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Ant colony system (ACS) has been widely applied for solving discrete domain problems in recent years. In particular, they are
efficient and effective in finding nearly optimal solutions to discrete search spaces. Because of the restriction of ant-based algorithms,
when the solution space of a problem to be solved is continuous, it is not so appropriate to use the original ACS to solve it. However,
engineeringmathematics in the real applications are always applied in the continuous domain.This paper thus proposes an extended
ACS approach based on binary-coding to provide a standard process for solving problemswith continuous variables. It first encodes
solution space for continuous domain into a discrete binary-coding space (searching map), and a modified ACS can be applied to
find the solution. Each selected edge in a complete path represents a part of a candidate solution. Different from the previous ant-
based algorithms for continuous domain, the proposed binary coding ACS (BCACS) could retain the original operators and keep
the benefits and characteristics of the traditional ACS. Besides, the proposed approach is easy to implement and could be applied in
different kinds of problems in addition to mathematical problems. Several constrained functions are also evaluated to demonstrate
the performance of the proposed algorithm.

1. Introduction

Ant colony systems (ACS) have been shown to have good
performance in finding near-optimal solutions for NP-hard
problems. An ACS adopts distributed computation and uses
a constructive greedy strategy [1] with positive feedback to
search for solutions. It is a powerful approach inspired by the
behavior of ants, which deposit chemical trails (pheromone)
on the ground to communicate with each other. This allows
them to find the shortest paths between nests to destinations.
ACS algorithms have thus been used to discover good
solutions to many applications [2–6]. They are also adopted
to solve algebraic equations in mathematics [7].

Normally, ant-based algorithms are used in discrete
solution space.Thus, they usually resolve the problems which
need to find a trip as a solution due to the restriction of the
encoding space.This kind of problems such as TSP (travelling
salesman problem) provides a searching map to ACS for
artificial ants to search for good trips. In other words, if

the solution space of a problem can be transformed as a
searching map, ACS would then be easily applied to it.

In the past, ACS was seldom used in continuous domain
problems since the search space is hard to transfer to trips.
Several ant-based methods were then proposed to support
continuous solution space [8–12]. However, these methods
did not completely utilize the traditional ant process in
continuous domains.Thus, they preserved few characteristics
of the original ACS algorithm, losing some of its advantages.
Hong et al. also designed an ACS algorithm with a specific
binary coding to find appropriate membership functions in
fuzzy data mining. Their experimental results showed the
good performance of ACS for handling continuous values.
The paper thus proposes a generalized version and a standard
procedure of the ACS algorithm in order to easily apply
it to other applications. The proposed method retains the
process of the original ACS algorithm to preserve its good
characteristics and recommends a simple encoding process
for continuous variables. It encodes the continuous variables

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 142194, 7 pages
http://dx.doi.org/10.1155/2014/142194



2 Mathematical Problems in Engineering

into a binary string and easily transforms the problem to be
solved into a multistage searching map. After that, each ant
selects an edge in each stage with an edge representing a
part of the binary string for a continuous variable. Experi-
ments on finding solutions to several constrained functions
are also made, and the results show that the proposed
approach works well in solving these continuous variables
problems.

2. Review of Existing ACS Algorithms for
Continuous Solution Space

The ant system was first introduced by Chang and Lin and
Dorigo et al. [2, 13] and then extended to the ant colony
system (ACS) [14]. ACS is based on observations of real
ant colonies searching for food according to the pheromone
density to solve complex problems. It uses the state transition
rule, global updating rule, and local updating rule to choose
nodes and change pheromone density. The state transition
rule is used by an ant to probabilistically decide its next state
according to the pheromone on the edge and the inverse of
the distance (visibility). After all the ants have completed
their tours, the pheromone density of the best tour passed
is then updated by the global updating rule. There are two
kinds of global updates. The first kind takes the best tour
among the ones passed by the ants in all the so far executed
iterations and then updates the amount of pheromone on
the edges of the best tour. The other kind takes the best
tour among the ones passed by the ants in each individual
iteration.

Besides, when an ant chooses an edge between nodes 𝑗
and 𝑠, it immediately updates the pheromone density of the
edge to avoid local optimum by the local updating rule.

An edgewhich is the local optima for an ant but not global
optima for all the ants will decrease its pheromone, causing
the ant to explore the other edges with higher probabilities
and thus avoiding local optima.

