielded no statistical significance here means that the groups are also the same 

both within and across gender. Every other group yielded p values that fell below the 

alpha value, meaning at least two of the 4 groups have significant differences between 

each other.  

T-tests were performed to examine the differences between individual groups (see 

section 3.3 for details on t-tests and multiple comparisons, and section 3.4.2.2 for specific 

details on the t-tests performed for the formant analysis). In cases where the ANOVA 

determined statistical significance from its comparisons, the t-tests determined statistical 

significance across most cross language comparisons (ENGM vs MANM, ENGM vs 

MANM, etc). The results generally supported the ANOVA, and no additional trends 

suggested by background information regarding Mandarin accented English production 

were observed. One interesting artifact of the analysis was that there were three formant 
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comparisons that yielded statistical significance when comparing AE males to AE 

females. No differences among native English speakers were expected, so this may be 

due to inconsistent pronunciation by some of the AE participants or the failure of the 

Lobanov method to effectively factor out physiological differences between speakers 

from all formants. A chart displaying all of the statistical significance results of the t-tests 

is shown in Appendix A (Table 6.2). 

Figure 3.7 displays a plot of all formants produced by all speakers in the AE and 

MAE speaker groups (essentially, the collective formant vowel working spaces of the 

two speaker groups).  

Figure 3.7 – Vowel Formant Working Space Comparison: English vs. Mandarin 
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The figure makes it clear that the AE and MAE speakers of the EMA-MAE corpus 

generally occupy the same formant ranges. This result disproves any theory that suggests 

that differences in vowel formants across language are due to the different language 

groups occupying different formant spaces. In other words, differences in formants across 

groups is intrinsic to the vowel in question, and not because a given language group 

naturally produces different formant values. Table 3.7 provides the results of t-tests 

performed on the data shown in Figure 3.7.  

Table 3.7 – Formant Vowel Space T-Test Results 

F1 F2 

t-Value p-Value t-Value p-Value 

-0.152 0.879 0.435 0.664 

 

The p values for both formants are well above 0.05, which confirms that there are no 

statistically significant differences between the overall formant spaces of AE and MAE 

speakers. 

3.4.3 VOWEL KINEMATIC ANALYSIS 

3.4.3.1 DATA ANALYSIS OVERVIEW 

For vowels, the treatment of kinematic data is very similar to that of the formant 

data (see section 3.4.2). The main difference between the kinematic and formant data lies 

in the number of data points generated per vowel utterance. The F1-F2 extraction created 

one two dimensional data point. The kinematic analysis examines four EMA sensors: 

tongue dorsum (TD), tongue blade (TB), upper lip (UL), and lower lip (LL). Given that 
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the analysis and template creation process both take place in the midsagittal plane, each 

of these sensors corresponds to a two-dimensional data point (x and y sensor positions). 

As discussed in section 3.2, the properties of UL and LL are combined to create the LS 

“sensor”. And so, the kinematic data has 3 two dimensional data points, corresponding to 

x-y values of TD, TB, and LS. 

 For each sensor, the similar calculations to those performed on the formants were 

performed. These include: 

 calculations of the mean and standard deviation of the each sensor position (x and 

y) of each vowel for each speaker. 

 calculations of the convex hulls surrounding all x-y combinations for each sensor 

of each speaker, as well as the areas of these convex hulls. 

 calculations of the convex hulls surrounding all replicates of each vowel for each 

sensor for all AE speakers, and again for all MAE speakers. 

 ANOVAs and t-tests comparing both the sensor positions of each vowel and the 

total convex hull areas across L1 and gender. 

The ANOVAs performed on the sensor positions have the same parameters and the 

formants ANOVAs. The only difference is that they are calculated three times (one set 

for each sensor). This means that, as equation (3.24) specifies, the threshold for statistical 

significance is also 0.0083 for multiple comparisons of sensor positions. Section 3.4.2.2 

contains all the details regarding this analysis. 

3.4.3.2 COMPARISON EXPECTATIONS 
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The relationship between expectations based on prior research and the actual data 

shape the approach to vowel template creation. It is important to list and evaluate these 

expectations before transitioning into the template development stage. During the 

conversion to feature space, sensor x position data was normalized to factor our cross-

speaker variance and sensor y data was re-referenced to be expressed relative to the 

speaker’s palate. These operations (1) allow for meaningful comparisons of position 

across speakers and speaker groups, and (2) present the data in a way that better reflects 

the size and shape of the vocal tract. Given the relationship between tongue positioning, 

the vowel quadrilateral, and formant frequencies (see section 2.1 for details), expectations 

can be built for the outcome of the kinematic data analysis. As displayed in Figure 2.6, 

the origin of the kinematic data lies at the central maxillary incisors (CMI), the x-axis is 

pointed anterior to the CMI, and the y axis is directed straight up. This means that tongue 

sensor x values are directly related to the front/back-ness of the tongue and the second 

formant frequency (as the tongue moves forward, x and F2 increase). Meanwhile, tongue 

sensor y values are directly related to tongue height and inversely related to the first 

formant frequency (as tongue height increases, y increases and F1 decreases). Given this 

correlation between sensor position and formant frequency, the tongue sensor positions 

were expected to follow the same trends as the formant data. 

3.4.3.3 RESULTS 

Figures Figure 3.8-Figure 3.10 display the normalized average sensor positions (in 

feature space) of each vowel for both AE speakers and MAE speakers in the same 

window for each EMA sensor. In each plot, the corner vowels are marked with large 

circles, and groups are differentiated by point and line type.  
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Figure 3.8 - Average Normalized Vowel Sensor Positions: English vs. Mandarin [TD] 

 

Quick observation of Figure 3.8 makes it clear that for TD, the distribution of mean 

vowel positions of AE and MAE speakers have very similar shapes. However, the means 

for the groups are fairly far from each other for most vowels. Many of the greatest 

differences in location between AE and MAE for the TD sensor lie with the vowels that 

do not exist in Mandarin Chinese (/ih/, /ae/, /uh/). While /ih/ is located in roughly the 

same horizontal position across languages, there is a significant different in tongue-to-

palate difference. Vowel /ae/ expresses the inverse of this relationship; there is a small 

vertical difference, but large horizontal difference between the two vowels. For vowel 

/uh/, there are significant differences between groups both vertically and horizontally. 
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Interestingly, for MAE speakers, the position of corner vowel /uw/ is not part of the 

convex hull of the vowel space. It can be seen that this is due to the fact that MAE 

speakers, on average, move their tongue dorsum into roughly the same position to 

produce /uh/. This vowel, which has now displayed the worst performance for both 

formant frequency and tongue dorsum, is likely a special case of MAE speakers 

attempting to produce a completely unfamiliar sound.  

Figure 3.9 - Average Normalized Vowel Sensor Positions: English vs. Mandarin [TB] 

 

The average positions of TB for the two language groups are much closer to each other 

than those of TD. There also seems to be much less anterior-posterior (VT5) movement 

of the tongue blade than the tongue dorsum for both AE and MAE speakers, according to 
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the figure. Aside from /iy/, /ey/, and /uh/, the significant difference between vowels 

across L1 seems to be tongue-to-palate distance. While differences between AE and 

MAE speakers were generally smaller for TB, the overall distributions of the TB sensor 

positions were much more different from the formant distribution than the TD sensor 

positions. This implies that the tongue dorsum (TD) position is much more reflective of 

the relationship between tongue position and formant frequencies than the tongue blade 

(TB) position. As was the case for TD, MAE speakers occupy roughly the same position 

when pronouncing /uw/ and /uh/.  

Figure 3.10 - Average Normalized Vowel Sensor Positions: English vs. Mandarin [LS] 

 

Figure 3.10 shows that for LS, the positions corresponding to each vowel are close to 

each other both within and across language groups. This indicates that for both AE and 
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MAE speakers, there is much less movement variation in the lips than tongue during 

articulation of vowels. The figure also indicates that on average, MAE speakers have a 

smaller range of lip motion than AE speakers.  

WHEN COMPARING FIGURE 3.8 AND FIGURE 3.10 TO FIGURE 3.6, A SMALL 

DISTRIBUTIONS BEWEEN TONGUE SENSOR POSITIONS AND FORMANT 

THE FIGURES DO NOT REJECT THE IDEA THAT FORMANT FREQUENCIES AND 

RELATED, BUT THE DISTRIBUTIONS OF SENSOR POSITIONS ARE STILL VERY 

DISTRIBUTIONS. FOR MAE SPEAKERS, THE FORMANT FREQUENCIES, TD 

SENSOR POSITIONS, AND LS SENSOR POSITIONS OF VOWELS /UH/ AND /UW/ ARE 

TO EACH OTHER. WHILE THIS HIGHLIGHTS THE FACT THAT MAE SPEAKERS 

THESE VOWELS, IT ALSO STRONGLY SUPPORTS THE IDEA THAT FORMANT 

POSITIONING. THE FACT THAT THE SENSOR POSITIONS NEARLY OVERLAPPED 

OVERLAPPED (ALONG WITH THE FACT THAT THE FORMANT AND SENSOR 

DATA DISTRIBUTIONS) IMPLIES THAT FORMANT FREQUENCIES AND TONGUE 

RELATED, BUT THE RELATIONSHIP IS NOT LINEAR. IT IS WORTH NOTING THAT 

FEATURES ARE SIMPLY A SCALED VERSION OF THE ORIGINAL X COORDINATES, 

VERTICAL POSITIONS OF THE TONGUE SENSORS MAY BE PARTIALLY 

DIFFERENCES IN DISTRIBUTIONS BETWEEN FORMANT FREQUENCIES AND 

FORMANT FREQUENCIES ARE DETERMINED BY THE SIZE AND SHAPE OF THE 
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DIMENSIONS, THE DIFFERENCES IN SENSOR POSITIONS BETWEEN GROUPS ARE 

OBSERVING THE PLOTS IN FIGURES FIGURE 3.8-FIGURE 3.10. HOWEVER, A 

MEANS OF THE SENSOR POSITIONS OF EACH VOWEL FOR AE AND MAE 

SPEAKERS CAN BE FOUND IN   
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Appendix A (Table 6.3). Table 0.1 displays the standard deviations of the sensor 

positions of each vowel for AE and MAE speakers. These tables include E-M (English 

minus Mandarin) columns, which display the differences in standard deviations between 

the AE and MAE speakers. 

Table 0.1 - Standard Deviation of Normalized Vowel Sensor Positions: English vs. Mandarin 

  TDx TDy 

Vowel ENG MAN E-M ENG MAN E-M 

1 (/iy/) 0.231 0.222 0.009 0.978 0.972 0.006 

2 (/ih/) 0.218 0.198 0.019 1.821 1.397 0.424 

3 (/ey/) 0.224 0.225 -0.001 1.464 1.470 -0.007 

4 (/ae/) 0.203 0.242 -0.039 2.545 2.293 0.252 

5 (/uw/) 0.287 0.229 0.058 2.550 2.891 -0.341 

6 (/uh/) 0.240 0.221 0.019 2.733 2.718 0.016 

7 (/ow/) 0.264 0.234 0.030 3.243 3.945 -0.702 

8 (/aa/) 0.248 0.238 0.010 4.097 3.422 0.674 

       
  TBx TBy 

Vowel ENG MAN E-M ENG MAN E-M 

1 (/iy/) 0.128 0.123 0.005 2.022 2.544 -0.522 

2 (/ih/) 0.125 0.133 -0.008 1.601 2.649 -1.048 

3 (/ey/) 0.117 0.146 -0.029 2.851 2.670 0.180 

4 (/ae/) 0.139 0.180 -0.041 2.417 2.980 -0.563 

5 (/uw/) 0.162 0.160 0.002 3.025 3.000 0.026 

6 (/uh/) 0.149 0.158 -0.009 2.688 3.025 -0.337 

7 (/ow/) 0.150 0.174 -0.024 3.542 2.787 0.756 

8 (/aa/) 0.154 0.166 -0.013 3.436 2.834 0.602 

       
  LSx LSy 

Vowel ENG MAN E-M ENG MAN E-M 

1 (/iy/) 0.124 0.099 0.025 0.069 0.070 -0.001 

2 (/ih/) 0.118 0.099 0.019 0.073 0.069 0.004 

3 (/ey/) 0.115 0.100 0.015 0.072 0.072 0.000 

4 (/ae/) 0.109 0.104 0.005 0.082 0.069 0.013 

5 (/uw/) 0.104 0.102 0.002 0.065 0.065 -0.001 

6 (/uh/) 0.109 0.106 0.003 0.064 0.071 -0.007 

7 (/ow/) 0.099 0.105 -0.006 0.068 0.071 -0.003 

8 (/aa/) 0.105 0.096 0.009 0.082 0.077 0.005 
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Table 0.1 indicates that on average, AE speakers typically have a larger horizontal 

variation of motion of the tongue dorsum (TD) and lips (LS), and smaller horizontal 

variation of motion of the tongue blade (TB). In most cases, these differences are very 

small, suggesting that there is not a significant difference in overall horizontal motion 

variability across L1. For vertical motion, the variability itself varies with each sensor. 

There are no identifiable trends in cases where AE speakers have a larger variation of 

motion than MAE speakers and vice-versa. One interesting observation is the fact that 

there is much less consistency in the amount of variation in vertical tongue movement 

across vowels than that of horizontal movement. For example, note that the horizontal 

standard deviation of TD movement for AE speakers across all vowels falls within the 

0.2-0.3 range. Meanwhile vertical variation for the same sensor ranges from 0.978-4.097. 

