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Abstract

Swarm intelligence (SI) algorithms, including ant colony optimization, particle swarm optimization, bee-inspired algorithms, bac-

terial foraging optimization, firefly algorithms, fish swarm optimization and many more, have been proven to be good methods to

address difficult optimization problems under stationary environments. Most SI algorithms have been developed to address station-

ary optimization problems and hence, they can converge on the (near-) optimum solution efficiently. However, many real-world

problems have a dynamic environment that changes over time. For such dynamic optimization problems (DOPs), it is difficult for a

conventional SI algorithm to track the changing optimum once the algorithm has converged on a solution. In the last two decades,

there has been a growing interest of addressing DOPs using SI algorithms due to their adaptation capabilities. This paper presents a

broad review on SI dynamic optimization (SIDO) focused on several classes of problems, such as discrete, continuous, constrained,

multi-objective and classification problems, and real-world applications. In addition, this paper focuses on the enhancement strate-

gies integrated in SI algorithms to address dynamic changes, the performance measurements and benchmark generators used in

SIDO. Finally, some considerations about future directions in the subject are given.
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1. Introduction

Swarm intelligence (SI) is an important category of optimiza-

tion methods. SI is the property of a system whereby the col-

lective behaviours of agents that interact locally with their en-

vironment cause coherent functional global patterns to emerge.

Different from evolutionary algorithms (EAs), SI algorithms

are inspired from simple behaviours and self-organizing inter-

action among agents, such as ant colonies foraging, bird flock-

ing, animal herding, bacterial growth, honey bees, fish school-

ing, and so on. The term SI was first used by Beni [1] in cel-

lular robotic system where simple agents organize themselves

through neighbourhood interactions and later on established in

[2, 3, 4].

The mainstream SI algorithms are ant colony optimization

(ACO) [5] and particle swarm optimization (PSO) [6]. Less

popular SI algorithms include artificial bee colony (ABC) [7],

bacterial foraging optimization (BFO) [8], firefly algorithm

(FA) [9, 10], artificial fish swarm optimization (AFSO) [11]

and many others. Originally, SI algorithms were designed for

stationary optimization problems. However, many real-world

optimization problems are subject to dynamic environments.

Changes in a dynamic optimization problem (DOP) may occur
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in the objective function, constraints, problem instance, Pareto

front or set (in the case of dynamic multi-objective optimization

problems) that cause the optimum to change. Hence, DOPs are

more challenging to address than stationary optimization prob-

lems since repeated optimization of the changing optimum is

required [12].

The field of dynamic optimization is closely related with

EAs, known as evolutionary dynamic optimization (EDO) [12].

However, it has been a growing interest to apply SI algorithms

on different DOPs. EDO has received extensive attention with

several surveys [13, 12, 14, 15] and books [16, 17, 18, 19, 20],

whereas SI dynamic optimization (SIDO) has not received

much attention, with exception of some very brief reviews of

PSO in [14] and ACO in [15] included as subsections in the

EDO surveys. The aim of this paper is to extend these re-

views of ACO and PSO and provide a comprehensive survey

of existing work done related to SIDO, which also includes the

less popular and recent SI algorithms. The survey will mainly

focus on classifying SI algorithms based on their applications

and reviewing the strategies integrated with SI algorithms to

tackle dynamic changes. The DOPs are mainly classified into

problems with discrete and continuous spaces and their appli-

cations are further classified. A review of real-world problems

addressed with SI and reviews of performance measurements

and benchmark generators of SIDO are also given.

The rest of the paper is organized as follows. Section 2

briefly presents the concept of DOPs and describes the differ-

ences between discrete and continuous DOPs and their appli-
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cations. Moreover, it describes the benchmark generators and

performance measurements commonly used in SIDO. Section 3

briefly describes different SI algorithms. Section 4 reviews al-

gorithms and applications of SIDO arranged by classes of prob-

lems, i.e., discrete, continuous, constrained, multi-objective,

and classification problems. Section 5 reviews the real-world

applications in which SI algorithms are used. Section 6 con-

cludes this paper and summarizes future research issues and di-

rections on SIDO.