Traditionally, ant-based algorithms are applied to discrete
problems, which are represented as a graph with nodes and
edges. When an ant finishes its trip from start to destination,
a feasible solution is produced immediately. The advantage
of an ACS algorithm is that it is a constructive algorithm,
which is different from genetic algorithms (GAs). When ant-
based algorithms select an edge, they will refer to those
which are selected before. The ants then choose better edges
using heuristic functions designed according to the given
problem. ACS algorithms seldom produce poor solutions
and are thus suitable for problems in which good solutions
(not necessarily optimal) can be found using local search
algorithms.

In the past, it was difficult to use ant-based algorithms
to solve problems with a continuous solution space due to
the coding restriction. A common way to deal with this
issue is to map a continuous solution space to its simplified
discrete solution space. However, this creates the following
two problems. Firstly, a continuous solution space cannot
be totally mapped to a discrete solution space such that the
global optimummaynot exist in the encoded space. Secondly,

if the minimal discrete distance scale of the encoded space
is reduced, the coding length increases, and it lowers the
performance of ant-based algorithms.

Nest-based algorithms were then proposed for applying
an ant algorithm to a continuous solution space [9–11]. The
solution space is defined as a plane (2-dimentional solution
space) and each point in the plane is a possible solution. A
nest is a point in the plane and all the ants start their tours
there. In each iteration, the population may or may not move
its nest to a new place, depending on whether the new place
approaches the global optimum. However, these methods are
more similar to particle swarm optimization (PSO) than to
the original ant algorithm.

Pourtakdoust and Nobahari then proposed an extended
ACS algorithm to solve the math equation [7]. Its process
is similar to that of traditional ACS. However, it is not a
general algorithm for all problems with a continuous solution
space. The paper thus proposes a continuous ACS algorithm
that retains benefits and characteristics of the original ACS
algorithm and can be easily applied to problems with a
continuous solution space.

Besides, Socha and Dorigo proposed a complicated ACO
algorithm for continuous domains [12]. Their method main-
tained a set of PDF (probability density functions) to record
the information of pheromone. It defined some specific
operators in order to apply ACO in continuous solution
space. Karimi et al. proposed another well-defined continu-
ous ACS algorithm with Tabu search [8]. It could avoid bad
regions and guide the population toward a better solution
area. Their experimental results showed that the ant-based
algorithm could also get good performance in the continuous
domains.

Hong et al. proposed two methods based on the tradi-
tional ACS with multistages in order to find nearly opti-
mal membership functions in fuzzy mining [15, 16]. Each
membership function contains several parameters to adjust,
and each parameter is encoded into a multistage code with
two binary bits in each stage [15]. Each stage thus contains
four candidate nodes which represent (0, 0), (0, 1), (1, 0), and
(1, 1), respectively.

A simple example for its searching map is shown in
Figure 1. The trip for an ant from the start point to the
destination represents a possible complete binary string for
a solution. Hong et al. then improved it by hierarchical pro-
cessing to increase the solution accuracy [3]. In this paper, we
proposed the generalized version and a standard procedure
of the algorithm in order to apply it in more continuous
domain problems. The proposed method in this paper has
the following advantages. First, it is easy to implement since
it follows the traditional ACS architecture. Second, it does
not need to store extra information from traditional ACS;
there is no need to design specific data structure. Finally,
this algorithm is complied with traditional ACS algorithm,
including the operators and the process. It means that it
retains all of the characteristics and strong points from the
original ACS algorithm. The details of the algorithm are
described below.
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Figure 1: The searching map with 12 stages from previous work.

3. Generalized Binary-Coding ACS Algorithm

This section describes the proposed generalized ACS-based
algorithm for continuous solution space. It is called the
binary-coding ant colony system (BCACS) and preserves
all of the operators in the original ACS, including the state
transition rule, the local updating process, and the global
updating process. The details of the proposed algorithm are
described below.

