8,047 research outputs found

    Experimental study of contact transition control incorporating joint acceleration feedback

    Get PDF
    Joint acceleration and velocity feedbacks are incorporated into a classical internal force control of a robot in contact with the environment. This is intended to achieve a robust contact transition and force tracking performance for varying unknown environments, without any need of adjusting the controller parameters, A unified control structure is proposed for free motion, contact transition, and constrained motion in view of the consumption of the initial kinetic energy generated by a nonzero impact velocity. The influence of the velocity and acceleration feedbacks, which are introduced especially for suppressing the transition oscillation, on the postcontact tracking performance is discussed. Extensive experiments are conducted on the third joint of a three-link direct-drive robot to verify the proposed scheme for environments of various stiffnesses, including elastic (sponge), less elastic (cardboard), and hard (steel plate) surfaces. Results are compared with those obtained by the transition control scheme without the acceleration feedback. The ability of the proposed control scheme in resisting the force disturbance during the postcontact period is also experimentally investigated

    V/STOL maneuverability and control

    Get PDF
    Maneuverability and control of V/STOL aircraft in powered-lift flight is studied with specific considerations of maneuvering in forward flight. A review of maneuverability for representative operational mission tasks is presented and covers takeoff, transition, hover, and landing flight phases. Maneuverability is described in terms of the ability to rotate and translate the aircraft and is specified in terms of angular and translational accelerations imposed on the aircraft. Characteristics of representative configurations are reviewed, including experience from past programs and expectations for future designs. The review of control covers the characteristics inherent in the basic airframe and propulsion system and the behavior associated with ontrol augmentation systems. Demands for augmented stability and control response to meet certain mission operational requirements are discussed. Experience from ground-based simulation and flight experiments that illustrates the impact of augmented stability and control on aircraft design is related by example

    NASA/FAA experiments concerning helicopter IFR airworthiness criteria

    Get PDF
    A sequence of ground and flight simulation experiments was conducted as part of a joint NASA/FAA program to investigate helicopter instrument flight rules (IFR) airworthiness criteria. The first six of these experiments are described and the results summarized. Five of the experiments were conducted on large amplitude motion base simulators; V/STOLAND UH-1H variable stability helicopter was used in the flight experiment. Airworthiness implications of selected variables that were investigated across all of the experiments are discussed, including the level of longitudinal static stability, the type of stability and control augmentation, the addition of flight director displays, and the type of instrument approach task. Among the specific results reviewed are the adequacy of neutral longitudinal statics for dual pilot approaches and the requirement for pitch and roll attitude stabilization in the stability and control augmentation system to achieve flying qualities evaluated as satisfactory