2. Dynamic optimization

2.1. Dynamic optimization problem (DOP)

A DOP can be intuitively defined as a sequence of static

problem instances that need to be optimized [21]. The two

main aspects of “dynamism” are defined by the frequency and

magnitude of an environmental change. The former and latter

parameters correspond to the speed and degree at which the en-

vironment of the problem changes, respectively. Other aspects

include the predictability, detectability, and time-linkage of dy-

namic changes [22, 23]. The former two aspects correspond to

whether a dynamic change can be predicted or detected during

the execution or not, respectively, and the latter corresponds to

whether a decision made now to address a dynamic change is

dependent on any earlier decisions or not.

An environmental change may involve the objective func-

tion (or functions if a dynamic multi-objective problem is con-

sidered [24, 25]), input variables, problem instances and con-

straints (e.g., dynamic constrained optimization [26]). For-

mally, a DOP can be defined as follows:

DOP = optimize f (x, t) subject to X(t) ⊆ S , t ∈ T, (1)

where S is the search space, t is the time, f : S × T → R

is the objective function that assigns a value (i.e., R) to each

possible solution x ∈ S and X(t) is the set of feasible solutions

x ∈ X(t) ⊆ S at time t [13, 15]. Each feasible solution x consists

of optimization variables x = {x1, . . . , xn}. Every solution x ∈

X(t) has a a set of neighbours N(x) ⊆ X(t) where N(x) is a

function that assigns a neighbourhood to x. A local optimum

solution is a feasible solution x′ that f (x′, t) ≤ f (x, t),∀x ∈

N(x) for minimization problems or f (x′, t) ≥ f (x, t),∀x ∈ N(x)

for maximization problems, respectively.

The global optimum is a feasible solution x∗ that minimizes

(or maximizes) the objective function f (x∗, t) ≤ f (x, t) ∀x ∈

X(t) for minimization problems (or f (x∗, t) ≥ f (x, t) ∀x ∈ X(t)

for maximization problems).

2.2. Discrete vs continuous space

There are different classes of optimization problems that dif-

fer in the definition of the search space X(t). In this paper two

fundamental types of problems are considered as follows:

• Discrete optimization problems where all optimization

variables xi are discrete that take values xi ∈ Di =

{v1
i
, . . . , v

|Di|

i
}, i = 1, . . . , n.

• Continuous optimization problems where all optimization

variables xi are continuous that take values xi ∈ Di ⊆

R, i = 1, . . . , n.

The main difference between discrete and continuous opti-

mization problems lies in that discrete optimization problems

have a finite search space. More precisely, they are charac-

terized by a finite set of variable values, e.g., binary that are

restricted to the values 0 and 1 or objects drawn from a finite

set of elements. Differently, each variable value within con-

tinuous optimization problems may assume an infinite number

of values, e.g., real numbers. Since computers are digital in

nature, representing discrete variables is straight forward. In

contrast, representing continuous variables requires to impose

certain limitation since it is not possible to represent an infinite

number of values.

In the context of the No-Free-Lunch (NFL)1 theorem [27],

any optimization problem that runs in a computer system con-

sists of a finite domain, and thus, can be considered as discrete.

A different approach to NFL showed that the theorem also holds

for arbitrary domains and co-domains [28]. In contrast, other

studies [29, 30] showed that the NFL theorem does not hold

in continuous domains although its soft form of NFL holds in

countably infinite domains. However, in [31], it was proved

that NFL does hold in continuous domains because the conclu-

sions of the authors in [29, 30] are drawn from their imposition

of the artificial constraint that functions under consideration be

measurable. Additional artificial constraints are imposed but

measurability was enough to trivialize NFL.

Nevertheless, the way of addressing discrete and continuous

problems typically differs. For example, in the case of discrete

problems, the set of available values are predefined before start-

ing the optimization process. Hence, an appropriate solver must

select the best possible combination of values to find a solu-

tion. Such approach may not be efficient in the case of contin-

uous problems. Instead, a flexible floating point representation

of real-valued variables is typically used by the solver. In this

way, a more efficient way to find a solution with the required

accuracy is allowed.