Despite this significant amount of dispersion in sensor position variation, the variation in 

formant frequencies was shown to be much more consistent (see Table 0.1). This 

highlights the fact that several different articulatory configurations can result in the same 

acoustic result.  

 Similar to the formant analysis, an ANOVA comparing the means of the sensor 

positions for each vowel across both L1 and gender (corresponding to groups: ENGM, 

ENGF, MANM, MANF). Table 0.2 displays the F values obtained from the ANOVA, 

and Table 0.3 displays the corresponding p values. 

Table 0.2 - ANOVA: Cross-Language, Cross Gender Comparison of Vowel Sensor Positions [F-Values] 

  Sensor 
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Vowel TDx TDy TBx TBy LSx LSy 

/iy/ 2.518 0.941 0.271 0.956 5.542 2.410 

/ih/ 2.211 17.82 0.082 4.163 4.873 3.536 

/ey/ 4.243 5.668 1.327 0.488 5.234 3.617 

/ae/ 4.255 0.130 0.517 2.117 4.792 3.644 

/uw/ 2.907 9.002 0.590 5.709 2.471 0.656 

/uh/ 1.782 11.03 0.796 1.285 4.727 4.385 

/ow/ 2.100 3.908 0.176 2.813 2.370 0.516 

/aa/ 3.471 1.603 1.810 2.135 8.115 9.860 

 

 
Table 0.3 - ANOVA: Cross-Language, Cross Gender Comparison of Vowel Sensor Positions [p-Values] 

  Sensor 

Vowel TDx TDy TBx TBy LSx LSy 

/iy/ 0.0735 0.4312 0.8456 0.4240 0.0031 0.0829 

/ih/ 0.1036 0.0000 0.9694 0.0125 0.0060 0.0242 

/ey/ 0.0115 0.0028 0.2808 0.6926 0.0042 0.0221 

/ae/ 0.0113 0.9414 0.6731 0.1152 0.0066 0.0215 

/uw/ 0.0479 0.0001 0.6258 0.0027 0.0775 0.5846 

/uh/ 0.168 0.0000 0.5039 0.2941 0.0070 0.0100 

/ow/ 0.1173 0.0163 0.9118 0.0530 0.0867 0.6741 

/aa/ 0.0259 0.2058 0.1628 0.1129 0.0003 0.0001 

 

As explained in section 3.4.3.1, an alpha level of 0.05 was used for all ANOVAs. Note 

that all comparisons that yielded statistical significance (p < 0.05) were highlighted. The 

results of the LS comparisons supported the data shown in Figure 3.10. This agreement 

indicates that, for LS, the differences in means between language groups are reflective of 

the overall differences both within and across language and gender groups (in other 

words, no new trends among speaker groups were observed, and t-tests to study 

individual group differences are not needed).  
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The results of the TD comparisons, with the exception of /uh/, /ow/ and /aa/, 

matched the data shown in Figure 3.8. /uh/ yielded no significant differences in 

horizontal position, and /aa/ yielded no significant difference in vertical position across 

groups (despite the large differences in means). This indicates that the overall 

distributions of sensor positions for these vowels overlap to the point of removing any 

discernment between them. These results make sense, given the large amounts of 

deviation in these groups (see Table 0.1). ANOVA results for /ow/ yielded significant 

differences between in vertical position, despite the fact that the means shown in Figure 

3.8 are nearly identical. This implies that there are significant differences among the four 

subgroups of the ANOVA, but t-tests yielded no significant differences between any of 

the individual groups. It is unclear why this inconsistency occurs, but it may be due to 

improper adjustment of the alpha value by the Bonferroni correction (see section 3.3.3 for 

details on the correction). It is worth noting that the p values returned from t-tests 

performed between AE females and MAE males and between AE females and MAE 

females both fell below 0.05. Before alpha value correction, these comparisons would 

have indicated statistical significance. 

The comparisons performed for the TB sensor yielded statistical significance in 

only two cases: the y dimension for vowel /ih/, and the y dimension for vowel /uw/. T-

tests revealed that for /ih/, the underlying comparisons that produced significant 

differences with each other were AE males vs. MAE males and AE females vs. MAE 

males. T-testing for vowel /uw/ revealed that the underlying comparisons that bore 

significant differences were AE females vs. MAE females, and interestingly, AE males 

vs. AE females. Given the notion that formant frequencies and tongue position are 
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related, as well as the assumption that all AE speech is pronounced correctly, no 

differences within AE speakers were expected. This difference seems to further support 

the idea that different articulator positions can produce the same sound.  

In general, individual t-tests showed that most subgroup sensor position differences 

that produced statistical significance were between AE females and MAE males. Even 

these differences occurred only a percentage of the time. The observation of means and 

ANOVA results showed that despite having significantly different means in some cases, 

there is enough variation in the data to blend it to the point of removing any ability to 

distinguish between groups in most cases. Figure 0.1, which plots the entire working 

space of each vowel of the TD sensor for one of the AE male speakers of the EMA-MAE 

corpus, demonstrates this fact.  
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Figure 0.1 – TD Sensor Vowel Working Spaces [AE Male Speaker] 

 

NOTE THAT IN MOST CASES, A SINGLE SENSOR POSITION CANNOT BE TIED TO A 

GIVEN THE SIGNIFICANT OVERLAP IN SENSOR POSITIONS ACROSS VOWELS. 

POSITION CAN BARELY DISTINGUISH VOWELS FROM THE SAME SPEAKER, THE 

FOUND SUCH A SMALL AMOUNT OF SIGNIFICANT DIFFERENCES ACROSS SEVERAL 

MORE PLAUSIBLE. A TABLE DISPLAYING THE STATISTICAL SIGNIFICANCE 

PERFORMED ACROSS ALL INDIVIDUAL ANOVA GROUPS, VOWELS, AND SENSORS 

CAN BE FOUND IN   
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Appendix A (Table 6.4). 

 Figures Figure 0.1-Figure 0.3 display the total vowel working space for each 

sensor, for both AE and MAE speakers. Language groups are differentiated by color. 

Figure 0.1 – Total Sensor Position Working Space: English vs. Mandarin [TD] 
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Figure 0.2 - Total Sensor Position Working Space: English vs. Mandarin [TB] 
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Figure 0.3 - Total Sensor Position Working Space: English vs. Mandarin [LS] 

 

For all three sensors, MAE speakers seem to have less general dispersion, but more 

outliers. It can be observed that the sizes of the convex hulls for the MAE speakers is 

largely driven by the outliers of the data, which likely come from attempting to produce 

unfamiliar sounds. When observing the concentration of data point for each group, it 

seems that MAE speakers generally operate in a smaller range of motion than AE 

speakers when producing vowels. The working space of MAE speakers can nearly be 

considered a subset of the AE working space. Table 0.1 displays the results of t-tests 

performed on the data in these figures. Note that “-“ is placed in cells with negligible 

values. 
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Table 0.1 - Sensor Vowel Space T-Test Results 

  X Y 

Sensor t-Value p-Value t-Value p-Value 

TD 12.20 - -2.386 0.017 

TB 9.757 - -7.546 - 

LS -12.47 - 14.87 - 

 

All p values returned from the t-tests were well under 0.05, which confirm that the groups 

have significant differences in total working space for vowel production. 

Overall, the data trends of the tongue sensor data did not match those of the 

formant frequencies. This lack of significant correlation between sensor position and 

formant frequency discredits kinematic data manipulation techniques founded in formant 

research. Therefore, the results and trends discovered through the formant analysis are 

largely uninvolved in the kinematic template creation process. 

3.5 CONSONANT CLUSTER EXTRACTION AND ANALYSIS 

3.5.1 CLUSTER EXTRACTION 

All consonant cluster data was extracted from the same word-level prompts that 

were used for vowel data extraction. Unlike vowels, which consist of stationary 

articulator positioning, consonant clusters are formed through continuous movement of 

the articulators (see section 2.1.1 for details on consonant cluster formation). This means 

that as opposed to a single data point, a cluster must be represented by a set of points that 

form a movement trajectory. Using labeling files, which contain the onset and offset 

times of each consonant cluster, every instance of each cluster was extracted as a set of x-
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y data points (along with the corresponding time stamps) for each EMA sensor for all 

speakers. In order to remove high frequency movement from each trajectory, the data sets 

were passed through a low pass digital filter with a cutoff frequency of 25 Hz. Each 

trajectory was converted to feature space, as described in section 3.2. 

3.5.2 KINEMATIC DATA ANALYSIS 

After extraction, plots were created to display the x-y trajectories of the consonant 

clusters. Figure 0.4 displays the TD sensor trajectories of all pronunciations of cluster 

/nd/ for a single speaker (specifically, a female native English speaker). The left plot 

displays the cluster repetitions in Euclidean space, while the right plot displays the same 

cluster repetitions in feature space. Note that for each plot, the start and end points of 

each cluster pronunciation are marked. Also note that in the Euclidean space 

representation, the speaker’s palate is also shown. 

Figure 0.4 – Consonant Cluster Euclidean and Feature Space Representations 
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Recall that the conversion to feature space involves scaling the x sensor positions. Given 

a conversion by scaling, it makes sense that the horizontal locations of the trajectory 

points shown in Figure 0.4 relative to each other are maintained. Meanwhile, the vertical 

conversion of tongue sensor positions involves re-referencing the positions to the 

speaker’s palate. This means that the conversion has the effect of vertically stretching and 

compressing the trajectories at different horizontal locations. In the example shown in 

Figure 0.4, the locations of the trajectories relative to each other are barely affected by 

the feature space conversion. 

 Figure 0.4 also displays an issue that is prevalent across all speakers, consonant 

clusters, and sensor positions: The different repetitions of the same cluster have very 

different movement trajectories in many cases. The figure shows trajectories of both 

small and large magnitudes, and multiple movement directions. Figure 0.5 shows the 

trajectories of the same cluster, but for all 20 English speakers. 

Figure 0.5 – Cluster /nd/ Euclidean and Feature Space Representation (All English Speakers) 
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When the repetitions of the cluster are viewed for several speakers at once, the issue is 

further highlighted. While the plot is very busy, it can be observed that the trajectories 

start and end in varied locations. Figure 0.5 also displays the fact that the trajectories are 

not horizontally aligned. This means that despite horizontal normalization, the trajectories 

are still located at various horizontal positions. This complicates the process of modeling 

position of the trajectory when forming a kinematic template for the cluster. 

 Observation of trajectory plots of individual speakers suggests that in general, 

each speaker moves their articulators differently to produce the same consonant cluster. 

This was unexpected, but there are a number of reasons why this variation in the data 

may have occurred. One contributing factor may be lack of consistency in cluster labeling 

in the EMA-MAE dataset. As discussed in section 2.2, the cluster labels were created by 

trained staff of the Marquette Speech and Swallowing lab through observation of speech 

audio signals and their corresponding spectrographs. In many cases, the cluster 

boundaries may be difficult to identify (partially due to coarticulation effects, discussed 

in section 2.1). This can result in different repetitions of the same cluster having different 

start and end points in the trajectory. 

Another possible contributor to the differences in cluster repetitions, (specifically, 

across speakers) is the feature space conversion (specifically, the vertical conversion). 

Each speaker has a different palate shape. This means that even if two speakers produced 

the exact same movement in Euclidean space, these trajectories in feature space would 

still be slightly different. However, while each speaker’s palate is different, the general 

shape of the palates are still fundamentally the same. In other words, the palate shapes are 

not different enough to significantly vary the trajectory shapes. Plotting of several 
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speakers’ cluster data produced similar results to those of Figure 0.4, supporting the idea 

that the feature space conversion does not significantly affect the overall trajectory of a 

cluster pronunciation. Meanwhile, the relationship between the tongue and palate 

positions remains important for the information it provides about the vocal tract shape (as 

discussed in section 2.3.2). For these reasons, the feature space conversion is maintained 

in the analysis of consonant clusters. 

The significant variation in trajectories of consonant cluster pronunciations both 

within and across speakers makes it impossible to form an accurate model of the 

movement pattern to represent all English speakers. This is a serious setback, as a 

primary goal of this research is to form an English model of consonant clusters to 

evaluate results of acoustic-to-articulatory inversion, in addition to providing meaningful 

feedback to pilot study participants. However, while the overall movement trajectories 

are significantly varied, several individual characteristics of cluster pronunciation may be 

more consistent within and across speaker groups. These characteristics include 

magnitude (the length of the movement trajectory), the speed of the articulators, the 

movement pattern of the articulators, and the duration of the cluster pronunciation. 

Together (and individually), these features may provide insight into the similarities and 

differences in cluster production both within and between speaker groups. The study of 

these features in the interest of distinguishing AE and MAE speaker groups is henceforth 

called MSTD (Magnitude, Speed, Trajectory Pattern, Duration) analysis. 

As previously mentioned, the magnitude of a cluster pronunciation is measured as 

the path length of the trajectory (Equation (0.1)). The duration of a cluster pronunciation 

is simply measured as the time between the onset and offset times of the cluster 
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(Equation (0.3)). The speed of a cluster pronunciation is a waveform calculated as the 

point-to-point distance between sensor positions, divided by the point-to-point time 

difference (Equation (0.2)). In order to remove high frequency variation and emphasize 

the overall shape of the curve, each speed waveform is then passed through a digital low 

pass filter with a cutoff frequency of 25 Hz. Given that this feature focuses specifically 

on the speed of the articulators, each speed waveform is also time normalized in order to 

factor out durational differences. The time normalization is performed through 

interpolation; each waveform was interpolated such that it consists of 100 points. This 

allows for point-by-point comparison of speed curves within and across speakers. 

