Copyright @ Springer-Verlag Berlin Heidelberg 2009.In recent years, optimization in dynamic environments has attracted a growing interest from the genetic algorithm community due to the importance and practicability in real world applications. This paper proposes a new genetic algorithm, based on the inspiration from biological immune systems, to address dynamic traveling salesman problems. Within the proposed algorithm, a permutation-based dualism is introduced in the course of clone process to promote the population diversity. In addition, a memory-based vaccination scheme is presented to further improve its tracking ability in dynamic environments. The experimental results show that the proposed diversification and memory enhancement methods can greatly improve the adaptability of genetic algorithms for dynamic traveling salesman problems.This work was supported by the Key Program of National Natural Science Foundation (NNSF) of China under Grant No. 70431003 and Grant No. 70671020, the Science Fund for Creative Research Group of NNSF of China under GrantNo. 60521003, the National Science and Technology Support Plan of China under Grant No. 2006BAH02A09 and the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant No. EP/E060722/1