2.3. Applications

Both discrete and continuous optimization problems have a

wide range of applications to be summarized in Tables 2 and

3, respectively, later. Most practical real-world problems in

the fields of transportation, scheduling, management, produc-

tion, facility control, consist of a finite number of possible solu-

tions. Therefore, they can be formulated as discrete optimiza-

tion problems.

For example, many real-world optimization problems with

network environments, such as road systems, social networks,

telecommunication networks, rail networks, and so on, are of-

ten modelled by weighted graphs. A fundamental discrete op-

timization problem that is modelled by a weighted graph is the

1NFL theorem roughly states that all search heuristics (like the SI solvers

discussed in this paper) have the same performance when averaged over all

possible functions in finite search domains.
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travelling salesman problem (TSP). The TSP has many appli-

cations in both routing and scheduling problems, such as the

vehicle routing problem (VRP), which is closely related in the

field of transportation, distribution of goods and logistics. The

arc routing counterpart of the VRP, i.e., the capacitated arc rout-

ing problem, has also many applications in the real world, such

as the salt routing optimization problem, urban waste collection

problem and snow removal problem.

Differently, the applications in continuous optimization in-

clude practical problems in computational finance, the train-

ing of an artificial neural network that may be used for med-

ical diagnoses, prediction of traffic in a road system, voice and

face recognition, and forecasting weather or customer demands.

Moreover, it may include the design of optimal shapes such as

wings, turbines, engines, power plants and others.

2.4. Measurements

The aim in tracking the moving optimum (TMO) is to find

the best solution of the environment at any time. Researchers

view their algorithms from different perspectives in TMO [32].

Some researchers pay more attention on extreme behaviours of

a system, in particular, the best that the system can do, e.g.,

modified offline performance [33, 17], collective mean fitness

[34], best before change [35, 36]. Differently, other researchers

want to observe “how close to the moving optimum a solution

found by an algorithm is” [37, 38]. Therefore, the measure-

ments require that the global optimum value is known during

the dynamic changes, e.g., the offline error [39], average score

[40], accuracy [41] and other measurements based on the dis-

tance between the solutions found by the algorithm and the

global optimum [42, 43]. Others are concerned for measures

which can characterize the population as a whole, e.g., the av-

erage performance or the average robustness [44].

Recently, a new perspective on DOPs has been established,

known as robust optimization over time (ROOT), where the tar-

get is to find the sequence of solutions which are robust over

time [45]. Particularly, a solution is robust over time when

its quality is acceptable to the environmental changes during

a given time interval. Regarding SI algorithms, so far, TMO

has been mainly used with all of them. In contrast, ROOT has

been used only with PSO algorithms [46]. Robust optimization

was found to be useful when dealing with problem uncertainties

with PSO [47] and ACO [48, 49], e.g., reducing computational

efforts.

Apart from measurements that involve the performance of

algorithms, other measurements involve the behaviour of al-

gorithms. Popular examples are: the diversity of solutions

[50, 51, 52, 39], stability [53, 41], reactivity [41], robustness

[44], cross-entropy [54], peak cover [17] and λ-branching [55]2.

Other performance measurements were proposed exclusively to

evaluate the ability of the algorithms to track and locate feasi-

ble regions such as: feasible time ratio, optimal region track-

ing measure, local search cover, number of evaluations for con-

straints. In addition, existing measurements were modified for

2Cross-entropy and λ-branching are especially designed for ACO to gather

information of the distribution of the pheromone trails.

dynamic constrained optimization problems such as: the peak

cover to count the number of only feasible regions in each pe-

riod and the offline error to consider the best error as normal but

if there is no feasible solution; then the current worst possible

value is considered [56].