 
𝑚𝑎𝑔 =  ∑ √𝑥𝑖

2 + 𝑦𝑖
2

𝑛
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(0.1) 

 
𝑠𝑝𝑒𝑒𝑑𝑖 =  

√(𝑥𝑖+1 − 𝑥𝑖−1)2 + (𝑦𝑖+1 + 𝑦𝑖−1)2

𝑡𝑖+1 − 𝑡𝑖−1
 

 

(0.2) 

 𝑑𝑢𝑟 =  𝑡𝑂𝑓𝑓 − 𝑡𝑂𝑛 (0.3) 

 

In equations (0.1)-(0.3), mag is the trajectory magnitude, dur is the duration, n is the 

number of data points in the trajectory, i is the current index, t is the time, and “on” and 

“off” correspond to the onset and offset times of the cluster pronunciation (respectively).  

The trajectory pattern calculation involves multiple steps. First, the trajectory is 

translated such that the minimum x and y values are both 0. Next, both the x and y 

dimensions of the curve are [0,1] normalized using the maximum x and y values of the 

trajectory. This serves as a magnitude normalization, providing each trajectory with the 

same scaling. Next, the trajectory is translated again in order to place the starting point at 

the origin. This defines a common starting point for all movement patterns, which allows 
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for position-independent comparison across cluster repetitions. Finally, the trajectory is 

time normalized using the same interpolation applied to the speed curves. Figure 0.6, 

which shows plots of both the feature space representations (left) and extracted 

movement patterns of a cluster (right) for a single speaker, demonstrates the effects of 

this transformation. 

Figure 0.6 – Trajectory Pattern Extraction 

 

Figure 0.6 shows that the extraction process places the all of the trajectories on the same 

scale. Also note that each trajectory begins at the same point. These transformations 

disregard magnitude and locational differences in order to focus on the directionality of 

the articulator throughout the pronunciations of the cluster. 

 The methods of obtaining the speed and trajectory patterns have a number of 

strengths and weaknesses. As previously mentioned, interpolation of the curves allows 

for curves of different durations to be compared, with a focus on the feature of interest 

(whether it be speed or movement pattern). This method of normalization assumes that a 
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speaker’s speech characteristics scale linearly with duration of the pronunciation (for 

example, “this speaker always places the tip of their tongue on their palate in the middle 

of the pronunciation of cluster x, regardless of how long it takes them to pronounce the 

cluster.”). Depending on the speaker and/or cluster, this may be either a strength or 

weakness of the method. For a speaker that generally speaks each part of the cluster at the 

same portions of pronunciation, regardless of duration, these curves will be horizontally 

aligned: 

Figure 0.7 – Speed Curves [Horizontally Aligned] 

 

For speaker with varying pronunciation patterns regardless of duration, the speed curves 

will likely have horizontal shifts at some locations: 
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Figure 0.8 – Speed Curves [Horizontally Misaligned] 

 

In the case of Figure 0.8, the results of a point-by-point comparison of the data would 

suggest that the curves are fairly different, despite the similar shapes. Meanwhile, if the 

curves were shifted for maximal alignment, information about the sections of the 

pronunciation where certain events (such as a peak in the curve) take place is lost. It is 

also worth noting that the plots of Figure 0.7 and Figure 0.8 correspond to very special 

cases where a speaker’s cluster trajectories were fairly similar across repetitions. In most 

cases, the trajectories aren’t similar, and the speed curves are both misaligned and shaped 

differently: 
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Figure 0.9 – Speed Curves [Misaligned and Misshapen] 

 

The [0,1] normalization scheme used for trajectory pattern extraction is also 

accompanied by number of strengths and weaknesses. Given that the method has the 

effect of “stretching”/”compressing” the trajectories such that they are all the same size, it 

highlights the similarity between curves of different magnitudes but similar shape and 

directionality: 



88 

 

Figure 0.10 – Trajectory Extraction [Similar Shape, Different Magnitudes] 

 

Moving the starting points of the trajectories to the same starting point further highlights 

similarity in directionality of cluster repetitions: 

Figure 0.11 – Trajectory Extraction [Similar Directionality, Different Locations] 
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A weakness of the trajectory extraction method is the fact that it may accentuate the 

differences between trajectories in close proximity to each other: 

Figure 0.12 – Trajectory Extraction [Similar Locations] 

 

In the case shown in Figure 0.12, factoring out location and scaling the trajectories 

actually makes the overall trajectories less similar. However, the movement pattern is 

only one of four evaluation metrics. The combination of these metrics will form a more 

complete evaluation of the consonant cluster. 

 Note that location is not an included metric of the MSTD analysis. As shown in 

Figure 0.5, cluster location varies significantly across speakers and repetitions. With no 

consistent cluster placement to be identified, the analysis instead focuses on the other 

aspects of the cluster formation. 

3.5.2.1 MSTD ANALYSIS DETAILS 
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After extraction of cluster data and conversion to feature space, the MSTD 

information was calculated. For each individual consonant cluster, the corresponding 

magnitude, speed curve, movement pattern, and duration were extracted as well (using 

the methods described in section 3.5.2.). Using this information, the following features 

were calculated: 

 The mean magnitude of all repetitions of each cluster for each speaker and sensor, 

as well as the mean duration of each cluster production. 

 A mean speed curve for each sensor of each cluster for every speaker, formed 

through the point-by-point averaging of the speed curves of all repetitions of each 

cluster. 

 A mean trajectory pattern for each sensor of each cluster for every speaker, 

formed through the point-by-point averaging of the trajectory patterns of all 

repetitions of each cluster. 

 Mean MSTD parameters for all AE speakers, as well as MAE speakers (formed 

through averaging across all speakers of the individual speaker groups). 

 Deviation of MSTD parameters for each speaker, as well as the over deviation of 

MSTD parameters for each language and gender group (discussed later in this 

section). 

 Mean deviation of MSTD parameters for all AE speakers, as well as MAE 

speakers (discussed later in this section). 

 ANOVA comparing the deviation of MSTD parameters across language and 

gender groups (discussed later in this section). 
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For magnitude and duration, the deviation for each cluster is calculated as the standard 

deviation of the respective values across all repetitions (Equations (0.4) and (0.5)). For 

speed, the deviation is calculated as the sum of the point-by-point standard deviations 

across all repetitions of the cluster (Equation (0.6)). For trajectory pattern, the deviation is 

computed as the sum of the point-by-point standard deviations of both the x and y 

dimensions across all repetitions of the cluster. 

 𝑚𝑑𝑒𝑣 =  𝑆𝐷(𝑚𝑣𝑒𝑐) (0.4) 

 𝑑𝑑𝑒𝑣 =   𝑆𝐷(𝑑𝑣𝑒𝑐) (0.5) 

 

𝑠𝑑𝑒𝑣 =  ∑ 𝑆𝐷(𝑠𝑣𝑒𝑐𝑖)

100

𝑖=1

 

 

(0.6) 

 

𝑡𝑑𝑒𝑣 =  ∑(𝑆𝐷(𝑥𝑣𝑒𝑐𝑖)

100

𝑖=1

+ 𝑆𝐷(𝑦𝑣𝑒𝑐𝑖)) 

 

(0.7) 

In equations (0.4)-(0.7), the dev values correspond to the MSTD deviations (where the 

first letter indicates the corresponding MSTD feature). mvec and dvec correspond to the 

vectors containing the magnitude and duration (respectively) of each repetition of a given 

cluster for the current speaker. sveci, xveci, and yveci correspond to vectors containing the 

speed, x trajectory position, and y trajectory position (respectively) of all repetitions of a 

given cluster at the current index i. Recall that the speed and trajectory features are 

curves consisting of 100 points. The index i specifies the current point, across all 

repetitions of the cluster. 

 In order to obtain deviational information about a cluster’s features for a given 

speaker, the speaker will need to have been recorded producing the cluster multiple 

times. There are several clusters in the EMA-MAE dataset that speakers are recorded to 
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have only produced once or twice. In these cases, there is not enough information to 

obtain a good estimate of deviation of production of the cluster. Therefore, when it comes 

to individual speakers, MSTD deviation calculations were only made for clusters that 

have at least 3 repetitions per speaker in the dataset. Table 0.2 shows the clusters that fall 

into this criteria. 

Table 0.2 – Consonant Clusters with 3+ Repetitions per Speaker 

Cluster 
ID 

Cluster 
Cluster 
Word 

1 nd find 

3 kl clone 

5 ld cold 

7 kr crick 

8 kw queen 

15 lz falls 

21 ldz fields 

35 gr green 

 

The ANOVA that compares the MSTD deviation across language and gender groups 

(ENGM, ENGF, MANM, MANF) was performed for each of the clusters in Table 0.2. 

While only the clusters shown in this table had their MSTD deviational information 

studied on an individual speaker level, MSTD deviational information was also 

calculated for all speakers across each of the 4 language-gender groups (as well as the 

two language groups: ENG and MAN). 

3.5.2.2 COMPARISON EXPECTATIONS 

As previously discussed, it is important to analyze the relationship between 

expectations and actual data in order to determine an effective approach to template 



93 

 

creation. However, attempting to predict the behavior of the consonant cluster data is a 

largely difficult task. This is especially true given the highly variable nature of the data 

extracted from the EMA-MAE dataset, as discovered in the upper level of section 3.5.2. 

To start, the variability of MSTD parameters of the AE speakers (both individually and 

across speakers) were expected to be lower than those of MAE speakers. This is due to 

the fact that AE speakers are producing sounds that come naturally to them, while MAE 

speakers are attempting to produce sounds that, to some degree, are still new to them.  

While the conversion to feature space performs a horizontal normalization, the 

vertical sensor positions are simply re-referenced. This means that while the feature space 

y sensor positions give more detailed information about the vocal tract shape, there is no 

vocal tract size normalization in the y direction. As discussed in section 2.1.1, men 

usually have larger vocal tracts than their female counterparts. Given this fact, male 

speakers may have larger magnitudes of movement to produce the same clusters as 

female speakers. The significant variety observed among the consonant cluster plots 

prevents meaningful expectations for cluster speeds and trajectories from being formed. 

AS DISCUSSED IN SECTION 2.1.2, INITIAL AND FINAL CONSONANT CLUSTERS DO NOT 

MANDARIN CHINESE. AS A RESULT, MAE SPEAKERS MAY TEND TO EITHER 

CONSONANT OF THE CLUSTER OR CREATE AN EXTRA SYLLABLE THROUGH THE 

VOWEL. WHILE THE REMOVAL OF A CONSONANT IN THE CLUSTER WOULD 

MAGNITUDE AND DURATION OF THE CLUSTER, THE ATTACHMENT OF A REDUCED 

EFFECTIVELY BE FACTORED OUT THROUGH THE CLUSTER LABELING PROCESS. 

POSSIBLE FOR COARTICULATION TO OCCUR BETWEEN THE FINAL CONSONANT 

ATTACHED REDUCED VOWEL. THIS COARTICULATION COULD POSSIBLY BE 
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OF CLUSTER, AND LABELED AS SUCH. INITIAL AND FINAL CONSONANT CLUSTERS 

THE CLUSTERS ANALYZED IN THIS WORK (SEE   
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Appendix A for a listing of all clusters). Therefore, these characteristics of 

Mandarin-accented English shaped expectations regarding MAE speaker data. The 

information above creates four primary cluster pronunciation expectations for MAE 

speakers, all within reason: 

 The speaker produces the cluster without removing any consonants or 

attaching any reduced vowel sound. The magnitude and duration of the 

cluster are similar to those of AE speakers. 

 The speaker produces the cluster while removing the final consonant. The 

magnitude and duration of the cluster are both reduced. 

 The speaker produces the cluster, but also attaches an additional reduced 

vowel. The cluster labels effectively factor out the attached vowel. The 

magnitude and duration of the cluster are similar to those of AE speakers. 

 The speaker produces the cluster, but also attaches an additional reduced 

vowel. The cluster labels capture part of this attached vowel as a result of 

coarticulation effects. The magnitude and duration of the cluster are 

greater than those of AE speakers. 

A special case is introduced to the discussion above when the consonant cluster in 

question includes a voiced stop. As discussed in section 2.1.2, stop voicing contracts in 

Mandarin Chinese are indicated by aspiration, as opposed to the voiced stops of 

American English. This tendency to aspirate leads to weak voicing of voiced stops among 

MAE speakers. This may result in reduced cluster magnitude and duration.  

3.5.2.3 RESULTS 
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After the mean cluster magnitudes and durations were captured for each speaker, 

they were observed to identify trends between (1) male and female AE speakers, (2) male 

and female (MAE) speakers, and (3) AE and MAE (cross-gender) speakers. Table 0.1 

shows, for these three group comparisons and each sensor, the number of clusters where 

the first of the two groups (male AE, male MAE, and AE) had a greater average 

magnitude and the average (unsigned) percent error in magnitude between the two 

groups. These calculations were repeated for the duration parameter as well. The first 

metric provides insight into how often male speakers have greater cluster magnitudes 

than female speaker (and consequently, vice versa) across all clusters for both language 

groups and across language. Meanwhile, the second metric provides the average amount 

of difference between the two groups, as a percentage of the first group’s size. Note that 

the percentage of clusters that had greater magnitudes for the first group is also shown in 

Table 0.1. Table 0.2 shows, for the group comparisons shown in Table 0.1, the number of 

clusters where the first group’s magnitudes were greater than the second group, across all 

sensors (how many clusters maintained the relationship across sensors).  

