10,919 research outputs found

    A reclaimer scheduling problem arising in coal stockyard management

    Full text link
    We study a number of variants of an abstract scheduling problem inspired by the scheduling of reclaimers in the stockyard of a coal export terminal. We analyze the complexity of each of the variants, providing complexity proofs for some and polynomial algorithms for others. For one, especially interesting variant, we also develop a constant factor approximation algorithm.Comment: 26 page

    Development of assembly and joint concepts for erectable space structures

    Get PDF
    The technology associated with the on-orbit assembly of tetrahedral truss platforms erected of graphite epoxy tapered columns is examined. Associated with the assembly process is the design and fabrication of nine member node joints. Two such joints demonstrating somewhat different technology were designed and fabricated. Two methods of automatic assembly using the node designs were investigated, and the time of assembly of tetrahedral truss structures up to 1 square km in size was estimated. The effect of column and node joint packaging on the Space Shuttle cargo bay is examined. A brief discussion is included of operating cost considerations and the selection of energy sources. Consideration was given to the design assembly machines from 5 m to 20 m. The smaller machines, mounted on the Space Shuttle, are deployable and restowable. They provide a means of demonstrating the capabilities of the concept and of erecting small specialized platforms on relatively short notice

    Sea Container Terminals

    Get PDF
    Due to a rapid growth in world trade and a huge increase in containerized goods, sea container terminals play a vital role in globe-spanning supply chains. Container terminals should be able to handle large ships, with large call sizes within the shortest time possible, and at competitive rates. In response, terminal operators, shipping liners, and port authorities are investing in new technologies to improve container handling infrastructure and operational efficiency. Container terminals face challenging research problems which have received much attention from the academic community. The focus of this paper is to highlight the recent developments in the container terminals, which can be categorized into three areas: (1) innovative container terminal technologies, (2) new OR directions and models for existing research areas, and (3) emerging areas in container terminal research. By choosing this focus, we complement existing reviews on container terminal operations

    Containership Load Planning with Crane Operations

    Get PDF
    Since the start of the containerization revolution in 1950's, not only the TEU capacity of the vessels has been increasing constantly, but also the number of fully cellular container ships has expanded substantially. Because of the tense competition among ports in recent years, improving the operational efficiency of ports has become an important issue in containership operations. Arrangement of containers both within the container terminal and on the containership play an important role in determining the berthing time. The berthing time of a containership is mainly composed of the unloading and loading time of containers. Containers in a containership are stored in stacks, making a container directly accessible only if it is on the top of one stack. The task of determining a good container arrangement to minimize the number of re-handlings while maintaining the ship's stability over several ports is called stowage planning, which is an everyday problem solved by ship planners. The horizontal distribution of the containers over the bays affects crane utilization and overall ship berthing time. In order to increase the terminal productivity and reduce the turnaround time, the stowage planning must conform to the berth design. Given the configuration of berths and cranes at each visiting port, the stowage planning must take into account the utilization of quay cranes as well as the reduction of unnecessary shifts to minimize the total time at all ports over the voyage. This dissertation introduces an optimization model to solve the stowage planning problem with crane utilization considerations. The optimization model covers a wide range of operational and structural constraints for containership load planning. In order to solve real-size problems, a meta-heuristic approach based on genetic algorithms is designed and implemented which embeds a crane split approximation routine. The genetic encoding is ultra-compact and represents grouping, sorting and assignment strategies that might be applied to form the stowage pattern. The evaluation procedure accounts for technical specification of the cranes as well as the crane split. Numerical results show that timely solution for ultra large size containerships can be obtained under different scenarios

    A literature review on the Pallet Loading Problem Una revisión literaria del Problema de Carga del Pallet

    Get PDF
    Actualmente, las empresas enfrentan una competencia agresiva, por lo que implementar estrategias para alcanzar la competitividad es elemental. En este sentido, en Logística, el uso adecuado de los recursos es imprescindible. El impacto en la ganancia que tienen el almacenaje y el transporte, conlleva la implementación de acciones para contrarrestarlo. Un paletizado efectivo puede contribuir a reducir costos. El Problema de Carga del Pallet (PLP) procura la optimización del espacio del pallet para lograr cargar máxima de producto debidamente empacado. El uso práctico y beneficios del PLP han dado pie a su estudio en la búsqueda su solución. Este artículo presenta una revisión literaria de 30 estudios para mostrar las características principales y los métodos de solución propuestos para proveer la base teórica y las maneras como se ha tratado el PLP. Con el entendimiento de estas propuestas de solución, se busca tener el sustento para elaborar un modelo nuevo.Nowadays, businesses face a fierce competition. Hence, the search for strategies to achieve competitiveness is elemental. For that purpose, in Logistics, the proper use of resources is a must. Storing and transportation cause impact the overall profit, making it necessary to take actions to lower their effect. An efficient palletizing can contribute to reduce costs. The Pallet Loading Problem (PLP) focuses on finding space optimization to load the maximum quantity of packed product onto the pallet. The PLP’s practical use and benefits have made it subject of study throughout time. This article presents a literature review of 30 approaches to show the main characteristics and the solution methods researchers have proposed. The objective of this revision consists of providing the theoretical basis and the way the PLP has been treated. Thus, the understanding of these solution approaches can help in the development of a new proposed model