Of course, all the above measurements for DOPs assume a

single objective. Different measurements are used when deal-

ing with multiple objectives such as: spacing [57], hypervolume

ratio [58], S- and FS-metrics [59], accuracy [60], stability [60],

variable space generational distance [61] and maximum spread

[61].

2.5. Benchmark generators

Benchmark generators are essential tools in DOPs, due to

the limited theoretical work available in SIDO and generally

in dynamic optimization [62, 63]. They enable researchers to

develop and evaluate new algorithms for DOPs, and more im-

portantly to compare them with existing ones.

2.5.1. The generation of dynamics

A straightforward method, but not efficient, to construct a

dynamic test problem is to switch between different static in-

stances that will cause an environmental change [64]. The

benchmark problems that generate dynamic environments fol-

lowing this methodology are specified for a single problem. In

some other cases, researchers prefer to create their own cus-

tomized benchmark problems that aim to model some real-

world scenarios [65, 66, 37, 67, 68, 69] which again are de-

veloped for a specific problem, or even a specific instance of

the problem.

Several general purpose dynamic benchmark generators have

been proposed that re-shape the fitness landscape (for continu-

ous problems) or move the search process to a different loca-

tion of the fitness landscape (for discrete problems). Compre-

hensive surveys can be found in [13, 14]. Probably the most

commonly used benchmark generators for DOPs are: (1) the

moving peaks benchmark (MPB) [4]; (2) the generalized dy-

namic benchmark generator (GDBG) [40]; (3) the exclusive-or

(XOR) DOP generator for binary-encoded problems [70]; and

(4) the dynamic benchmark generator for permutation-encoded

problems (DBGP) [71]. The first two benchmark generators

work for the continuous domain where they use functions with

adjustable parameters to simulate shifting landscapes. Consid-

ering that the continuous space can be modelled as a “field of

cones” [72], then each cone can be adjusted individually to rep-

resent different dynamics. Fig. 1 shows the fitness landscapes

of two cases that belong to the MPB and the GDBG, respec-

tively.

Since the continuous space has an infinite number of variable

values, certain limitations are imposed to develop benchmarks

to solve complex mathematical functions. The MPB [4] is one

of the mostly used benchmarks for testing the performance of

algorithms in the continuous space. Each peak in the MPB

problem is a cone shape. This would be easy for an algorithm to

exploit a local optimum in the fitness landscape. To overcome

the limitation of DOPs like the MPB and DF1 [72] (a similar
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Fig. 1: The landscape of the MPB (left) and the GDBG (right).

benchmark generator with MPB), the GDBG benchmark was

developed by Li et al. [40], which was initially proposed for

the 2009 IEEE Competition on Evolutionary Computation for

DOPs. The GDBG has a more complex fitness landscape than

the MPB problem due to a huge number of rotated optima in the

search space. In the GDBG benchmark, there are six basic test

functions and each test function has eight change types, which

are the small step change, large step change, random change,

chaotic change, recurrent change, recurrent change with noise,

dimensional change and number of peaks change. In [45], the

MPB was modified to generate ROOT problems. In the origi-

nal MPB for TMO, all the peaks are changed at the same fre-

quency and severity, whereas on the modified MPB for ROOT

each peak has its own frequency and severity.

In discrete spaces, the landscape is indistinct and cannot be

defined without reference to the optimization algorithm [63].

Usually, the components that define the discrete/combinatorial

optimization problem are modified and are specific to the prob-

lem. For the dynamic TSP (DTSP), when a change occurs, ei-

ther nodes may be replaced/removed [66] or the weights of the

arc may increase/decrease [65, 21]. The dynamic changes in

dynamic VRP (DVRP) may occur on the weights of the arcs

[33] or new customers may be revealed [67]. Dynamic changes

occur when new jobs arrive during the execution for the dy-

namic job shop scheduling problem (DJSSP) [73, 74]. The

changes in the dynamic knapsack problem (DKP) may occur on

the value and weight of items as well as the capacity of knap-

sack or directly to the objective function [75]. The XOR DOP

can generate a DOP for any binary-encoded problem, which are

special case of discrete problems, by flipping the values from

“0” to “1” and vice verse, according to binary templates. The

DBGP can generate a DOP for any permutation-encoded rout-

ing problem, by swapping the nodes of the problem instance

[55, 76].