Table 0.1 – Consonant Clusters Magnitude Comparisons 

TD 

Groups  
(G1 vs G2) 

#  Clusters w/ 
G1>G2 

% Error 

ENGM vs ENGF 23 (52%) 14.8 

MANM vs MANF 33 (75%) 20.2 

ENG vs MAN 36 (82%) 22.8 

   

TB 

Groups  
(G1 vs G2) 

#  Clusters w/ 
G1>G2 

% Error 

ENGM vs ENGF 24 (55%) 18.5 
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MANM vs MANF 36 (82%) 20.7 

ENG vs MAN 22 (50%) 23.4 

   

LS 

Groups  
(G1 vs G2) 

#  Clusters w/ 
G1>G2 

% Error 

ENGM vs ENGF 16 (36%) 17.4 

MANM vs MANF 22 (50%) 14.7 

ENG vs MAN 32 (72%) 25.5 

 

Table 0.2 – Consonant Cluster Magnitude Comparisons: Common Clusters 

Groups  
(G1 vs G2) 

# Clusters In 
Common 

ENGM vs ENGF 5 (11%) 

MANM vs MANF 15 (34%) 

ENG vs MAN 19 (43%) 

 

Table 0.1 displays a trend among the cluster magnitudes for the tongue sensors: 

The percent error between AE males and females is lower than the error between MAE 

males and females, which in turn is lower than the error between AE and MAE speakers. 

In theory, these results make sense. If AE speakers are producing the same sounds (as 

they are assumed to produce English correctly), it makes sense that their magnitude 

differences would be lower than those of non-native speakers. Meanwhile, a degree of 

unpredictability is introduced to the cluster production of MAE speakers due to L1 

effects (as discussed in section 3.5.2.2). The fact that the final comparison (ENG vs 

MAN), which is a cross-language comparison, produced the greatest percent error is also 

within expectations, for the same reasons mentioned above. 

 Note that, in regards to the number of clusters where a single group had greater 

average magnitudes than the other, the results are largely varied. For the lip sensors, the 
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number of clusters where AE males and AE females had greater magnitudes is roughly 

split in half. Meanwhile, AE males had greater lip magnitudes than AE females for only 

36% of the clusters. These results reject the idea that males may have greater articulator 

movement magnitudes than females due to vocal tract size differences. Table 0.2 shows 

that only 5 consonant clusters maintained the magnitude relationships between AE males 

and females that were displayed in Table 0.1. When removing the lip sensor from 

consideration (as it is a different articulator), this number increases to 13. While the 

tongue sensor results maintain their relationships in a few more cases, the results suggest 

that in most cases, there are no magnitude trends between sensors. Overall, this data 

suggests that for AE speakers, cluster magnitudes vary across consonant clusters and 

sensors, possibly independently of gender. 

 Across both tongue sensors, MAE males had greater cluster magnitudes than 

MAE females for a majority of clusters (75+% of the clusters for both sensors). Given a 

20+% error on average between these speaker groups (which suggests that, on average, 

the magnitude differences were not trivial), this suggests that MAE males typically 

produce greater cluster magnitudes than MAE females for most clusters. For the lip 

sensor, the cases where MAE males and females produced greater magnitudes was split 

in half, and the percent error between the groups was significantly lower than those of the 

tongue sensors. This suggests the lip cluster magnitudes among MAE speakers are more 

similar to each other than tongue cluster magnitudes. When removing the lip sensor from 

consideration, the number of clusters that maintained these relationships increases from 

15 (34% of all clusters) to 28 (64% of all clusters). This emphasizes the idea of greater 

similarity between tongue sensors magnitudes than between all sensors. 
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 Table 0.3 shows the same group comparisons, but for cluster duration instead of 

magnitude.  

Table 0.3 – Consonant Cluster Duration Comparisons 

Groups  
(G1 vs G2) 

#  Clusters w/ G1>G2 % Error 

ENGM vs ENGF 16 (36%) 10.0 

MANM vs MANF 6 (14%) 12.1 

ENG vs MAN 26 (59%) 8.2 

 

For AE speakers, the durational relationship between males and females did not match 

the magnitude relationships for any of the 3 sensors. While the number of clusters where 

AE males had greater lip sensor magnitude and duration than AE females were both 16, 

only 11 of the clusters were the same in these cases. This rejects the idea of a 

proportionality between magnitude and duration across clusters. MAE speakers also 

displayed no trends between cluster magnitude and duration. Given the challenges 

associated with MAE production of consonant clusters, this could be due to a number of 

factors (including a lack of correlation between cluster magnitude and duration in 

general).  

 The same group comparisons performed for cluster magnitude and duration were 

applied to cluster speed as well, but with a slight variation. The speed is represented as a 

time-normalized curve (as opposed to a single point). In order to represent these 

relationships as a single value, the speed comparisons represent the average difference 

between groups across all points of the curves: 
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𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  ∑ 𝑠𝑝𝑑1[𝑖] − 𝑠𝑝𝑑2[𝑖]

𝑛

𝑖=1

 

 

(0.1) 

Where “1” and “2” correspond to the group number (for example, in the ENGM vs 

ENGF comparison, ENGM is 1 and ENGF is 2), i is the current index, and n is the total 

number of points (set to 100, as described in the upper level of section 3.5.2). Using these 

group difference values, the group relationship calculations were made. The results are 

shown in Table 0.4 and Table 0.5. 

Table 0.4 – Consonant Cluster Speed Comparisons 

TD 

Groups  
(G1 vs G2) 

#  Clusters w/ 
G1>G2 

% Error 

ENGM vs ENGF 29 (66%) 12.4 

MANM vs MANF 40 (91%) 22.1 

ENG vs MAN 26 (59%) 25.1 

   

TB 

Groups  
(G1 vs G2) 

#  Clusters w/ 
G1>G2 

% Error 

ENGM vs ENGF 25 (57%) 17.2 

MANM vs MANF 36 (82%) 25.8 

ENG vs MAN 20 (45%) 23.4 

   

LS 

Groups  
(G1 vs G2) 

#  Clusters w/ 
G1>G2 

% Error 

ENGM vs ENGF 25 (57%) 19.4 

MANM vs MANF 36 (82%) 20.2 

ENG vs MAN 27 (61%) 17.9 
 

Table 0.5 – Consonant Cluster Speed Comparisons: Common Clusters 

Groups  
(G1 vs G2) 

# Clusters In 
Common 
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ENGM vs ENGF 8 (18%) 

MANM vs MANF 31 (70%) 

ENG vs MAN 11 (25%) 

 

For both inner language group comparisons, the males of the groups, on average, had 

greater movement speed than females across all sensors for a majority of clusters. This 

could have indicated that male speakers tend to move their articulators more quickly to 

produce the same sounds as their female counterparts. However, there is also a significant 

amount of average percent error in each case. This may imply that in cases where females 

produced greater movement speeds than males, the differences between groups were not 

trivial. Furthermore, for AE speakers, this relationship is maintained across sensors for 

only 8 of the 44 clusters. This rejects any notion of male speakers generally having 

greater articulatory movement speeds than females.  

WHILE A NUMBER OF ADDITIONAL CALCULATIONS WERE MADE DURING THE 

CONSONANT CLUSTERS, NONE OF THEM PROVIDED ADDITIONAL SIGNIFICANT 

SIMILARITIES AND DIFFERENCES IN CLUSTER PRODUCTION ACROSS GENDER, 

DETAILS REGARDING SOME OF THESE ADDITIONAL ANALYSES, INCLUDING THE 

PERFORMED ON THE DEVIATION OF MSTD PARAMETERS OF THE CLUSTERS 

FROM TABLE 0.2, MAY BE FOUND IN   
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Appendix A. The mean MSTD values of clusters are discussed in further detail in 

section 4.3, which covers the consonant cluster template creation process. 

 Overall, the consonant cluster analysis identified no significant trends across 

speaker groups, sensors, or clusters. The MSTD parameters generally varied with each 

combination of speaker, sensor, and cluster without no easily identifiable patterns. Given 

these results, the approach to building kinematic templates for consonant clusters should 

be chosen such that the template for each sensor and consonant cluster is built 

independently.  

3.6 CONTRASTIVE STRESS EXTRACTION AND ANALYSIS 

3.6.1 CONTRASTIVE STRESS EXTRACTION 

ALL CONTRASTIVE STRESS DATA WAS EXTRACTED FROM THE SENTENCE-LEVEL 

IN THE EMA-MAE DATASET MANUAL [33]. LIKE CONSONANT CLUSTERS, THE 

CONTRASTIVE STRESS WORD IS A DYNAMIC MOVEMENT IS MUST BE 

THERE ARE 9 TOTAL CONTRASTIVE STRESS WORDS (SEE   
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Appendix A for the list of stress words), and each speaker spoke each word 

exactly two times. In the first pronunciation, the stress is placed on the first syllable, and 

the stress is placed on the second syllable during the second pronunciation. For each 

syllable, the x-y trajectory of the TD, TB, and LS sensors were extracted. This creates a 

working data set of 4 syllables (2 stress/un-stress pairings) per speaker.  

3.6.2 KINEMATIC DATA ANALYSIS 

While each contrastive stress word is pronounced twice by each speaker, the word 

is pronounced differently due to stress placement (meaning they are different words). 

This means that there is only one recording of each syllable of each word per speaker. 

Given such a small amount of data, it is impossible to form meaningful models of each 

contrastive stress word. This is not a problem, given that the focus of the analysis is the 

determination of the similarities and differences between AE and MAE speakers when 

producing stress. Given that fact, this analysis examines the characteristics of stress at a 

high level (across all words and speaker groups), as opposed to individual word analyses. 

As described during the consonant cluster analysis (section 3.5.2), magnitude, 

speed, trajectory, and duration (MSTD) analysis can be an effective method of analyzing 

dynamic articulatory movement. Applying this analysis method to contrastive stress 

would involve defining these parameters for entire syllables instead of consonant clusters. 

However, as explained above, this analysis does not seek to model the pronunciation of 

stress words or syllables, but instead the characteristics of stress themselves. This 

eliminates any need for a trajectory (T) analysis. The need for a speed curve is also 

eliminated, but the general speed of a stress/un-stress pair provides significant 

information about articulatory speed when producing stress. The speed (S) parameter, for 
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contrastive stress, replaces the speed curve of the consonant cluster analysis with a 

recording of average speed across a syllable’s duration. This new MSTD analysis, with 

the removal of trajectory investigation and a focus on syllable level data, is called MSD 

analysis. 

 The primary focus of the MSD analysis is the determination of the effect of stress 

on the magnitude, speed, and duration of a contrastive stress syllable. Given that fact, the 

analysis is not focused on individual MSD values, but instead the relationships between 

these values in their stressed and un-stressed cases: 

 

𝑀𝑅 = 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑅𝑎𝑡𝑖𝑜 =  
𝑆𝑡𝑟𝑒𝑠𝑠𝑒𝑑 𝑀

𝑈𝑛𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑 𝑀
=

∑ √𝑥𝑠𝑖
2+𝑦𝑠𝑖

2𝑛
𝑖=1

∑ √𝑥𝑢𝑠𝑖
2+𝑦𝑢𝑠𝑖

2𝑛
𝑖=1

  
(0.1) 

 

𝑆𝑅 = 𝑆𝑝𝑑 𝑅𝑎𝑡𝑖𝑜 =  
𝑆𝑡𝑟𝑒𝑠𝑠𝑒𝑑 𝑆

𝑈𝑛𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑 𝑆
=

𝑚𝑒𝑎𝑛(
√(𝑥𝑠𝑖+1−𝑥𝑠𝑖−1)

2
+(𝑦𝑠𝑖+1+𝑦𝑠𝑖−1)

2

𝑡𝑖+1−𝑡𝑖−1
)

𝑚𝑒𝑎𝑛(
√(𝑥𝑢𝑠𝑖+1−𝑥𝑢𝑠𝑖−1)

2
+(𝑦𝑢𝑠𝑖+1+𝑦𝑢𝑠𝑖−1)

2

𝑡𝑖+1−𝑡𝑖−1
)

  
(0.2) 

 𝐷𝑅 = 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =  
𝑆𝑡𝑟𝑒𝑠𝑠𝑒𝑑 𝐷

𝑈𝑛𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑 𝐷
=

𝑡𝑠𝑜𝑓𝑓−𝑡𝑠𝑜𝑛

𝑡𝑢𝑠𝑜𝑓𝑓−𝑡𝑢𝑠𝑜𝑛

  
(0.3) 

Where an s subscript denotes the stressed value (from the stressed version of the syllable 

being analyzed) of a parameter, and a us subscript denotes the unstressed value of a 

parameter. t refers to time, and the on and off subscripts refer to the onset of offset times 

(respectively) of the syllable. 

3.6.2.1 MSD ANALYSIS DETAILS 

After each syllable pronunciation was extracted from the dataset, the MSD 

parameters were calculated for each speaker. Using these values, the following features 

were calculated: 
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 For each speaker, an average stress/un-stress ratio for each MSD parameter for 

each contrastive stress paring, calculated from the two individual ratios from the 

pairings. 