    Power and limitations of electrophoretic separations in proteomics strategies

    Get PDF
    Proteomics can be defined as the large-scale analysis of proteins. Due to the complexity of biological systems, it is required to concatenate various separation techniques prior to mass spectrometry. These techniques, dealing with proteins or peptides, can rely on chromatography or electrophoresis. In this review, the electrophoretic techniques are under scrutiny. Their principles are recalled, and their applications for peptide and protein separations are presented and critically discussed. In addition, the features that are specific to gel electrophoresis and that interplay with mass spectrometry (i.e., protein detection after electrophoresis, and the process leading from a gel piece to a solution of peptides) are also discussed

    Heuristic container placement algorithms

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2003Includes bibliographical references (leaves: 56-58)Text in English; Abstract: Turkish and Englishviii, 72 leavesWith the growth of transportation over sea; defining transportation processes in a better way and finding ways to make transportation processes more effective have become one of the most important research areas of today. Especially in the last quartet of the previous decade, the computers had become much powerful tools with their impressive amount of data processing cababilites. It was imminent that computers had begun taking serious roles in the system development studies. As a result; constructing models for the processes in container terminals and processing the data with the computers create opportunities for the automation of various processes in container terminals. The final step of these studies is the full automation of terminal activities with software packages that combine various functions focused on various processes in a single system.This study is about a project that had been made for a container terminal owned by a special company. During this study; there had been discussions with experts about the subject, and container handling processes in the terminal had been analyzed in order to define the main structure of the yard management software to be created.This study focuses on the container handling activities over the yard space so as to create a basis for a computer system that will take part in the decisions during the container operations. Object oriented analysis and design methods are used for the definition of the system that will help the decisions in the yard operations. The optimization methodology that will be the core of the container placement decisions is based on using different placement patterns and placement algorithms for different conditions. These placement patterns and algorithms are constructed due to the container handling machinery that was being used in the terminal that this study has been made for

    Optimal Planning of Container Terminal Operations

    No full text
    Due to globalization and international trade, moving goods using a mixture of transportation modes has become a norm; today, large vessels transport 95% of the international cargos. In the first part of this thesis, the emphasis is on the sea-land intermodal transport. The availability of different modes of transportation (rail/road/direct) in sea-land intermodal transport and container flows (import, export, transhipment) through the terminal are considered simultaneously within a given planning time horizon. We have also formulated this problem as an Integer Programming (IP) model and the objective is to minimise storage cost, loading and transportation cost from/to the customers. To further understand the computational complexity and performance of the model, we have randomly generated a large number of test instances for extensive experimentation of the algorithm. Since, CPLEX was unable to find the optimal solution for the large test problems; a heuristic algorithm has been devised based on the original IP model to find near „optimal‟ solutions with a relative error of less than 4%. Furthermore, we developed and implemented Lagrangian Relaxation (LR) of the IP formulation of the original problem. The bounds derived from LR were improved using sub-gradient optimisation and computational results are presented. In the second part of the thesis, we consider the combined problems of container assignment and yard crane (YC) deployment within the container terminal. A new IP formulation has been developed using a unified approach with the view to determining optimal container flows and YC requirements within a given planning time horizon. We designed a Branch and Cut (B&C) algorithm to solve the problem to optimality which was computationally evaluated. A novel heuristic approach based on the IP formulation was developed and implemented in C++. Detailed computational results are reported for both the exact and heuristic algorithms using a large number of randomly generated test problems. A practical application of the proposed model in the context of a real case-study is also presented. Finally, a simulation model of container terminal operations based on discrete-event simulation has been developed and implemented with the view of validating the above optimisation model and using it as a test bed for evaluating different operational scenarios
    • …
    corecore