The MPB, GDBG, DBGP, XOR DOP benchmark genera-

tors and all other aforementioned benchmarks assume uncon-

strained and single objective optimization problems. Recently,

benchmark generators for continuous dynamic constrained op-

timization [77, 78, 26, 14] and continuous dynamic multi-

objective optimization [25, 61, 79, 80, 81, 82, 83, 84, 85] are

proposed. But, constrained and multi-objective optimization

under the discrete space has not attracted much attention yet

and deserves future consideration.

2.5.2. Discussion

For benchmarks in the continuous space, most of them take

the following form to generate landscape: f (x, t) = maxgi(x, t).

This way is simple and straightforward. However, it has two

disadvantages. Firstly, it is computationally inefficient. To eval-

uate a solution, we have to compute the objective value of every

g, and then find the best objective value as the objective value of

the solution. Secondly, some peaks may be invisible if they are

covered by higher peaks. In addition, these benchmarks lack of

scenarios of real-world problems.

For benchmarks in the discrete space, the variables of the

problem instance are typically modified, e.g., the nodes or arcs

of a weighted graph G = (C, L, t) that represent the problem.

Although real-world scenarios are generated with most bench-

marks the global optimum value is unknown during dynamic

changes. Hence, if all compared algorithms are performing far

away from the optimum, one will not be able to observe it. A

solution to that is to move the search process into a different

location of the landscape rather than changing it, e.g., using

the DBGP (for permutation-encoded problems) and the XOR

DOP (for binary-encoded problems) that can generate dynamic

environments without affecting the global optimum value. Ba-

sically, the encoding of the problem instance is modified rather

than the search space. However, the real-world scenario ability

is sacrificed for the sake of benchmarking.

3. Swarm intelligence algorithms

3.1. Brief description

The area of metaheuristics in SI is chaotic because there are

many “novel” metaheuristics that are basically repeating exist-

ing metaheuristics [87] or are not even inspired by nature or

swarms, e.g., the fireworks algorithms inspired by the fireworks

explosions [88]. Nevertheless, this paper focuses only on the SI

metaheuristics applied to DOPs as listed in Table 1.

Generally speaking, all SI algorithms were developed specif-

ically for different optimization problem domains as defined

in Table 1. For example, ACO was developed for a discrete

space whereas the remaining algorithms in Table 1 for a con-

tinuous space. The common characteristics of these algorithms
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Table 1: Swarm intelligence algorithms applied on DOPs so far

Algorithm Main

Reference

Initial Problem

Domain

Exploitation Mechanism Exploration Mechanism

Ant colony optimization (ACO) [5] Discrete

optimization

Construction of solutions

according to heuristic infor-

mation

Consideration of pheromone

trail values

Particle swarm optimization (PSO) [86] Continuous

optimization

Update the particle positions

towards the global best par-

ticle

Velocity update of particles

Artificial fish swarm optimization (AFSO) [11] Continuous

optimization

Follow and swarm be-

haviour

Prey behaviour

Bacterial foraging optimization (BFO) [8] Continuous

optimization

Chemotaxis and reproduc-

tion steps

Elimination-dispersal step

Artificial bee colony (ABC) [7] Continuous

optimization

Neighbourhood search car-

ried by employed and on-

looker bees

Random search of scout

bees

Firefly algorithm (FA) [9] Continuous

optimization

Firefly movement according

to attractiveness

Random move of the best

firefly

are that they are inspired from nature, population-based, and

iterative. Their differences, apart from their behaviour inspira-

tion, lie in the way the search space is explored and exploited

by the “agents” [89].