 The mean magnitude, speed, and duration ratios across the two language groups 

(ENG and MAN) 

 ANOVAs comparing the average MSD parameters across the four language-

gender groups (ENGM, ENGF, MANM, MANF). 

3.6.2.2 COMPARISON EXPECTATIONS 

As previously discussed, it is important to evaluate expectations based on prior 

knowledge and research before attempting to model any data. The results of this analysis 

will potentially reform or update any previously considered approach to template 

creation. Stress is a very complicated topic in the context of Mandarin-accented English. 

The challenges associated with MAE production of English stress patterns are detailed in 

section 2.1.1. These challenges include the new concept of using stress to differentiate 

word meaning, the fact that unstressed English vowels are typically reduced (moving 

closer to the neutral schwa), and the difficulty of identifying where the stress should be 

placed in a word based on context.  

Aside from the cross-language challenges, the actual contrastive stress words can 

present additional challenges in some cases. While unstressed vowels are often reduced 

in comparison to their stressed versions, some contrastive stress words in the EMA-MAE 

dataset have different vowels depending on the stress (see Table 2.4 for the list of all 

contrastive stress words). An example of this is the word project, which has different 

pronunciations of the vowel o (either /ah/ or /ow/) depending on where stress is placed. In 
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this case, magnitude differences between the stressed and unstressed versions of the 

syllable could be purely due to the difference in vowel being produced (as opposed to a 

difference in speaking intensity, or other correlates of English stress). That being said, the 

/ow/ pronunciation of the vowel is still unstressed in this case, and therefore reduced and 

moved closer to the schwa by typical English speakers. Given this reduction, possible 

magnitude differences due to vowel pronunciation are likely significantly reduced. 

Given all the factors discussed above, MSD parameters are expected to be similar 

across AE speakers, but varied across MAE speakers. Given the typical correlates of 

English stress (discussed in section 2.1.2), all 3 MSD parameters are expected to be 

greater in stressed syllables than unstressed syllables for AE speakers. The difficulty in 

identifying and replicating stress patterns may lead to reduced MSD ratios for MAE 

speakers. 

3.6.2.3 RESULTS 

Table 0.1 displays a table of the average MSD parameters across all AE speakers, 

and Table 0.2 displays the same for MAE speakers. 

Table 0.1 – Contrastive Stress MSD Parameters: English 

  M S D 

Stress ID TD TB LS TD TB LS   

1 1.467 1.765 1.938 1.556 1.875 2.057 0.960 

2 0.873 1.610 3.005 0.817 1.502 2.412 1.157 

3 2.752 3.194 2.243 1.572 1.920 1.372 1.672 

4 2.278 3.182 2.161 1.600 2.442 1.497 1.513 

5 1.639 2.060 1.831 1.254 1.445 1.381 1.392 

6 1.598 2.666 1.978 1.207 2.131 1.545 1.327 

7 2.792 3.098 3.765 1.210 1.176 1.404 2.815 

8 1.697 2.207 1.831 1.736 2.358 1.935 1.038 
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9 1.177 1.969 1.719 1.017 1.667 1.514 1.164 

 

Table 0.2 - Contrastive Stress MSD Parameters: Mandarin 

  M S D 

Stress ID TD TB LS TD TB LS   

1 1.174 1.216 1.008 1.241 1.268 1.058 0.993 

2 1.195 1.117 1.288 1.172 1.052 1.235 1.113 

3 1.170 1.205 1.227 1.109 1.014 1.030 1.280 

4 1.269 1.194 1.066 1.187 1.213 1.027 1.064 

5 1.326 1.135 1.393 1.104 1.017 1.168 1.234 

6 1.103 1.100 0.989 0.998 1.026 0.943 1.082 

7 2.056 1.681 2.406 1.330 0.982 1.412 2.068 

8 1.166 1.147 1.332 1.388 1.417 1.527 0.925 

9 0.908 1.021 1.123 0.973 1.121 1.258 0.917 

 

Table 0.1 shows that, as expected, magnitude, average speed, and duration of stressed 

syllables are almost always greater than those of unstressed syllables for AE speakers 

(shown by the fact that the stressed/unstressed ratios are usually greater than 1). This 

table shows different MSD results for each contrastive stress word. This implies that for 

AE speakers, the degree increase of magnitude, speed, and duration from unstressed to 

stressed syllables varies with each contrastive stress word. Meanwhile, Table 0.2 shows 

that MSD parameters for MAE speakers are much more similar then those of AE 

speakers across stress words. This implies that while AE speakers treat each stress word 

differently, MAE speakers tend to treat them more similarly. 

 Table 0.3 displays the results of the ANOVAs performed across the language-

gender groups. Note that comparisons that yielded statistical significance (significant 

differences between at least two speaker groups) are highlighted. Also note that 

negligible values are marked with “-”. 
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Table 0.3 – Contrastive Stress ANOVA Results 

F-Values 

Parameter M S D 

TD 17.44 3.62 14.62 

TB 39.61 40.30 14.62 

LS 26.67 21.64 14.62 

    

p-Values 

Parameter M S D 

TD - 0.0025 - 

TB - - - 

LS - - - 

 

Note that the duration F-value is identical for all 3 sensors. Regardless of the sensor in 

question, pronunciation duration remains the same. Table 0.3 confirms the conclusion 

drawn from Table 0.1 and Table 0.2: AE speakers produce contrastive stress 

characteristics differently than MAE speakers. From those tables, it is known that this is 

due to variation in MSD parameters across clusters. While MAE speaker results are 

shown be different from those of AE speakers, MAE speakers are also shown to follow 

the trend of increasing magnitude, speed, and duration when producing stress in most 

cases. It must be stressed that these results are based on single stressed/unstressed pairs 

for each syllable per speaker. A significant increase in contrastive stress data would 

increase the reliability of these results. 

 Given such a small amount of data and large amount of native English speaker 

variation across contrastive stress words, any cross-word representation of MSD stress 

patterns may not provide meaningful information. Aside from the overall trend of 

increase, general MSD stress characteristics cannot be reliably modeled. 
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3.7 SUMMARY 

Chapter 3 has covered the analysis of EMA-MAE data. This includes the 

investigation of formant and kinematic data for vowels, as well as kinematic data for 

consonant clusters and contrastive stress pairs. The primary purpose of this Prior to data 

processing, the subset of EMA sensors used for analysis in this work (section 3.1) and the 

conversion from Euclidean space to articulator feature space (section 3.2) were discussed 

in detail. This was followed by a walkthrough of the statistical analysis techniques used 

to implement the data analyses (section 3.3). 

 Vowels were the first of the three phonetic categories to be studied (section 3.4). 

This started with an analysis of the relationship between formant frequencies and sensor 

positions. While it is clear that a relationship exists between these formant frequencies 

and sensor positions, the nature of the relationship could not be quantified in a 

meaningful way. As a result, no formant analysis techniques are applied to the vowel 

template creation process. The spread of sensor positions for a single vowel seemed to 

confirm that several articulatory configurations can result in the same vowel 

pronunciation. This suggests that vowel kinematic templates should specify a range of 

possible positions, as opposed to a single configuration. 

 The vowel analysis was followed by the analysis of consonant clusters. Plotting of 

several consonant cluster repetitions indicated large amounts of variation in size and 

directionality of cluster productions both within and across speaker groups. In order to 

characterize the individual aspects of each cluster, the MSTD (magnitude, speed, 

trajectory, and duration) analysis was introduced. This analysis revealed that across all 

MSTD parameters, there were no noticeable trends across speaker groups, consonant 
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clusters, or sensor positions. The fact that the MSTD parameters for a given cluster and 

sensor were seemingly independent of others in most cases indicates that each cluster 

template should be built independently.  

 Finally, the contrastive stress data of the speakers was analyzed. Given such a 

small amount of data, meaningful models of each contrastive stress word could not be 

reliably created. This analysis instead focused on the general correlates of stress, and how 

these correlates varied across speaker groups. The started with the introduction of the 

MSD analysis, a variation of MSTD analysis that examines the relationship between the 

stressed and unstressed magnitude (M), average speed (S), and duration (D) of each word 

pronunciation. In general, the MSD parameters were shown to increase when applying 

stress. However, while the amount of increase was fairly consistent across MAE 

speakers, the amount of increase in parameters varied across stress words for AE 

speakers. This significantly complicates the kinematic modeling process for contrastive 

stress pairs. 
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4 KINEMATIC TEMPLATE CREATION 

This chapter addresses the primary purpose of the research discussed in this thesis: 

The creation of kinematic templates modeling English vowels, consonant clusters, and 

stress characteristics. As discussed in chapter 1, the Marquette Speech and Signal 

Processing and Marquette Speech and Swallowing labs are conducting a pilot study in 

order to determine the feasibility of using acoustic-to-articulatory inversion for 

pronunciation training. The kinematic templates are needed in order to evaluate the 

results of acoustic-to-articulatory inversion of a pilot study participant’s speech. 

In chapter 3, the formant and kinematic data for all speakers of the EMA-MAE 

corpus (see section 2.2 for details) was extracted and analyzed. This analysis: 

 established the relationship between formant frequencies and corresponding 

articulator positioning. 

 studied the similarities and differences in articulation both within and between 

native American English (AE) and Mandarin-accented English (MAE) speaker 

groups.  

 evaluated expectations for articulation based on prior research and knowledge of 

speech production and language learning. 

With the detailed analysis completed, the information obtained may be applied to the 

creation of the kinematic templates. 

4.1 DEFINING THE STANDARD ENGLISH SPEAKER 
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Before kinematic templates can be created, the best way to model English speech 

must be determined. Given the available data, this model must be based on the English 

kinematic speech samples from the EMA-MAE corpus. As previously discussed in 

section 2.2, the EMA-MAE corpus contains data for 20 American English speakers (10 

male speakers and 10 female speakers). This presents two primary methods of defining 

English kinematic models: Selecting a single speaker that best represents a typical 

English speaker for modeling, or forming models through some combination of multiple 

speakers. In the data analysis of chapter 3, all English speakers are assumed to be 

speaking English correctly throughout the EMA recording process. Without a method of 

determining if a single speaker represents a typical English speaker better than any other 

speaker, the decision was made to develop the kinematic templates using data from all 20 

English speakers. 

4.2 VOWEL TEMPLATES 

4.2.1 HANDLING THE “ONE-TO-MANY” PROBLEM 

As shown by the results of the kinematic data analysis in section 3.4.3, across AE 

speakers, the repetitions of each vowel cover a wide range of sensor positions. This 

analysis confirmed that several different articulatory configurations can produce the same 

acoustic result. It is clear that the kinematic template for a single vowel must model not 

only a single combination of articulator locations, but a wide array of location 

combinations that all produce the same vowel. However, the sensor positions for a single 

vowel vary to the point of disagreeing with previously established concepts (namely, the 

relationship between formant frequencies and tongue positioning) and overlapping with 
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the range of adjacent sensors. Prior to this discovery, a solution to the template creation 

problem under consideration was the establishment of mutually exclusive regions of the 

vocal tract (in the midsagittal plane) that could be used to distinguish vowels being 

produced (essentially creating a sensor variation of the vowel quadrilateral of Figure 2.4). 

This would lead to a classification system that could be used to provide meaningful 

feedback to pilot study participants. 

A similar potential solution to the “sensor quadrilateral” may be formed using the 

overall range of each of the three sensors (TD, TB, and LS) for each vowel, but the 

different sections of the vocal tract would no longer be mutually exclusive. With sensor 

positions varying significantly, there would be a great deal of overlap between these 

sections. However, with three sensors in consideration, the kinematic model for a single 

vowel becomes more specific in that there are additional constraints on articulator 

positioning. In other words, for a pronunciation to be considered correct, all 3 sensors 

would need to fall within their respective regions: 

Figure 4.1 – Region-Based Vowel Template 
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Given a structure similar to that of Figure 4.1, single point targets (likely to be the 

average locations of each sensor for AE speakers) may be established while also 

providing a range of tolerance for acceptable pronunciation. The primary concern then 

becomes the best way to define this “tolerance region” for each sensor. 

 Given that the kinematic templates are designed to model native English speech, 

it makes sense that the regions be defined using only data from the AE speakers of the 

EMA-MAE corpus. All AE speech data is assumed to be of correct native English 

pronunciation, so all of the vowel data for all AE speakers are considered in the 

development of the regions. There are a number of ways to enclose a set of data, but the 

enclosure must also model an entire population. One potential definition of the template 

region is the convex hull of each sensor’s data across all AE speakers. The idea of using 

convex hulls is rooted in the assumption that the average native English speaker’s data 

would fall within the same region as the EMA-MAE corpus members. While convex 

hulls can accurately enclose the AE data to define a “valid pronunciation region”, they do 

not account for spatial trends in the data (for example, a higher concentration of data 

points in a certain location) and are highly sensitive to outliers (with all AE data assumed 

to be correct, any data point that should be considered an “outlier” would be the result of 

measurement error).  

Another potential solution is the standard deviational ellipse (SDE). The SDE is 

an ellipse whose dimensions are based on two dimensional deviation of the data, is 

centered on the mean, and is directed in the orientation of the data [51]. Given that the 

ellipse is created using overall deviational data, it both takes spatial trends into account 

and is much less sensitive to outliers. The main weakness of the SDE for this application 
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is that while it represents the statistical parameters of the AE data, it does not have a 

consistent scaling mechanism. An ellipse whose dimensions match the two dimensional 

standard deviation of the data will always cut off a number of data points in the AE 

distribution (because several points always fall outside the standard deviation of a set of 

data). Given the assumption that these points correspond to correctly pronounced speech, 

this ellipse would cut off a section of the acceptable region of pronunciation. Even if the 

ellipse is scaled (for example, by a factor of 2) for one vowel/sensor, this scaling factor 

will not enclose amount of data for all vowels and sensor data distributions (in other 

words, a scaling factor that works well for one vowel may not be appropriate for 

another). Also, there is the fact that not all data distributions take the shape of an ellipse. 

