2,519 research outputs found

    Multicriteria global optimization for biocircuit design

    Get PDF
    One of the challenges in Synthetic Biology is to design circuits with increasing levels of complexity. While circuits in Biology are complex and subject to natural tradeoffs, most synthetic circuits are simple in terms of the number of regulatory regions, and have been designed to meet a single design criterion. In this contribution we introduce a multiobjective formulation for the design of biocircuits. We set up the basis for an advanced optimization tool for the modular and systematic design of biocircuits capable of handling high levels of complexity and multiple design criteria. Our methodology combines the efficiency of global Mixed Integer Nonlinear Programming solvers with multiobjective optimization techniques. Through a number of examples we show the capability of the method to generate non intuitive designs with a desired functionality setting up a priori the desired level of complexity. The presence of more than one competing objective provides a realistic design setting where every design solution represents a trade-off between different criteria. The tool can be useful to explore and identify different design principles for synthetic gene circuits

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Using the ACS Approach to Solve Continuous Mathematical Problems in Engineering

    Get PDF
    Ant colony system (ACS) has been widely applied for solving discrete domain problems in recent years. In particular, they are efficient and effective in finding nearly optimal solutions to discrete search spaces. Because of the restriction of ant-based algorithms, when the solution space of a problem to be solved is continuous, it is not so appropriate to use the original ACS to solve it. However, engineering mathematics in the real applications are always applied in the continuous domain. This paper thus proposes an extended ACS approach based on binary-coding to provide a standard process for solving problems with continuous variables. It first encodes solution space for continuous domain into a discrete binary-coding space (searching map), and a modified ACS can be applied to find the solution. Each selected edge in a complete path represents a part of a candidate solution. Different from the previous ant-based algorithms for continuous domain, the proposed binary coding ACS (BCACS) could retain the original operators and keep the benefits and characteristics of the traditional ACS. Besides, the proposed approach is easy to implement and could be applied in different kinds of problems in addition to mathematical problems. Several constrained functions are also evaluated to demonstrate the performance of the proposed algorithm

    Bio-inspired Algorithms for TSP and Generalized TSP

    Get PDF

    An immune system based genetic algorithm using permutation-based dualism for dynamic traveling salesman problems

    Get PDF
    Copyright @ Springer-Verlag Berlin Heidelberg 2009.In recent years, optimization in dynamic environments has attracted a growing interest from the genetic algorithm community due to the importance and practicability in real world applications. This paper proposes a new genetic algorithm, based on the inspiration from biological immune systems, to address dynamic traveling salesman problems. Within the proposed algorithm, a permutation-based dualism is introduced in the course of clone process to promote the population diversity. In addition, a memory-based vaccination scheme is presented to further improve its tracking ability in dynamic environments. The experimental results show that the proposed diversification and memory enhancement methods can greatly improve the adaptability of genetic algorithms for dynamic traveling salesman problems.This work was supported by the Key Program of National Natural Science Foundation (NNSF) of China under Grant No. 70431003 and Grant No. 70671020, the Science Fund for Creative Research Group of NNSF of China under GrantNo. 60521003, the National Science and Technology Support Plan of China under Grant No. 2006BAH02A09 and the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant No. EP/E060722/1
    corecore