599 research outputs found

    An Integrated First-Order Theory of Points and Intervals over Linear Orders (Part I)

    Get PDF
    There are two natural and well-studied approaches to temporal ontology and reasoning: point-based and interval-based. Usually, interval-based temporal reasoning deals with points as a particular case of duration-less intervals. A recent result by Balbiani, Goranko, and Sciavicco presented an explicit two-sorted point-interval temporal framework in which time instants (points) and time periods (intervals) are considered on a par, allowing the perspective to shift between these within the formal discourse. We consider here two-sorted first-order languages based on the same principle, and therefore including relations, as first studied by Reich, among others, between points, between intervals, and inter-sort. We give complete classifications of its sub-languages in terms of relative expressive power, thus determining how many, and which, are the intrinsically different extensions of two-sorted first-order logic with one or more such relations. This approach roots out the classical problem of whether or not points should be included in a interval-based semantics

    An Integrated First-Order Theory of Points and Intervals over Linear Orders (Part II)

    Full text link
    There are two natural and well-studied approaches to temporal ontology and reasoning: point-based and interval-based. Usually, interval-based temporal reasoning deals with points as a particular case of duration-less intervals. A recent result by Balbiani, Goranko, and Sciavicco presented an explicit two-sorted point-interval temporal framework in which time instants (points) and time periods (intervals) are considered on a par, allowing the perspective to shift between these within the formal discourse. We consider here two-sorted first-order languages based on the same principle, and therefore including relations, as first studied by Reich, among others, between points, between intervals, and inter-sort. We give complete classifications of its sub-languages in terms of relative expressive power, thus determining how many, and which, are the intrinsically different extensions of two-sorted first-order logic with one or more such relations. This approach roots out the classical problem of whether or not points should be included in a interval-based semantics. In this Part II, we deal with the cases of all dense and the case of all unbounded linearly ordered sets.Comment: This is Part II of the paper `An Integrated First-Order Theory of Points and Intervals over Linear Orders' arXiv:1805.08425v2. Therefore the introduction, preliminaries and conclusions of the two papers are the same. This version implements a few minor corrections and an update to the affiliation of the second autho

    On Sub-Propositional Fragments of Modal Logic

    Get PDF
    In this paper, we consider the well-known modal logics K\mathbf{K}, T\mathbf{T}, K4\mathbf{K4}, and S4\mathbf{S4}, and we study some of their sub-propositional fragments, namely the classical Horn fragment, the Krom fragment, the so-called core fragment, defined as the intersection of the Horn and the Krom fragments, plus their sub-fragments obtained by limiting the use of boxes and diamonds in clauses. We focus, first, on the relative expressive power of such languages: we introduce a suitable measure of expressive power, and we obtain a complex hierarchy that encompasses all fragments of the considered logics. Then, after observing the low expressive power, in particular, of the Horn fragments without diamonds, we study the computational complexity of their satisfiability problem, proving that, in general, it becomes polynomial

    On the manipulability of dual cooperative robots

    Get PDF
    The definition of manipulability ellipsoids for dual robot systems is given. A suitable kineto-static formulation for dual cooperative robots is adopted which allows for a global task space description of external and internal forces, and relative velocities. The well known concepts of force and velocity manipulability ellipsoids for a single robot are formally extended and the contributions of the two single robots to the cooperative system ellipsoids are illustrated. Duality properties are discussed. A practical case study is developed

    Decidability of the interval temporal logic ABBar over the natural numbers

    Get PDF
    In this paper, we focus our attention on the interval temporal logic of the Allen's relations "meets", "begins", and "begun by" (ABBar for short), interpreted over natural numbers. We first introduce the logic and we show that it is expressive enough to model distinctive interval properties,such as accomplishment conditions, to capture basic modalities of point-based temporal logic, such as the until operator, and to encode relevant metric constraints. Then, we prove that the satisfiability problem for ABBar over natural numbers is decidable by providing a small model theorem based on an original contraction method. Finally, we prove the EXPSPACE-completeness of the proble

    If You Can\u27t Trust Your Lawyer, Who Can You Trust?: Why Conflicts of Interest and Client Loyalty Require an Exception to the Intra-firm Attorney-Client Privilege for Current Clients