3.1.1. Ant colony optimization (ACO)

ACO was inspired by the foraging behaviour of real ants. The

goal of ants is to find the shortest path between their nest and

food sources. ACO metaheuristic is based on several construc-

tion steps and on a dynamic memory structure that contains in-

formation regarding the quality of previously obtained results

[90, 91]. Each ant represents a potential solution of the prob-

lem. ACO consists of a forward mode where ants construct their

solutions probabilistically based on existing pheromone trails

and heuristic information available a priori. When all ants com-

plete their forward mode they switch to their backward mode

where a shared pheromone table is updated accordingly, i.e.,

the better the solution quality the more pheromone deposited.

There are two main ACO frameworks, i.e., evaporation-

based [92, 93] and population-based [66]. Their difference

lies in the way pheromone is updated. The evaporation-based

framework reduces the pheromone trails gradually by a con-

stant amount to eliminate any previous poor old “decisions”.

The population-based framework uses a population that re-

moves pheromone trails directly when a solution is removed

from the population.

3.1.2. Particle swarm optimization (PSO)

PSO was first introduced in [86] to address continuous op-

timization problems. Each particle represents a potential solu-

tion of the problem. More precisely, each particle consists of

a velocity and position vectors, respectively, which are updated

according to the best so far position of the particle and the best

so far position of the swarm.

There are two main models of the PSO algorithm, i.e., the

global best and local best, respectively. Their difference lies in

the neighbourhood structure for each particle. In the global best

model, the neighbourhood of a particle consists of the parti-

cles in the whole swarm, which share information between each

other. On the contrary, in the local best model, the neighbour-

hood of a particle is defined by several fixed particles. Poli et al.

[94] stated that the global best model converges faster than the

local best model whereas the former model has a higher prob-

ability of getting stuck in local optima than the latter model.

Surveys of different PSO variations can be found in [95, 96].

Both models are used but in different ways due to their

characteristics. The global best model is normally used in

multi-swarm based algorithms [97, 98, 99], while the local best

model is commonly used in algorithms with a single swarm

[100, 101, 102].

3.1.3. Artificial bee colony (ABC)

There are several developments of bee-inspired algorithms

such as: ABC, bee colony optimization, bee system, marriage

process bee, honey bee mating optimization, virtual bee algo-

rithm, honey bee algorithm and beehive algorithm. Surveys of

the different developments can be found in [103, 104, 105]. In

this paper, we mainly focus on the ABC algorithms that have

attracted most of the attention, especially in DOPs [105]. In

particular, an ABC algorithm mimics the behaviour of real bees

colonies [7]. A conventional ABC algorithm consists of food

sources, whereas each food source represents a potential solu-

tion of the problem. Food sources are updated by three groups

of bees: employed, onlooker and scout bees.

Within the employed bee phase, bees search for new solu-

tions. In particular, each bee produces a new candidate food

source position from the old one. In the case that food sources

with more nectar are found, i.e., the new solutions have better

fitness than the current, then they are updated. Next, the rela-

tive probabilities according to the fitness determined from the

employed bee phase are determined in the onlooker bee phase.

Then, onlooker bees select a solution probabilistically in which

the fittest solutions have a higher probability to be selected by

onlooker bees. After that, onlooker bees have the same be-
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haviour with the employed bees. Finally, scout bees randomly

reallocate solutions if they are abandoned, e.g., they have not

been updated for a certain time.

3.1.4. Bacterial foraging optimization (BFO)

The BFO algorithm was inspired by the complex organized

activities in bacterial foraging and the survival of bacteria in dif-

ferent environments [8, 106, 107]. A BFO algorithm consists of

several bacteria, which represent solutions in the optimization

problem and consists of three processes: chemotaxis, reproduc-

tion, and elimination-dispersal.

In chemotaxis, a bacterium with random direction represents

a tumble and a bacterium with the same direction of the previ-

ous step indicates a run. Next in the reproduction process all

bacteria is sorted and only half of the fittest bacteria survive.

Then, the surviving bacteria is split into two identical ones to

form the new bacteria. Finally, in the elimination-dispersion

process, a bacterium is chosen probabilistically to move to a

different random position in the search space. Although this

action maintains the diversity during execution, it may disturb

the optimization process and therefore it is performed after sev-

eral steps of the reproduction process.