3.1. Encoding and Searching Map for BCACS. In the tradi-
tional ACS, the resolved problems always provide a map for
the population of ants to search. For example, in the TSP
problem, the map for salesman to visit is exactly the one for
theACS approach.When an ant has finished a trip in themap,
it produces a suitable solution for this problem. However,
there is no such map which the ACS algorithm needs in a
continuous domain problem.Thus, the proposed generalized
ACS approach has to produce a multistage searching map
for a continuous domain first in order to resolve this kind
of problems. In BCACS, each continuous variable will be
encoded into a binary string with length 𝑛. If all of the bits
in this string are 0, it means that the decoding value for this
variable is the minimal value in the solution space. In other
words, BCACS decodes the value for a continuous variable by
the following formula:

𝑉decoding = 𝑉min + (𝑉max − 𝑉min) ×
𝑉encoding

2𝑛 − 1
, (1)

where𝑉decoding is the decoding value of the variable𝑉, 𝑉min is
the minimal possible value of𝑉, 𝑉max is the maximal value of
𝑉, 𝑉encoding is the decimal value of the current binary string
of 𝑉, and 𝑛 is the length of 𝑉. A simple example is shown in
Figure 2.

In Figure 2, a variable is represented by four bits. Assume
that the range of the continuous variable is from 0 to 1; then
1101 represents the value of 0 + (1 − 0) ∗ 13/15, which is
13/15. Thus, a continuous variable is represented by a discrete
number of candidates, and the length of its representationwill
affect the final precision. Assume that a problem includes 𝑚
variables and the length of each variable is 𝑛; then BCACSwill
encode the whole solution into a binary string with𝑚×𝑛 bits.
An example with two variables is shown in Figure 3.

0000 0010 0100 0110 1000 1010 1100 1110

0001 0011 0101 0111 1001 1011 1101 1111

Solution space

Figure 2: A simple encoding example for a continuous variable with
4 bits.

01101100

y

x

Figure 3: An example of encoding two variables.

BCACS then generates a multistage searching map in
order to obtain a binary string as a possible good result. The
length of each variable is further divided into several pieces
with the same sublength. Let the sublength be 𝑙. The number
of nodes in each stage is, thus, 2𝑙, and a node includes 𝑙 bits
as a substring of a solution. An ant then selects edges for its
route to the destination, and all the bits in the nodes passed
by the ant are concatenated together to form a solution. The
transformed multistage searching map is shown in Figure 4.

By Figure 4, when an ant finishes its route from a starting
point to a destination, it also produces an encoding discrete
binary string for every continuous variable at the same time.
After that, the binary strings can then be decoded to real
values in the solution space according to formula (1).

In the ant-based algorithm, the phase number (not the
fitness value) of the trip is an important factor to affect the
performance. The ants hardly find appropriate solutions if
the phase number of the trip is too big. Therefore, setting
longer substrings for nodes can reduce the stage number of
BCACS. It can also providemore information to the heuristic
function because the encoding process can storemore data in
longer substrings. On the other hand, shorter substrings can
help detailed search through pheromone. Thus, appropriate
length for substrings should be set to provide a good trade-off
between stored information and detailed search, thus guiding
the population to move to better solutions.

3.2. Proposed BCACS Algorithm. The proposed ACS is sim-
ilar to the original ACS. They have similar characteristics
and operators such as local update, global update, and edge
selection. The details of the proposed BCACS algorithm are
described as follows.

3.2.1. The BCACS Algorithm

Input. The input is as follows: a problem (of both continuous
and discrete domain) to be solved, a number 𝑞 of ants, an
initial pheromone density 𝜏

0
, a node bit number 𝑙 in each

stage,𝑚 stages for each continuous variable (it can also work



4 Mathematical Problems in Engineering

...
...

...
...

...

Variable 1 Variable 2 Variable 3 Variable m

l bits

2
l nodes

· · ·

· · ·

0000 · · · 00

Figure 4: A transformed searching map.

for discrete variables), a maximum number 𝐺 of iterations,
the local updating ratio 𝑟

𝑙
, and the global updating radio 𝑟

𝑔
.

Output. The output is as follows: a nearly optimal solution to
the problem.

Step 1. Generate the multistage searching map for the contin-
uous solution space according to the principle in Section 3.1.

Step 2. Define an appropriate fitness function for evaluating
paths passed by ants.

Step 3. Initially set the pheromone density 𝜏
0
on each edge in

the map and the current best solution 𝑆
𝑐
as empty.

Step 4. Set the initial generation number 𝑔 = 1.