    Full text link
    Until 2013, no court of last resort had ever addressed the issue of whether the attorney-client privilege shields communications between law firms and their in-house counsel regarding the potential liability to a current client. In that year, the Supreme Courts of Georgia and Massachusetts held that an intra-firm attorney-client privilege could shield such communications from discovery by a current client in a malpractice suit brought against the firm. Shortly after these holdings, the American Bar Association (ABA) adopted a resolution similarly advocating for courts to apply the attorney-client privilege to the intra-firm context. This Note contends that the recent case law and the ABA\u27s proposal to recognize an intra-firm attorney-client privilege in this context fail to properly acknowledge and preserve the duty of loyalty and the duty to avoid conflicts that lawyers owe to clients. While this Note recognizes the need for an intra-firm privilege, it advocates that courts should adopt a current- client exception to the privilege, under which all intra-firm communications would be shielded from discovery except when they concern a malpractice suit brought by a current client. While the exception would offer lawyers and law firms a protection less than that afforded to ordinary citizens, this rule is necessary in order to uphold the integrity of the profession and to secure the trust that is so essential to the attorney-client relationship. Not only is this exception consistent with the principle that lawyers must be held to a higher standard, but also it will minimize structural bias between firms

    Knowledge Extraction with Interval Temporal Logic Decision Trees

    Get PDF

    Fast(er) Reasoning in Interval Temporal Logic

    Get PDF
    Clausal forms of logics are of great relevance in Artificial Intelligence, because they couple a high expressivity with a low complexity of reasoning problems. They have been studied for a wide range of classical, modal and temporal logics to obtain tractable fragments of intractable formalisms. In this paper we show that such restrictions can be exploited to lower the complexity of interval temporal logics as well. In particular, we show that for the Horn fragment of the interval logic AA (that is, the logic with the modal operators for Allen’s relations meets and met by) without diamonds the complexity lowers from NExpTime-complete to P-complete. We prove also that the tractability of the Horn fragments of interval temporal logics is lost as soon as other interval temporal operators are added to AA, in most of the cases

    An integrated first-order theory of points and intervals : expressive power in the class of all linear orders

    Get PDF
    There are two natural and well-studied approaches to temporal ontology and reasoning, that is, pointbased and interval-based. Usually, interval-based temporal reasoning deals with points as a particular case of duration-less intervals. Recently, a two-sorted point-interval temporal logic in a modal framework in which time instants (points) and time periods (intervals) are considered on a par has been presented. We consider here two-sorted first-order languages, interpreted in the class of all linear orders, based on the same principle, with relations between points, between intervals, and intersort. First, for those languages containing only interval-interval, and only inter-sort relations we give complete classifications of their sub-fragments in terms of relative expressive power, determining how many, and which, are the different two-sorted first-order languages with one or more such relations. Then, we consider the full two-sorted first-order logic with all the above mentioned relations, restricting ourselves to identify all expressively complete fragments and all maximal expressively incomplete fragments, and posing the basis for a forthcoming complete classification

    Deciding the Consistency of Branching Time Interval Networks

    Get PDF
    Allen’s Interval Algebra (IA) is one of the most prominent formalisms in the area of qualitative temporal reasoning; however, its applications are naturally restricted to linear flows of time. When dealing with nonlinear time, Allen’s algebra can be extended in several ways, and, as suggested by Ragni and Wölfl, a possible solution consists in defining the Branching Algebra (BA) as a set of 19 basic relations (13 basic linear relations plus 6 new basic nonlinear ones) in such a way that each basic relation between two intervals is completely defined by the relative position of the endpoints on a tree-like partial order. While the problem of deciding the consistency of a network of IA-constraints is well-studied, and every subset of the IA has been classified with respect to the tractability of its consistency problem, the fragments of the BA have received less attention. In this paper, we first define the notion of convex BA-relation, and, then, we prove that the consistency of a network of convex BA-relations can be decided via path consistency, and is therefore a polynomial problem. This is the first non-trivial tractable fragment of the BA; given the clear parallel with the linear case, our contribution poses the bases for a deeper study of fragments of BA towards their complete classification
    • …
    corecore