    Simultaneous velocity, impact and force control

    Full text link
    [EN] In this paper, we propose a control method to achieve three objectives simultaneously: velocity regulation during free motion, impact damping and finally force reference tracking. During impact, the parameters are switched in order to dissipate the energy of the system as fast as possible and the optimal switching criteria are deduced. The possibility of sliding regimes is analysed and the theoretical results are verified in simulations.We would like to thank the R&D&I Linguistic Assistance Office, Universidad Politecnica de Valencia (Spain), for Granting financial support for the linguistic revision of this paper. This work has been partially funded by the European project MASMICRO (Project number 500095-2), by the projects FEDER-CICYT with reference, DPI2005-08732C02-02 and DP12006-15320-C03-01, of the Ministry of Education and Science as well as by the research Project of the Generalitat Valenciana, GVPRE/2008 20080916.Zotovic Stanisic, R.; Valera Fernández, Á. (2009). Simultaneous velocity, impact and force control. Robotica. 27(7):1039-1048. https://doi.org/10.1017/S0263574709005451S1039104827710. Xu Y. , Hollerbach J. M. and Ma D. , “Force and Contact Transient Control Using Nonlinear PD Control,” Proceedings of the 1994 International Conference on Robotics and Automation (1994) pp. 924–930.Brach, R. M., & Goldsmith, W. (1991). Mechanical Impact Dynamics: Rigid Body Collisions. Journal of Engineering for Industry, 113(2), 248-249. doi:10.1115/1.2899694Chiaverini, S., & Sciavicco, L. (1993). The parallel approach to force/position control of robotic manipulators. IEEE Transactions on Robotics and Automation, 9(4), 361-373. doi:10.1109/70.246048Armstrong, B. S. R., Gutierrez, J. A., Wade, B. A., & Joseph, R. (2006). Stability of Phase-Based Gain Modulation with Designer-Chosen Switch Functions. The International Journal of Robotics Research, 25(8), 781-796. doi:10.1177/0278364906067543Volpe, R., & Khosla, P. (1993). A Theoretical and Experimental Investigation of Impact Control for Manipulators. The International Journal of Robotics Research, 12(4), 351-365. doi:10.1177/027836499301200403Impact modeling and control for industrial manipulators. (1998). IEEE Control Systems, 18(4), 65-71. doi:10.1109/37.710879Brogliato, B., Niculescu, S.-I., & Orhant, P. (1997). On the control of finite-dimensional mechanical systems with unilateral constraints. IEEE Transactions on Automatic Control, 42(2), 200-215. doi:10.1109/9.554400Brogliato, B. (1999). Nonsmooth Mechanics. Communications and Control Engineering. doi:10.1007/978-1-4471-0557-2Armstrong, B., & Wade, B. A. (2000). Nonlinear PID Control with Partial State Knowledge: Damping without Derivatives. The International Journal of Robotics Research, 19(8), 715-731. doi:10.1177/02783640022067120Controlling contact transition. (1994). IEEE Control Systems, 14(1), 25-30. doi:10.1109/37.257891Seraji, H. (1998). Nonlinear and Adaptive Control of Force and Compliance in Manipulators. The International Journal of Robotics Research, 17(5), 467-484. doi:10.1177/027836499801700501Volpe, R., & Khosla, P. (1993). A theoretical and experimental investigation of explicit force control strategies for manipulators. IEEE Transactions on Automatic Control, 38(11), 1634-1650. doi:10.1109/9.262033A nonlinear PD controller for force and contact transient control. (1995). IEEE Control Systems, 15(1), 15-21. doi:10.1109/37.341859Seraji, H., & Colbaugh, R. (1997). Force Tracking in Impedance Control. The International Journal of Robotics Research, 16(1), 97-117. doi:10.1177/027836499701600107Armstrong, B., Neevel, D., & Kusik, T. (2001). New results in NPID control: Tracking, integral control, friction compensation and experimental results. IEEE Transactions on Control Systems Technology, 9(2), 399-406. doi:10.1109/87.91139

    Mountain bike rear suspension design: utilizing a magnetorheological damper for active vibration isolation and performance

    Get PDF
    The introduction of suspension systems to mountain bikes began in the late 1980's and early 1990's. These suspensions created two types of mountain bikes; the hardtail and the full suspension mountain bike. However, designers of full suspension bikes must balance the need for pedaling efficiency, which calls for a stiff suspension, with comfort and trail contact, which calls for a soft suspension. This thesis presents experimental and theoretical results from the development of a rear suspension system that has been designed for a mountain bike. A magnetorheological (MR) damper is used to design a rear suspension system that can balance the need of ride comfort through shock absorption and performance characteristics such as handling and pedaling efficiency by using active control. Two control algorithms have been tested in this study – on/off control and proportional control. The damping was adjusted by setting the damper current to different levels in order to measure the effects of the change in response of the bike. The rear suspension system has been integrated into an existing bike frame and tested on a shaker table as well as a mountain trail. Shaker table testing demonstrates the effectiveness of the damper, while the trail testing indicates that the MR damper-based shock absorber can be used to implement different control algorithms. The shaker table and trail testing results indicate that active damping control can be implemented using an MR damper. Using the results of these experimental tests, a theoretical test was simulated using a mathematical model; which was used to represent the mountain bike mounted to the shaker table. The results were plotted using transmissibility, power spectrum density, and frequency mode shape plots which indicated three applicable natural frequencies near 5, 9, and 10 Hz, when applying the mountain bike, rear suspension system, and rider weight/distribution used for this experiment. Upon the analysis using MATLAB, the mathematical model was determined to correctly represent the overall dynamics of the bicycle pertaining to the sprung mass. Additional accelerometers will need to be placed throughout the bicycle to determine if the mathematical model correctly represented the overall dynamics of the bicycle as a whole