Meaning, each ellipse would have sections that are unoccupied by any data points, but are 

identified as acceptable regions for correct pronunciation. However, it is also true that 

with only 20 AE speakers, the templates will be based on a very small set of data. If the 

EMA-MAE corpus consisted of 100 or even 1000 speakers, it may be discovered that 

some AE speakers typically occupy these areas during articulation as well. 

Modifications to the SDE method of defining template regions that aid in 

addressing its weaknesses include (1) the creation of region “tiers” that provide additional 

information on the proximity to the target articulator positioning, and (2) consistent 

ellipse scaling across different sensors and vowels. The aforementioned tiers can be 

established via concentric ellipses. The center of these ellipses (which would be equal to 

the mean of the AE speaker data for a given vowel and sensor) would represent the 

absolute target for correct pronunciation, while the ellipses provide additional 

information regarding the proximity to the target. The innermost ellipse would enclose 
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the area with the primary concentration of sensor positions (the region of “accurate” 

articulatory positioning) across vowel repetitions, while the outermost ellipse represents 

the absolute boundary of acceptable positioning.  

In order to implement these tiers with consistent scaling across vowels, a proper 

metric is needed. Possible metrics include standard deviation (for example, ellipses sized 

at one, two, and three standard deviations from the mean) and percentage of population 

enclosed (for example, ellipses that enclose 10%, 50%, and 90% of all data). While 

standard deviations provide a consistent scaling scheme, they do not provide specific 

information regarding the actual locations of the AE speaker data used to form the 

ellipses. Using percentage of population for ellipse scaling accounts for location of 

sensors, but is more sensitive to outliers and can correspond to several ellipse sizes at 

once (further complicating the process of proper scaling). As a semi-compromise 

between these two scaling methods, the metric chosen for template creation was 

confidence level. In using this metric, the SDE was replaced with the confidence ellipse 

as the method of enclosing the data. 

4.2.2 TEMPLATE ELLIPSES  

The vowel templates are created using 3 concentric ellipses. Each ellipse 

corresponds to a certain tier of proximity to the target articulator position. The innermost 

ellipse and the region enclosed by it correspond to the correct region. This describes the 

area that, in being in close proximity to the average location occupied by AE speakers, is 

considered to correspond to correct pronunciation. Again, the notion of using an entire 

region of values to represent the correct position is founded on the idea that several 

articulatory configurations can produce the same acoustic result. The middle ellipse and 
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the region between it and the innermost ellipse correspond to the most likely correct 

region. This region corresponds to the areas that start to deviate from the average AE 

speaker position, but given the dispersion of the data, still falls within an acceptable 

range. In some cases, this region may be considered an extension of the correct region, 

rather than a separate tier. The outermost ellipse and the area between it and the most 

likely correct region correspond to the needs improvement region. This describes areas 

that may or may not correspond to correct pronunciation, and should be improved on 

before being considered acceptable. 

The R package ellipse contains several functions for calculating and plotting 

ellipses, including a function that calculates the points of a confidence ellipse using input 

data and a specified confidence level. Through repeated plot tests, the confidence levels 

to represent the correct, mostly correct, and needs improvement regions were chosen to 

be 30%, 65%, and 95% (respectively). Figure 4.2 displays these concentric ellipses for 

the (feature space) TB position of all repetitions of the vowel /ae/ for all AE speakers. 
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Figure 4.2 – Vowel Template Ellipses 

 

Note that the outermost ellipse does not completely enclose the AE speaker data. Any 

data point that falls outside the 95% confidence ellipse is assumed to correspond to a 

“bad” pronunciation. While all AE speaker data is assumed to be correct, these points are 

not representative of a typical tongue blade positioning according to the data of the EMA-

MAE corpus.  

 For each sensor, the positions of all native English repetitions of each vowel were 

used to form concentric confidence ellipses at levels of 30%, 65%, and 95%. The three 

sets of ellipses for each sensor represent the kinematic template for a given vowel. Recall 

that the conversion to feature space moved the palate trace to y=0 (see section 3.2). This 

means that any data point with a greater y value than 0 is impossible. Any confidence 
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ellipse for the tongue sensors that extended into the y > 0 region had the corresponding y 

values set to 0. Figure 4.3, which shows the kinematic vowel template for /iy/, displays 

the effect of this truncation. 

Figure 4.3 – Kinematic Vowel Template – [/iy/, Feature Space] 

 

Note that the outermost TD ellipse had its y > 0 values set to 0. For a pronunciation to be 

considered correct, the articulators should fall within all three sets of ellipses. Feedback 

will provide information about the “pronunciation tiers” that the input data landed in for 

each sensor, as well as information about the distance from the centers of these ellipses. 

This is discussed in further detail in section 4.2.3 

4.2.3 VISUALIZATION AND FEEDBACK 

In order to be used to provide pronunciation feedback, the kinematic templates 

must be presented in an intuitive way for training participants. The first step towards this 



120 

 

goal is the conversion of the templates from feature space to Euclidean space. While 

feature space (discussed in section 3.2) is especially useful for analysis and interpretation 

of results of acoustic-to-articulatory inversion, visualization plots presented in feature 

space would not be especially helpful to pilot study participants. However, there are 

challenges associated with converting back to Euclidean space. To convert to feature 

space, a speaker’s palatal outline, distance between central maxillary incisor and back 

molar, maximum lip separation, and minimum lip separation are required. The acoustic-

to-articulatory inversion system, which performs inversions without articulatory 

information and returns the results in feature space, provides no method of converting 

back to Euclidean space.  

When providing pronunciation feedback to a speaker, a visualization plot does not 

need to meet the exact dimensions of the speaker’s vocal tract. As long as the results and 

corrections shown in the plot are interpretable to the speaker, the plot’s ability to assist in 

correcting pronunciation should be unaffected. With this in mind, the missing vocal tract 

parameters may be estimated and applied to all articulatory features when converting 

back to Euclidean space. A general midsagittal palate trace was formed through the point-

by-point averaging of all 40 EMA-MAE speakers’ palate traces. This process was 

repeated for CMI-to-back molar distance to form a general horizontal normalization 

scalar. Using the average palate trace and normalization scalar, the Euclidean tongue 

dimensions (TDx, TDy, TBx, TBy) are calculated from the corresponding articulatory 

features (VT1, VT2, VT5, VT6) using equations (2.1), (2.2), (2.5) and (2.6). 

In the visualization plots, the lips’ positions re-expressed in Euclidean space, but 

are still represented by the protrusion of the lips and distance between lips. These features 
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are still represented by the aggregate LS sensor, as opposed to converting back to UL and 

LL. This is done by treating the upper lip as a stationary articulator in the y dimension 

(located at y = 0). Equation (2.7) is used to convert the lip protrusion (VT7) to Euclidean 

space, and this feature is applied to both lips. The lip separation, which is represented by 

a [0,1] normalization in feature space, was converted to Euclidean space using a lip 

scalar. The lip scalar represents the maximum lip separation in Euclidean space. This 

value was calculated as the average of the maximum vertical distance between the lips for 

all 40 EMA-MAE speakers, equal to 32.57. Given a stationary upper lip, the converted 

feature values may be thought of as describing the location of the lower lip. Equations 

(4.1) and (4.2) show the calculations for the dimensions of LS in Euclidean space. 

 𝐿𝑆𝑥
′ = 𝑉𝑇7 ∗ 𝐻 (4.1) 

  

𝐿𝑆𝑦
′ = −𝑉𝑇8 ∗ 32.57 

 

(4.2) 

 

LS’ is the converted values of LS to Euclidean space, and H is the horizontal 

normalization scalar. Note that the new LS y dimension is expressed as a negative value. 

With the upper lip located at y=0 and LSy’ representing the both the lower lip’s vertical 

location, the lower lip’s height must be located at the negative value of the (scaled) 

distance between the lips. In the visualization plots, the lips are represented by straight 

lines drawn at the corresponding heights (y=0 for the upper lip and y= LSy’ for the lower 

lip) from x=0 to x= LSx’.  

Figure 4.4 displays the kinematic template for vowel /iy/ in Euclidean space. 
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Figure 4.4 - Kinematic Vowel Template – [/iy/, Euclidean Space] 

 

Note that compared to the feature space template from Figure 4.3, the tongue template 

ellipses are warped. Recall that the ellipses are defined in feature space, which use palate 

referenced tongue positions. Converting back to Euclidean space removes this palate 

reference, and displays the corresponding Euclidean space representation. Also note that 

compared to Figure 4.3, the LS ellipses have been reflected across the x-axis. This is due 

to the fact that the lip separation was converted to a negative value when referencing the 

lower lip to a stationary upper lip (see equation (4.2)). 

 After forming the Euclidean representation of the vowel templates, functions were 

written to compare a set of articulator positions to the template. Both a feature space 

(VT1-VT8) and Euclidean space (TD, TB, LS) version of the template comparison 
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function was created.  A function that converts a set of feature space values to Euclidean 

space values was also written. This allows for data presented in feature space format to be 

compared to Euclidean templates. These functions plot the input data points over the 

templates, with arrows pointing from the points to the centers of the corresponding 

articulator ellipses. These arrows indicate both the distance and direction of movement 

required to correct the articulator positon. Figures display plots showing a sample 

comparison of points against the template of /aa/ in both feature space and Euclidean 

space. 

Figure 4.5 – Sample Template Comparison [Feature Space] 
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Figure 4.6 - Sample Template Comparison [Euclidean Space] 

 

In addition to plotting the data points over the templates, the comparison 

functions also calculate and return numerical values expressing the relationship between 

the input data points and the template targets. These values include the straight line 

distance from the point to the target, the angle (with respect to the positive x axis) of the 

vector pointing from the point to the target, and the confidence level of the outermost 

ellipse that each point falls within (and -1 if the point is outside all three ellipses). To 

demonstrate this functionality, Table 4.1 displays the values returned from the 

comparison of Figure 4.6. 
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Table 4.1 - Sample Template Comparison [Correction Information] 

Articulator Distance [mm] Angle [°] Confidence 

TD 10.48 -15.95 95 

TB 4.111 -155.7 65 

LS 10.95 72.71 -1 

 

4.3 CONSONANT CLUSTER TEMPLATES 

4.3.1 MSTD MODELING 

During the EMA-MAE consonant cluster analysis (section 3.5), the highly variable 

nature of the consonant cluster data was observed. There were no noticeable trends 

among speaker groups across magnitude/speed/trajectory/duration (MSTD) parameters, 

consonant clusters, or EMA sensors. Given this fact, each MSTD parameter of each 

sensor for each cluster is modeled independently for AE speakers. The combination of 

these MSTD models for a given consonant cluster forms that cluster’s kinematic 

template. 

As discussed in section 4.1, the kinematic templates are defined as a combination 

of the data from all AE speakers. For the consonant cluster templates, this is implemented 

as a combination of the MSTD parameters. Extending the concept of the confidence level 

from vowels to the consonant cluster template formation, the magnitude (M) parameter 

template is defined as the 95% confidence interval of the magnitudes of all AE replicates 

of a given cluster. The duration (M) parameter template is defined by the same 

calculation. The speed (S) parameter template for a given cluster is calculated as the 

mean speed curve for the cluster across all AE replicates. Similar to the speed template, 
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the trajectory (T) parameter template is calculated as the mean trajectory of the cluster 

across all AE replicates (in both the x and y directions).  

The magnitude parameter template intervals of the TB sensor for cluster 1, as well 

as the corresponding duration intervals, are shown in Table 4.2. 

Table 4.2 – Consonant Cluster Template: MD Parameters 

Parameter Start Stop 

Magnitude [mm] 8.54 10.3 

Duration [s] 0.212 0.235 

 

Figure 4.7 displays the speed parameter template of the TB sensor for cluster 1 (/nd/), and 

Figure 4.8 displays the trajectory parameter template for the same sensor and cluster. 

Figure 4.7 – Consonant Cluster Template: S Parameter 
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Figure 4.8 - Consonant Cluster Template: T Parameter 

 

Together, the magnitude and duration intervals of Table 4.2, along with the speed and 

trajectory data of Figure 4.7 and Figure 4.8, form the English kinematic template for 

consonant cluster /nd/ (for TB; note that there are also corresponding templates for TD 

and LS). 

4.3.2 VISUALIZATION AND FEEDBACK 

As previously discussed, the kinematic templates must be presented in an intuitive 

way to pilot study participants in order to provide meaningful pronunciation feedback. Of 

the 4 MSTD parameters, only two of them (speed and trajectory) require visualization 

plots. While the speed curves are already expressed in a presentable (and interpretable by 
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clinicians and pilot study participants) format, the trajectory templates need to be 

converted to a familiar format. This is done by performing an approximate conversion 

back to Euclidean space (similarly to the vowel templates in section 4.2.3). 