Step 5. Build a complete route for each artificial ant by the
following substeps.

Step 5.1. Put the artificial ant at the starting point on
the map.

Step 5.2. Select an edge from the 2𝑙 candidate edges
to the next stage according to the pseudorandom
proportional rule. In this step, we can design a
suitable heuristic function for the problem to guide
the population.

Step 5.3. Update the pheromone amount on the
selected edge by the traditional local updating process
to avoid the population visiting the same edge.

Step 5.4. If the next stage is not the destination, go to
Step 5.2.

Step 6. Concatenate the bits on the nodes passed by each
artificial ant to construct a solution, decode all the con-
tinuous variables, and evaluate the fitness value of the
solution according to the fitness function defined in Step 2. If
𝑆
𝑐
is empty (the first generation) or the best solution in
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Figure 5: A simple searching map for three variables.

the iteration is better than 𝑆
𝑐
, replace 𝑆

𝑐
with the current best

solution.

Step 7. Update the pheromone amount on the trip of 𝑆
𝑐
by the

traditional global updating process.

Step 8. If 𝑔 < 𝐺, then set the generation number 𝑔 = 𝑔 + 1
and repeat Steps 5 to 7.

Step 9. Find the one with the highest fitness value amount the
𝑞 ants, and get the values of the variables for the best ant.

3.3. An Example. In this section, an example is given to
illustrate the proposed BCACS for solving a continuous
mathematical problem. Assume that there is a formula 𝑥2

1
+

𝑥2
2
+ 𝑥2
3
with each variable from −5.12 to 5.12. The BCACS

is used to find the minimum value for the formula. The
execution process is derived as follows.

Step 1. The multistage searching map for the three variables
is first generated (Figure 5). Assume that the length of each
substring is set as 3 and the coding length for a variable is 12.
Each variable thus consists of four phases.The searchingmap
is shown in Figure 6.

Step 2. The formula 𝑥2
1
+ 𝑥2
2
+ 𝑥2
3
is set as the fitness function

for each artificial ant because it is to be minimized.

Step 3. The pheromone density 𝜏
0
is initially set as 1.0 and the

current best solution 𝑆
𝑐
is set as empty.

Step 4. The initial generation number 𝑔 is set as 1 and the
maximum number 𝐺 of iterations is assumed to be 100.

Step 5. In this step, the ants construct their trips with
12 stages (4 × 3) through the node selection process.
An ant selects a node in each stage and each node
represents a 3-bit substring in a whole encoding string.
For example, a selected trip (encoded string) may be
{100 000 000 010 011 111 111 100 011 111 110 111}. In
addition, BCACS will perform local updating process after
selecting a node.

Step 6. BCACS will decode the encoded strings to get
the values of the three variables. Take the encoded string
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Table 1: Comparison of BCACS and the three other methods.

Method min(𝑓
1
) min(𝑓

2
) min(𝑓

3
) min(𝑓

4
) min(𝑓

5
) min(𝑓

6
) min(𝑓

7
)

BCACS 4.68𝑒 − 6 0.01969 0.00404 1.17𝑒 − 6 3.13𝑒 − 5 0.00741 0.16546
CACS 1.5𝑒 − 67 1.2𝑒 − 31 4.8 5.0𝑒 − 3 1.1𝑒 − 2 4.6𝑒 − 3 4.2𝑒 − 6

API 0.0 0.0 7.47651 0.00413 0.25034 0.00659 0.09307
GA 0.0 0.0 2.12457 0.03095 0.13955 0.07376 0.13358

in Step 5 as an example. It is {100 000 000 010 011 111
111 100 011 111 110 111}. {100 000 000 010}, {011 111 111
100}, and {011 111 110 111} represent the encoded string of
𝑥
1
, 𝑥
2
, and 𝑥

3
, respectively. According to formula (1), 𝑥

1
is

calculated first. 𝑉min is −5.12, 𝑉max is 5.12, and 𝑉encoding is
2050 (2050

10
= 100000000010

2
). Thus, 𝑥

1
= −5.12 + (5.12 −

(−5.12)) × (2050/4095) = 0.00625. Similarly, BCACS can
obtain 𝑥

2
=−0.00875 and 𝑥

3
=−0.02626.The fitness value can

then be calculated as (0.00625)2 + (−0.00875)2 + (−0.02626)2,
which is 0.000805. If BCACS gets a better result than that
stored in 𝑆

𝑐
in this iteration, it will replace the original one

in 𝑆
𝑐
.