3.1.5. Artificial fish swarm optimization (AFSO)

There are several existing developments of fish-inspired al-

gorithms. A detailed description of developments can be found

in [108]. In this paper, we focus on the AFSO inspired by

the foraging behaviour of real fish swarms in water world [11]

which was applied for DOPs. Within AFSO, each artificial fish

looks for a position (solution) with more food source (better fit-

ness) by performing three main behaviours: prey, swarm and

follow. The prey behaviour is performed by an artificial fish

without considering other swarm members. More precisely, a

target position better than the current is considered randomly

within the visual of the fish.

The swarm behaviour is a group behaviour and is performed

globally among all members of swarm as follows. Each artifi-

cial fish consists of a number of neighbours within its visual. If

the central position of the visual field is better; then it moves

towards the central position; otherwise, the prey behaviour is

performed again. Similarly, the follow behaviour is performed,

but instead of moving toward the central position, the artificial

fish will move toward a better neighbour position within its vi-

sual. Otherwise, the prey behaviour is performed again. Basi-

cally, the prey behaviour is performed when an artificial fish is

not able to move to a better position when the follow or swarm

behaviour is performed. If the algorithm reaches stagnation be-

haviour some artificial fishes are selected randomly from the

whole artificial fish swarm and are set randomly. The best so

far artificial fish position (i.e., solution) is recorded.

3.1.6. Firefly algorithm (FA)

The FA was inspired by the flashing patterns and behaviour

of fireflies [9, 10]. An FA is based on three assumptions:

1. all fireflies can be attracted by all other fireflies

2. the attractiveness of each firefly is proportional to the

brightness of other fireflies

3. the landscape of the problem determines the brightness of

fireflies.

Hence, a firefly that is less bright will move toward a more

bright one. Otherwise, if a firefly is not able to locate a brighter

firefly, it will move randomly. Each firefly glows proportionally

to its solution quality, which, together with its attractiveness,

dictates how strong it attracts other members of the swarm.

3.2. Adapting in changing environments

Since all SI algorithms were initially designed for stationary

optimization problems, they share a common property: con-

vergence, i.e., they are designed to converge to the optimum

quickly and precisely. In contrast, DOPs require repeated opti-

mization and tracking of the moving optimum. However, when

an algorithm converges, its adaptation capabilities are lost due

to the diversity loss problem. Therefore, it is important to ad-

dress the diversity loss problem by increasing/maintaining the

diversity. However, it does not mean that a high level of diver-

sity will lead to better performance [12, 55]. This is because

too much randomization may disturb the optimization process.

Another important aspect of SI algorithms to adapt well in

DOPs is to promote the knowledge transfer. Naturally, knowl-

edge can be transferred from previously optimized environ-

ments using SI algorithms, e.g., via pheromone trails with

ACO, via the food sources with ABC and AFSO, via the po-

sition of fireflies and bacteria with FA and BFO, respectively.

However, it may not be enough to quickly recover when a dy-

namic change occurs. On the other hand, if too much knowl-

edge is transferred, it may start the optimization process close

to a poor local optimum and get stuck there.

Enhanced SI algorithms have proved to be powerful for dif-

ferent DOPs. The main idea of enhancement strategies inte-

grated to SI algorithms is to achieve a good balance for knowl-

edge transfer and diversity maintenance as shown in Fig. 2. In

addition, these two factors are also conflicting because if di-

versity is not maintained then the algorithm will not be very

flexible to utilise any knowledge transferred.

Fig. 2: Effects of tuning diversity maintenance and knowledge transfer of SI

algorithms in DOPs

4. Swarm intelligence for dynamic optimization

In this section, major SI strategies that tackle dynamic

changes will be reviewed for various classes of problems di-
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vided as follows:

• SI in dynamic discrete optimization

• SI in dynamic continuous optimization

• SI in dynamic constrained optimization

• SI in dynamic multi-objective optimization

• SI in dynamic classification

Since the first two classes have been extensively researched,

they are further classified by application (see Tables 2 and 3)

and by the type of strategy: (a) increasing diversity after a

change, (b) maintaining diversity during execution, (c) memory

schemes, (d) multiple population3 methods and (e) hybridiza-

tions. The remaining classes are current trends in SIDO and

their research is limited.