The conversion of each cluster trajectory to Euclidean space involves multiple 

steps. Like the vowel templates, cluster templates require a reference palate, 

normalization scalar, and lip scaling factor to convert back to Euclidean space. The same 

estimates of these values that were applied to the vowel templates were used for cluster 

templates (see section 4.2.3 for details on definition and derivation of these values). With 

these values obtained, the same un-normalization functions used for vowel templates 

(based on equations (2.1), (2.2), (2.5), and (2.6)) may be used to convert a trajectory to 

Euclidean space. However, recall that the trajectory extraction process moved all scaled 

all movement patterns and moved their starting points to the origin. Before the 

trajectories can be converted back to Euclidean space, they must first be converted back 

to feature space.  

In order to place the trajectory on the proper scale and location for a feature space 

representation, estimates of the appropriate scaling and translation values are required. 

Each trajectory was [0,1] normalized during extraction, so the x and y dimensions were 

multiplied by the average width (x) and length (y) (respectively) of each cluster across all 

feature space AE repetitions of the cluster in order to scale it back to feature space 

dimensions. The trajectories were also translated during extraction such that their starting 

points were all located at the origin. To translate these trajectories back to an appropriate 

feature space location, the average starting location for each cluster across all AE 

repetitions was calculated. The trajectories were translated using these values. With the 
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scaling and translation complete, the cluster template now has a complete feature space 

approximation. From here, each point in the trajectory may be converted back to 

Euclidean space using the same un-normalization functions used for vowel templates 

(section 4.2.3).  

With all 4 MSTD parameter templates represented in an interpretable format, the 

results may be presented and compared against a speaker’s input data. Functions were 

written for both the magnitude and duration parameters that check if a given input cluster 

falls within the template intervals. These functions return a Boolean indicating the result 

of the test. A function was also written to compare an input speed curve to a template 

speed curve. First, this function plots both curves in the same window. The differences in 

speed are highlighted in the plot through vertical lines (red when the input speed is higher 

than the template speed, and blue when the opposite occurs). Figure 4.9 displays sample 

speed curve comparison results. 
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Figure 4.9 – Sample Cluster Template Comparison: S Parameter 

 

This function also returns a “difference curve”, which is simply a vector containing the 

point-by-point differences between the template speed and input speed: 

 𝑑𝑖𝑓𝑓[𝑖] = 𝑠𝑝𝑒𝑒𝑑𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 [𝑖] − 𝑠𝑝𝑒𝑒𝑑𝑖𝑛𝑝𝑢𝑡[𝑖] (4.3) 

 Two implementations of a trajectory template comparison function were created. 

One implementation performs the comparison in [0,1] normalized trajectory space, while 

the other performs the comparison in Euclidean space. Similar to the vowel template 

plots, the Euclidean space implementation plots an average palate, and represents the lips 

with horizontal lines starting at x=0 and extending in the positive x direction. The “lip 

lines” are referenced to the starting point of the input LS trajectory template. Figure 4.10 

displays a sample Euclidean space template comparison. 
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Figure 4.10 – Sample Cluster Template Comparison: T Parameter [Euclidean] 

 

Similar to the speed template comparison function, the trajectory functions return a 

“difference trajectory”, which is a vector containing the x and y point-by-point 

differences between the template trajectory and input trajectory: 

 𝑑𝑖𝑓𝑓𝑥[𝑖] = 𝑥𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 [𝑖] − 𝑥𝑖𝑛𝑝𝑢𝑡[𝑖] (4.4) 

 𝑑𝑖𝑓𝑓𝑦[𝑖] = 𝑦𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 [𝑖] − 𝑦𝑖𝑛𝑝𝑢𝑡[𝑖] (4.5) 

4.4 CONTRASTIVE STRESS TEMPLATES 

4.4.1 MSD MODELING AND FEEDBACK 

During the EMA-MAE contrastive stress analysis (section 3.6), speakers were 

shown to increase magnitude, speed, and duration (MSD) when applying stress. 
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However, AE speakers were also shown to having varying amounts of MSD increase 

with each contrastive stress word. Given such a small amount of contrastive stress data to 

work with, it is unclear if this variation is a population trend. Without an answer to this 

question, and using the currently available data, the contrastive stress templates are built 

using the MSD data from all AE speakers. 

The confidence interval based approach used for consonant cluster templates 

(section 4.3) was also applied to the contrastive stress data. For contrastive stress pairs, 

confidence intervals were calculated for all 3 MSD parameters. These intervals are built 

from all M, S, or D ratios across all AE speakers for each sensor. The combination of the 

MSD intervals forms the contrastive stress English template for a given sensor. Table 4.3 

shows the MSD intervals for the TD sensor. 

Table 4.3 – Contrastive Stress Template Intervals 

  TD TB LS 

Parameter Start Stop Start Stop Start Stop 

Magnitude [mm/mm] 1.660 1.956 2.222 2.612 2.073 2.476 

Speed [(mm/s)/(mm/s)] 1.244 1.416 1.693 1.977 1.578 1.781 

Duration [s/s] 1.357 1.540 1.357 1.540 1.357 1.540 

 

Note that the duration interval is identical for all 3 sensors. Regardless of the sensor in 

question, pronunciation duration remains the same.  

In order to provide feedback to speakers regarding their MSD parameters, functions 

were written to determine the proximity of input MSD parameters to the template 

intervals. These functions, for M, S, and D, return a Boolean value indicating whether or 
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not the input parameter falls within the template interval, as well as the distance between 

the input parameter and template interval.  

4.5 SUMMARY 

The English kinematic templates for vowels, consonant clusters, and contrastive 

stress pairs were built as combinations of data from all 20 native English speakers. For 

vowels, the templates were implemented as sets of concentric confidence ellipses that 

specify the proper articulator locations to produce the corresponding vowel. For 

consonant clusters, these templates were implemented as a set of MSTD parameters, 

which model the magnitude, speed history, movement trajectory, and duration of 

articulator for each cluster. Finally, for contrastive stress pairs, the templates were 

implemented as a set of MSD parameters, a variation of MSTD parameters which model 

the relationship between the stressed and unstressed magnitude, average speed, and 

duration characteristics for each articulator. While there are optimizations and extensions 

to be made, the combination of these features form the first version of the Marquette 

University Speech and Signal Processing and Speech and Swallowing labs’ native 

English kinematic templates. 

5 SUMMARY AND CONCLUSIONS 

5.1 SUMMARY 

This thesis has presented a set of analyses of electromagnetic articulography 

(EMA) data, as well as implementations of midsagittal kinematic models of American 

English (AE) vowels, consonant clusters, and stress characteristics. These kinematic 
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models were developed in order to evaluate the results of acoustic-to-articulatory 

inversion in a pilot study to assess the feasibility of using said inversion as a method of 

pronunciation training for Mandarin-accented English (MAE) speakers. The development 

of these models started with an introduction to the fundamentals of both computer aided 

language learning (CALL) (section 1.1) and speech production in general (section 2.1.1). 

This also included an overview of the differences between American English and 

Mandarin Chinese speech production, and the challenges associated with learning 

American English as a speaker of Mandarin Chinese (section 2.1.2). This was followed 

by an introduction to the electromagnetic articulography Mandarin-accented English 

(EMA-MAE) database and acoustic-to-articulatory inversion system, both developed by 

Marquette University’s Speech and Signal Processing and Speech and Swallowing 

laboratories (sections 2.2 and 2.3). 

After the general overview, the data of the EMA-MAE corpus was analyzed in 

order to characterize the relationship between the acoustic and kinematic data and the 

relationship between English and Mandarin-accented English speech production. This 

started with an introduction to the EMA sensors used for this study, as well as an 

introduction to the feature space conversion that allows kinematic speech data to be 

analyzed in the same format as the features returned from the acoustic-to-articulatory 

inversion system (sections 3.1 and 3.2). Prior to the discussion of the speaker data, a 

number of statistical analysis techniques used to evaluate the data were introduced 

(section 3.3). Finally, the analysis started with an investigation of both the formant 

frequencies and EMA sensor position data produced by each of the 40 speakers when 

articulating vowels, including a comparison of these formants and sensor positions to the 
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vowel quadrilateral and each other (section 3.4). Next, the analysis moved from vowels to 

consonant clusters and stress characteristics. This included an introduction to magnitude, 

speed, trajectory, and duration (MSTD) analysis as a method of evaluating dynamic 

speech movement (sections 3.5 and 3.6). 

Using the information obtained during the acoustic and kinematic data analyses of 

chapter 3, kinematic models of American English vowels, consonant clusters, and stress 

characteristics were developed. This began with an introduction to the “vowel template 

region”, which specifies, in the midsagittal plane, the articulator positioning 

corresponding to the correct pronunciation of a given vowel. This was followed by the 

implementation of the template regions through the use of concentric confidence ellipses, 

as well as visualization plots that allow pilot study participants to observe their current 

articulatory positioning with suggestions for improvement (section 4.2). Finally, the 

results of the MSTD analysis of chapter 3 were used to develop models of English 

consonant cluster and stress characteristics through the combination of information 

regarding the magnitude, speed, movement pattern, and duration of the speech data 

(section 4.3). 

5.2 FUTURE WORK SUGGESTIONS 

The work performed in this thesis is still very much in its early stages of 

development. This research and development may be extended to both improve and 

expand the capabilities of the kinematic templates and pronunciation training method as a 

whole. This section discusses a number of suggestions for next steps in the development 

of accurate templates and meaningful pronunciation feedback. 
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5.2.1 ADJUSTED ARTICULATORY FEATURES 

The features that are currently used by the acoustic-to-articulatory inversion 

system (see section 2.3.2 for details) provide several advantages over unmodified sensor 

positions for analyzing and modeling human speech. While these features have laid the 

groundwork for Marquette’s inversion system, they are only a subset of the several 

possibilities for articulatory features. Through extended research, the ideal features for 

the application of speech inversion may be discovered. In the case of Marquette’s 

inversion system specifically, small changes to currently established features may 

improve the efficacy of the system. For example, the Marquette inversion system 

currently uses vertical distance between the tongue and palate as a means of representing 

the vocal tract shape. [52] describes an articulatory normalization that instead uses the 

shortest distance between a given tongue position and speaker’s palate to represent the 

vocal tract shape. By considering the smallest distance at a given position instead of 

vertical distance, this method better accounts for the actual shape of the vocal tract in 

many cases: 

Figure 5.1 – Adjusted Vertical Tongue Features 
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Note that given the shape of the tongue and palate, this “nearest neighbor” approach 

provides a better representation of the cross section of the vocal tract with respect to the 

air flow. Small adjustments such as these can lead to more accurate speech modeling. 

5.2.2 ARTICULATORY INVERSION-BASED TEMPLATES 

The Speech and Signal Processing lab’s acoustic-to-articulatory system is not 

100% accurate ( [5] discusses the accuracy of this system). This means that if a speaker 

were to provide speech to the inversion system, the output features would not be identical 

to those given by the data obtained from EMA. In other words, even if the kinematic 

templates perfectly modeled English speakers, and a speaker produced perfect English, 

the inversion system results would still not match the templates. This introduces, in 

addition to the pronunciation error by the speaker, a second source of error: the error 

inherent in the acoustic-to-articulatory inversion system. At the moment, there is no way 

to distinguish one source of error from the other when inversion results don’t match the 

kinematic templates. A possible solution to this issue is to create the kinematic templates 

using inversion system data instead of EMA data. Theoretically, by producing both the 

inversion results and templates from the same source, the error introduced by the 

imperfection of the inversion system is eliminated. A potential problem with this solution 

is that while the pronunciation assessment might become more accurate, the kinematic 

templates become models of inaccurate models of actual speech. The templates would 

have no practical applications outside of use with Marquette’s inversion system. 

5.2.3 SENSOR ORIENTATION INCLUSION 
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As discussed in chapter 2, the EMA sensor data provides, in addition to a sensor’s 

position in Euclidean space, the orientation of the sensor (in quaternion format). This 

orientation information provides more insight into a speaker’s articulation at a given 

time, and could potentially be used in the development of articulatory features and 

kinematic templates. One possible application of this data is the use of the orientation 

information to estimate the tongue position at locations where sensors are not placed. [27] 

describes the use of EMA quaternion data to estimate the location of the tongue’s surface 

at several locations. Information about the entire tongue surface could be useful in 

identifying additional differences between AE and MAE articulation, and could also be 

used to add detail to the visualization plots used for the pilot study. The inclusion of 

sensor orientation data has the potential to significantly improve the analysis of speech 

production. 

5.2.4 INCLUSION OF ADDITIONAL TONGUE SENSORS 

Currently, the EMA-MAE dataset consists of data from three tongue sensors, two 

of which are located in the midsagittal plane. While sensor orientation data may 

potentially be used to estimate the tongue’s position at various locations, additional 

tongue sensors provide more accurate information about the tongue’s positioning. These 

additional sensors would also increase the accuracy of tongue surface position estimation 

at other locations. However, this increased resolution comes at a cost. Each additional 

sensor places on the speaker’s tongue increases the likelihood of their speech becoming 

distorted. The decision of sensor quantity and placement becomes a tradeoff between 

resolution and speech quality. 
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5.2.5 ANALYSIS OF ENGLISH SPEECH AUDIO DATA 

The analyses performed in this thesis assume that all English speakers in the 

EMA-MAE data set spoke “perfect” English. That is to say, all speakers are assumed to 

produce all vowels, consonant clusters, and stress characteristics correctly. This led to the 

inclusion of data from all 20 English speakers in the development of kinematic templates. 