Step 7.The pheromone amount on the best trip of the current
iteration is updated by the global updating process.

Step 8. If 𝑔 < 100, then the generation number 𝑔 is increased
by 1 and Steps 5 to 7 are repeated.

Step 9. After 100 generations, the solution with the highest
fitness value can be obtained, and the values of the three
variables can be encoded. In the example, 𝑥

1
is 0.000012, 𝑥

2

is 0.000003, and 𝑥
3
is 0.000011, very close to 0.

4. Experimental Results

Experiments were made to show the performance of the
proposed BCACS. The experiments were implemented in
Java on a personal computer with an Intel Core 2 Quad 6600
CPU and 4GB of RAM. BCACS was compared to some
existing approaches including API [11], GA, and CACS [7].
CACS was a special-purpose ACS for resolvingmathematical
functions. It used some complex designs to approach the opti-
mal solution to a function. For example, it applied a normal
probability distribution function to calculate the content of
pheromone and adjusted the parameters by using the current
best fitness value. The GA approach adopted here was the
traditional genetic algorithm and it decoded the solution
space as binary strings. API was inspired by a primitive ant’s
recruitment behavior. The recruitment technique made the
population proceed towards the optimum solution.The same
parameter settings from tour previous experiments [15, 16]
were used. The seven test functions are listed as follows:

(1) 𝑥2
1
+ 𝑥2
2
+ 𝑥2
3
, 𝑥
𝑖
∈ {−5.12, 5.12},

(2) 100(𝑥2
1
− 𝑥
2
)
2

+ (1 − 𝑥
1
)
2

, 𝑥
𝑖
∈ {−2.05, 2.05},

(3) 50 + ∑5
𝑖=1
(𝑥2
𝑖
− 10 cos(2𝜋𝑥

𝑖
)), 𝑥
𝑖
∈ {−5.12, 5.12},
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Figure 6:The average results along with the number of generations.

(4) 1 + ∑2
𝑖=1
(𝑥2
𝑖
/4000) − ∏

2

𝑖=1
cos(𝑥
𝑖
/√𝑖), 𝑥

𝑖
∈

{−5.12, 5.12},
(5) 1 + ∑5

𝑖=1
(𝑥2
𝑖
/4000) − ∏

5

𝑖=1
cos(𝑥
𝑖
/√𝑖), 𝑥

𝑖
∈

{−5.12, 5.12},

(6) 0.5+(sin2(𝑥2
1
+ 𝑥2
2
)
1/2

−0.5)/(1+0.001(𝑥2
1
+𝑥2
2
)), 𝑥
𝑖
∈

{−100, 100},

(7) (𝑥2
1
+ 𝑥2
2
)
0.25

(1+sin250(𝑥2
1
+ 𝑥2
2
)
0.1

), 𝑥
𝑖
∈ {−100, 100}.

All of the above test functions had a minimum value of 0,
which was to be found. Getting a function value closer to zero
thus meant a better performance. The number of candidate
edges in each stage was 2 (𝑙 = 1). The experimental results by
the different approaches are summarized in Table 1.

FromTable 1, it could be observed that BCACS andCACS
could obtain satisfactory solutions for these test functions
when compared to the others. For functions (1) and (2),
since the functions were simple and the encoding spaces
were discrete in GA and API, GA and API could obtain the
minimum evaluation value (0) because of the optimal solu-
tions being encoded in the encoding spaces. The encoding
space in BCACS was also discrete. It used formula (1) as
the decoding function, and there were no special parameters
designed to guarantee the optimal solutions in the encod-
ing spaces. Therefore, BCACS could not get the minimum
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Table 2: The average results for different node bit numbers (𝑙).