    Study of Motion Control of A Flexible Link

    Get PDF
    20th century has witnessed massive upsurge in the use of manipulators in several industries especially in space, defense, and medical industries. Among the types of manipulators used, single link manipulators are the most widely used. A single link robotic manipulator is nothing but a link controlled by an actuator to carry out a particular function such as placing a payload from point A to point B. For low power requirements single link manipulators are made up of light weight materials which require flexibility considerations.Flexibility makes the dynamics of the link heavily non-linear which induces vibrations and overshoot. In this project initially the dynamic model of rigid flexible manipulator is explained, then the state space model of the manipulator system is incorporated into MATLAB. The link flexibility is studied by a single beam FEmodel, where expressions for kinetic and potential energyare employed to derive the torqueequation.The 3 flexible link equations are coupled in terms of 3 variables, θ, Ø and v. The tip angle is finally given aslvfor flexible case whereas for the rigid manipulator the tip angle is same as the hub angle θ. Thereforeaccurate computation of v is very important. The joint flexibility is excluded from analysis.Several comparisons were made between the rigid and flexible link for torque requirement. The relation between the trajectory and hub angle is also plotted in a graph.Finally a PD controller taking the errors and its derivative is designed based on the rigid link dynamics

    Analytical and experimental investigations of low level acceleration measurement techniques

    Get PDF
    Construction techniques for accelerometer with low level threshold sensitivit

    A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints

    Get PDF
    "Available online 19 December 2017"A comprehensive survey of the literature of the most relevant analytical, numerical, and experimental approaches for the kinematic and dynamic analyses of multibody mechanical systems with clearance joints is presented in this review. Both dry and lubricated clearance joints are addressed here, and an effort is made to include a large number of research works in this particular field, which have been published since the 1960′s. First, the most frequently utilized methods for modeling planar and spatial multibody mechanical systems with clearance joints are analyzed, and compared. Other important phenomena commonly associated with clearance joint models, such as wear, non-smooth behavior, optimization and control, chaos, and uncertainty and links’ flexibility, are then discussed. The main assumptions procedures and conclusions for the different methodologies are also examined and compared. Finally, future developments and new applications of clearance joint modeling and analysis are highlighted.This research was supported in part by the China 111 Project (B16003) and the National Natural Science Foundation of China under Grants 11290151, 11472042 and 11221202. The work was also supported by the Portuguese Foundation for Science and Technology with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020 – Programa Operacional Competitividade e Internacionalização (POCI) with the reference project POCI-01-0145-FEDER-006941.info:eu-repo/semantics/publishedVersio

    Advances in Mechanical Systems Dynamics 2020

    Get PDF
    The fundamentals of mechanical system dynamics were established before the beginning of the industrial era. The 18th century was a very important time for science and was characterized by the development of classical mechanics. This development progressed in the 19th century, and new, important applications related to industrialization were found and studied. The development of computers in the 20th century revolutionized mechanical system dynamics owing to the development of numerical simulation. We are now in the presence of the fourth industrial revolution. Mechanical systems are increasingly integrated with electrical, fluidic, and electronic systems, and the industrial environment has become characterized by the cyber-physical systems of industry 4.0. Within this framework, the status-of-the-art has become represented by integrated mechanical systems and supported by accurate dynamic models able to predict their dynamic behavior. Therefore, mechanical systems dynamics will play a central role in forthcoming years. This Special Issue aims to disseminate the latest research findings and ideas in the field of mechanical systems dynamics, with particular emphasis on novel trends and applications
    corecore