If any of the speakers were in fact producing English poorly, their data currently corrupts 

the kinematic templates in their current steps. While the template development process 

took steps to avoid outliers, it did not examine the audio quality of the speakers in any 

way. In order to assess the accuracy of the templates, one of the next steps should be the 

evaluation of English speaker’s audio data. One method of assessment of the speech 

quality would be the investigation of each speaker’s transcriptions in the EMA-MAE 

dataset. The dataset contains individual transcriptions of each speaker’s data from 

multiple transcribers, as well as a set of consensus transcriptions. The study and 

comparison of the consensus transcriptions would provide insight into the consistency in 

articulation of each speaker in comparison to the others.  

5.2.6 EXTENSION TO ADDRESS COARTICULATION EFFECTS 

Chapter 2 discussed introduced the concept of coarticulation, and mentioned the 

fact that all vowel and consonant cluster data analysis came from word level prompts. 

Currently, all identical consonant clusters, regardless of the adjacent speech sounds, are 

analyzed together as a single cluster type. Due to coarticulation effects, the production of 

a cluster (especially at the endpoints) will vary depending on the adjoining phonemes. A 

more accurate analysis would take these different speech contexts into account and 
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attempt to model them along with the base consonant cluster. Additionally, this analysis 

would also model clusters in sentence and paragraph level speech segments (which 

introduce additional coarticulation effects due to nearby words). These are largely 

difficult tasks, but are a logical next step to the modeling of English speech for 

pronunciation training. 

5.3 CONCLUSIONS 

While the work performed in this thesis was done for the purpose of developing and 

implementing English kinematic templates, the presented information and methods may 

be applied to a number of applications (especially in the fields of speech modeling and 

language learning). The kinematic templates, though still in early stages, contribute to the 

larger goal of determining the feasibility of using acoustic-to-articulatory inversion for 

pronunciation training. In the upcoming pilot study, these templates and accompanying 

visualization plots will be evaluated on their ability to assess the features returned from 

the acoustic-to-articulatory inversion system and provide meaningful feedback to pilot 

study participants. After assessment of their ability to assist language learners, the 

templates can be further improved to become a formidable pronunciation assessment tool.  
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6 APPENDIX A 

This appendix contains tables and figures that provide more detailed information to 

support the thesis content, but did not lead to any additional discoveries or whose 

information was considered secondary to the topic discussed in the thesis. 

6.1 BACKGROUND INFORMATION 

Table 6.1 displays a list of all consonant clusters from the word level prompts of the 

EMA-MAE dataset. 

Table 6.1 – EMA-MAE Consonant Clusters 

Cluster 
ID 

Cluster 
Cluster 
Word 

1 nd find 

2 sl sled 

3 kl clone 

4 nz teens 

5 ld cold 

6 lt salt 

7 kr crick 

8 kw queen 

9 tr train 

10 fr frog 

11 ʃr shrine 

12 st stable 

13 pθ depth 

14 nt tent 

15 lz falls 

16 ts bits 

17 ps tops 

18 ŋz sings 

19 skw square 

20 rdz cords 

21 ldz fields 
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22 lvz shelves 

23 br breathe 

24 dr drug 

25 gl glean 

26 rmθ warmth 

27 rz cores 

28 rs course 

29 pl please 

30 dθ breadth 

31 bz robes 

32 rv carve 

33 ŋks sinks 

34 ns sense 

35 gr green 

36 tw twin 

37 pr prize 

38 lθ wealth 

39 dz beads 

40 nθ tenth 

41 ls false 

42 fl fleas 

43 sw swell, sweet 

44 sk scare 

 

6.2 ADDITIONAL ANALYSES RESULTS 

Table 6.2 displays the results of the t-tests performed to determine the specific 

groups that contained significant differences in the vowel ANOVA results presented in 

Table 3.6 (section 3.4.2.4). This table marks an “X” on all comparisons that yielded 

statistical significance (p-values less than 0.0083). 

Table 6.2 - Table 3.6 Follow-Up T-Test Results 

    Groups Compared 

Vowel Formant 
ENGM - 

ENGF 
ENGM - 
MANM 

ENGM - 
MANF 

ENGF - 
MANM 

ENGF - 
MANF 

MANM - 
MANF 

F1   X         
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1 
(/iy/) F2 

            

2 
(/ih/) 

F1   X X X X   

F2   X X X X   

3 
(/ey/) 

F1       X X   

F2   X X X X   

4 
(/ae/) 

F1   X         

F2 X X X       

5 
(/uw/) 

F1   X X       

F2             

6 
(/uh/) 

F1 X X X X X   

F2             

7 
(/ow/) 

F1             

F2   X X X X   

8 
(/aa/) 

F1 X X X       

F2   X X   X   

 

Table 6.3 displays a feature-space comparison of average position of the EMA 

sensors for each vowel (provides numerical values corresponding to Figures Figure 3.8-

Figure 3.10, section 3.4.3.3). In addition to reporting the average position of each vowel, 

the difference in position across L1 (English minus Mandarin) was calculated and 

recorded. 

Table 6.3 - Average Sensor Positions: English vs. Mandarin 

  TDx TDy 

Vowel ENG MAN E-M ENG MAN E-M 

1 (/iy/) -1.380 -1.428 0.048 -2.047 -2.407 0.360 

2 (/ih/) -1.444 -1.439 -0.005 -6.894 -3.718 -3.175 

3 (/ey/) -1.315 -1.447 0.132 -4.179 -5.468 1.289 

4 (/ae/) -1.409 -1.555 0.146 -10.701 -11.091 0.389 

5 (/uw/) -1.614 -1.667 0.053 -5.218 -7.589 2.371 

6 (/uh/) -1.612 -1.701 0.089 -12.110 -7.814 -4.297 

7 (/ow/) -1.706 -1.760 0.054 -11.472 -11.492 0.021 

8 (/aa/) -1.614 -1.753 0.139 -15.700 -14.016 -1.685 

       
  TBx TBy 
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Vowel ENG MAN E-M ENG MAN E-M 

1 (/iy/) -0.572 -0.603 0.031 -6.503 -5.923 -0.579 

2 (/ih/) -0.652 -0.636 -0.016 -9.798 -7.729 -2.070 

3 (/ey/) -0.597 -0.677 0.080 -10.797 -10.594 -0.203 

4 (/ae/) -0.694 -0.758 0.064 -16.721 -14.709 -2.012 

5 (/uw/) -0.834 -0.879 0.044 -12.424 -13.831 1.407 

6 (/uh/) -0.821 -0.898 0.077 -15.200 -14.290 -0.909 

7 (/ow/) -0.949 -0.984 0.035 -20.594 -18.573 -2.021 

8 (/aa/) -0.845 -0.964 0.120 -21.468 -19.258 -2.211 

       
  LSx LSy 

Vowel ENG MAN E-M ENG MAN E-M 

1 (/iy/) 0.312 0.362 -0.049 0.360 0.313 0.047 

2 (/ih/) 0.325 0.365 -0.040 0.379 0.320 0.059 

3 (/ey/) 0.308 0.356 -0.048 0.423 0.357 0.066 

4 (/ae/) 0.301 0.350 -0.049 0.481 0.419 0.062 

5 (/uw/) 0.451 0.466 -0.015 0.203 0.220 -0.017 

6 (/uh/) 0.397 0.461 -0.064 0.286 0.223 0.064 

7 (/ow/) 0.444 0.458 -0.014 0.250 0.250 0.000 

8 (/aa/) 0.325 0.425 -0.100 0.480 0.360 0.120 

 

Table 6.4 displays the results of the t-tests performed to determine the specific 

groups that contained significant differences in the ANOVA results presented in Table 

0.3 (section 3.4.3.3). This table marks an “X” on all comparisons that yielded statistical 

significance (p-values less than 0.0083). 

Table 6.4 – Table 0.3 Follow-Up T-Test Results 

    Groups Compared 

Vowel Sensor 
ENGM - 

ENGF 
ENGM - 
MANM 

ENGM - 
MANF 

ENGF - 
MANM 

ENGF - 
MANF 

MANM - 
MANF 

1 
(/iy/) 

TDx             

TDy             

TBx             

TBy             

LSx       X     

LSy             

TDx             
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2 
(/ih/) 

TDy   X X X     

TBx             

TBy     X X     

LSx       X     

LSy       X     

3 
(/ey/) 

TDx       X     

TDy X     X X   

TBx             

TBy             

LSx       X     

LSy       X     

4 
(/ae/) 

TDx             

TDy             

TBx             

TBy             

LSx       X     

LSy       X     

5 
(/uw/) 

TDx             

TDy X     X X   

TBx             

TBy X       X   

LSx             

LSy             

6 
(/uh/) 

TDx             

TDy   X X   X   

TBx             

TBy             

LSx       X     

LSy       X X   

7 
(/ow/) 

TDx             

TDy             

TBx             

TBy             

LSx             

LSy             

8 
(/aa/) 

TDx             

TDy             

TBx             

TBy             

LSx       X X   

LSy       X X   
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 Tables Table 6.5-Table 6.12 display the results of the MSTD analysis ANOVA 

performed on the consonant clusters of Table 0.2. This data supplements the results 

presented in section 3.5.2.3. All comparisons that yielded statistical significance 

(identified significant differences between groups) are highlighted in orange. 

Table 6.5 – Consonant Cluster ANOVA: Magnitude F-Values 

Cluster TD TB LS 

1 (/nd) 0.602 1.067 0.475 

3 (/kl/) 2.447 1.319 2.667 

5 (/ldl) 2.467 4.627 2.475 

7 (/kr/) 2.236 2.658 0.575 

8 (/kw/) 0.535 0.956 1.400 

15 (/ls/) 0.350 4.086 1.149 

21 (/ldz/) 0.828 2.816 0.398 

35 (/gr/) 2.487 2.293 3.057 

 

Table 6.6 - Consonant Cluster ANOVA: Magnitude p-Values 

Cluster TD TB LS 

1 (/nd) 0.6180 0.3756 0.7014 

3 (/kl/) 0.0800 0.2837 0.0628 

5 (/ldl) 0.0783 0.0079 0.0776 

7 (/kr/) 0.1013 0.0634 0.6351 

8 (/kw/) 0.6614 0.4242 0.2592 

15 (/ls/) 0.7891 0.0138 0.3431 

21 (/ldz/) 0.4875 0.0533 0.7555 

35 (/gr/) 0.0766 0.0950 0.0410 

 

Table 6.7 - Consonant Cluster ANOVA: Speed F-Values 

Cluster TD TB LS 

1 (/nd) 2.193 6.318 0.496 

3 (/kl/) 2.006 0.817 3.889 
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5 (/ldl) 2.199 5.779 2.636 

7 (/kr/) 3.971 4.638 1.299 

8 (/kw/) 4.056 1.904 1.383 

15 (/ls/) 3.177 7.384 0.705 

21 (/ldz/) 1.283 8.898 0.834 

35 (/gr/) 3.325 4.394 2.123 

 

Table 6.8 - Consonant Cluster ANOVA: Speed p-Values 

Cluster TD TB LS 

1 (/nd) 0.1062 0.0015 0.6871 

3 (/kl/) 0.1311 0.4932 0.0169 

5 (/ldl) 0.1056 0.0026 0.0649 

7 (/kr/) 0.0155 0.0078 0.2903 

8 (/kw/) 0.0142 0.1469 0.2640 

15 (/ls/) 0.0360 0.0006 0.5556 

21 (/ldz/) 0.2953 0.0002 0.4841 

35 (/gr/) 0.0307 0.0100 0.1149 

 

Table 6.9 - Consonant Cluster ANOVA: Trajectory F-Values 

Cluster TD TB LS 

1 (/nd) 6.002 4.612 4.710 

3 (/kl/) 0.998 1.066 0.978 

5 (/ldl) 2.421 1.336 0.477 

7 (/kr/) 4.055 1.687 4.344 

8 (/kw/) 5.325 9.076 1.478 

15 (/ls/) 0.902 0.712 0.596 

21 (/ldz/) 0.927 0.757 1.698 

35 (/gr/) 3.478 1.168 3.321 

 

Table 6.10 - Consonant Cluster ANOVA: Trajectory p-Values 

Cluster TD TB LS 

1 (/nd) 0.0021 0.0080 0.0073 
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3 (/kl/) 0.4051 0.3759 0.4143 

5 (/ldl) 0.0824 0.2784 0.7003 

7 (/kr/) 0.0142 0.1875 0.0105 

8 (/kw/) 0.0040 0.0001 0.2372 

15 (/ls/) 0.4500 0.5514 0.6217 

21 (/ldz/) 0.4381 0.5261 0.1852 

35 (/gr/) 0.0261 0.3358 0.0308 

 

Table 6.11 – Consonant Cluster ANOVA: Duration F-Values 

Cluster F 

1 (/nd) 0.602 

3 (/kl/) 2.447 

5 (/ldl) 2.467 

7 (/kr/) 2.236 

8 (/kw/) 0.535 

15 (/ls/) 0.350 

21 (/ldz/) 0.828 

35 (/gr/) 2.487 

 

Table 6.12 - Consonant Cluster ANOVA: Duration p-Values 

Cluster p 

1 (/nd) 0.6180 

3 (/kl/) 0.0800 

5 (/ldl) 0.0783 

7 (/kr/) 0.1013 

8 (/kw/) 0.6614 

15 (/ls/) 0.7891 

21 (/ldz/) 0.4875 

35 (/gr/) 0.0766 
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