𝑙 Fun. 1 Fun. 2 Fun. 3 Fun. 4 Fun. 5 Fun. 6 Fun. 7
1 4.68𝐸 − 06 0.01969 0.00404 1.17𝐸 − 06 3.13𝐸 − 05 7.41𝐸 − 03 1.65𝐸 − 01

2 4.68𝐸 − 06 0.02514 0.07208 7.51𝐸 − 05 1.20𝐸 − 04 6.71𝐸 − 03 1.55𝐸 − 01

3 4.90𝐸 − 06 0.01913 0.02955 8.57𝐸 − 06 3.17𝐸 − 05 6.99𝐸 − 03 1.61𝐸 − 01

4 8.84𝐸 − 06 0.04885 0.24192 3.09𝐸 − 05 6.46𝐸 − 05 8.24𝐸 − 03 2.11𝐸 − 01

Table 3: The execution time (ms) for different node bit numbers (𝑙) for the seven test functions.

𝑙 Fun. 1 Fun. 2 Fun. 3 Fun. 4 Fun. 5 Fun. 6 Fun. 7 Total
1 191 74 225 112 194 77 82 957
2 83 62 207 85 212 85 98 836
3 137 95 245 96 166 67 72 886
4 139 94 324 138 338 93 99 1241

evaluation value (0) in the first two functions. For the other
complex functions, BCACS could obtain good and stable
performance. In function (3), only BCACS can get a good
result which is near the minimum value 0. CACS had shown
its good performance in resolving function optimization
problems [7]. In contrast, BCACS was a general continuous
ACS not only for the function optimization problems but also
for other continuous domain problems in the same process. It
not only was thus as flexible as the traditional ACS but could
also achieve good performance for problems with continuous
variables.

Experiments were then made to evaluate the effects of
different node bit numbers (𝑙)when the same encoding length
is set on the solutions. The results averaged in 1000 runs for
the seven test functions are shown in Table 2.

In Table 2, the results in each column were very similar
but the performance for 𝑙 = 1 was the best among the
different bit numbers. If 𝑙 is bigger,more information could be
provided to heuristic functions to guide an ant in selecting the
next edge and more appropriate solutions could be obtained.
But, in the application of computing the minimum value
of a function, we did not design any heuristic function to
guide the ants to approach better results. Thus, we should
choose a smaller number of 𝑙 in order to do more precise
searching. It is very important for BCACS to define an
effective heuristic function and set an appropriate 𝑙 value
in real implementation. The execution times for different
node bit numbers (𝑙) under the same total encoding length,
averaged in 1000 runs, for the seven test functions are shown
in Table 3.

If the number of candidate edges was smaller (meaning
the bit number was less) and the length of the whole encoded
string is fixed, the distance from the start point to the
destination would become longer. It would increase the
computation time for an ant to finish its trip. However, if
the number of candidate edges was bigger, BCACS would
spend more computation time in the selection process. In
the experiments, BCACS had the smallest computation time
when the number was set as 4.

Figure 6 then shows the average results by BCACS along
with different generations for the seven test functions with
𝑙 = 1. In the early 300 generations, the populations of
BCACS converged quickly to obtain good results. BCACS
then shows its ability of seeking better results in the solution
space in the next generations. BCACS thus has the same
characteristics and benefits (like converging quickly and
having good exploring ability) as the traditional ACS because
it has the standard process of the traditional ACS.

In the past, we designed a specific version [15] of the
proposed algorithm to find appropriate membership func-
tions for the fuzzy data-mining problems. In that paper,
the approach was compared with GA and could get good
results from the experiments. In this paper, we propose
a general version of the algorithm and conduct experi-
ments for mathematical functions. The experimental results
showed that it also obtained good enough results in this
application.

5. Conclusion and Future Work

In this paper, a simple and standardACS approach for solving
problems in continuous domains is proposed. The algorithm
adopts the traditional operators and process of ACS and
thus retains its benefits and characteristics. It just encodes a
solution space into a binary encoding space and transforms a
problem into amap-searching problem.TheACS process can
then be easily applied to it.The experimental results show that
the proposed BCACS is very competitive to the existing ACS
and some other evolutionary algorithms.

Even though the performance of BCACS is good enough
and the process is very similar to the traditional ACS algo-
rithm, there are still some issues to be further explored. First,
there are more parameters in BCACS than in the traditional
ACS. We will thus study how to set up these parameters
in the future. Second, we will apply the BCACS algorithm
to more applications with continuous solution space. The
experimental results in [12] were not directly provided. They
set the results from the best algorithm as 1 and from the other
algorithms as its multiples, which caused the difficulties in
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the comparison of the experimental results.We thusmake the
detailed experimental comparison as our future work.
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