4.1. SI in dynamic discrete optimization

Many discrete optimization problems, either in stationary or

dynamic environments, are NP-hard, i.e., it is strongly be-

lieved that they cannot be solved to optimality within polyno-

mial computation time [109]. Dynamic versions of several pop-

ular discrete optimization problems have been addressed using

SI methods.

From Table 2, it can be observed that ACO is mostly used

for discrete/combinatorial problems. Typically, these problems

are represented using weighted graphs G = (C, L), where C is a

set of components and L is a set of links. For example, for the

DTSP or DVRP, the pheromone trails τi j are mapped with both

the components and links of the problem to represent the desir-

ability of visiting component (node) j after component (node) i.

Similarly, the pheromone trails in DJSSP refer to the desirabil-

ity of choosing operation j directly after operation i. For binary-

encoded problems, pheromone trails are associated to the two

possible choices that a component can take. For the DKP the

pheromone trails τi are associated only with the components

and refer to the desirability of adding item i. Therefore, when

a dynamic change occurs, some of the current pheromone trails

will not be compatible with the characteristics of the new en-

vironment whereas some others will contain information useful

to guide optimization into promising areas of the search space

quickly.

Several strategies were proposed to address this issue catego-

rized in the following subsections.

4.1.1. Increasing diversity after a change

Many strategies in DOPs depend on the detection of dynamic

changes. The detection is typically performed by re-evaluating

a solution and whenever a change in its fitness occurs then a

dynamic change is detected. The strategies in this category per-

forms actions whenever a change is detected to increase diver-

sity.

3Population is used as a general term to define a set of agents. For different

SI algorithms, a population is defined differently, e.g., as colony for ACO and

ABC, as swarm for PSO, AFSO and FA, and as bacteria for BFO.

1. Complete restart. The pheromone trails of ACO algo-

rithms are re-initialized with an equal amount whenever

a change is detected for DTSP and DVRP [44, 55, 65].

This corresponds to a complete restart of the algorithm

that optimizes each dynamic change from scratch. Since

the initial phase of an algorithm is highly explorative, the

diversity is increased significantly. However, all previous

knowledge gained is destroyed.

2. Partial restart. Other strategies aim to simply increase the

diversity and maintain the knowledge gained, simultane-

ously, when a change occurs. For example, Guntsch and

Middendorf [54, 111] proposed partial restart strategies

using local information, e.g., the η-strategy and τ-strategy,

which take into account where the dynamic change ac-

tually occurs, e.g., which cities are added/removed for

DTSP. The aim of both strategies is to give a higher degree

of re-initialization to the pheromone trails closer to the of-

fended areas. This corresponds to a partial restart of the al-

gorithm because knowledge is maintained and could speed

up the optimization process. However, apart from detect-

ing the period of change, the location of changes needs to

be detected. It may not be always available or requires

extensive computational efforts to detect them. A similar

partial restart strategy via pheromone trails was proposed

for the DJSSP [136, 73].

Angus and Hendtlass [110] used the old pheromone trails

and modified proportionally to the maximum pheromone

trail value for DTSP. Similarly, Eyckelhof and Snoek [65]

proposed a “shaking technique” to regulate the previous

pheromone trails. All pheromone trails are modified us-

ing a logarithmic formula, where the pheromone values

closer to the initial pheromone value are deducted slightly,

whereas higher pheromone values are deducted severely.

The same shaking technique was adopted in a PSO vari-

ation that uses a pheromone table as a communication

topology for particles [118, 119]. However, the results

were not as promising as with ACO algorithms that are

more effective for graph problems.

The above strategies performed modification via the

pheromone trails directly. In contrast, Rand and Riolo [75]

repaired the best solution of the previous environment for

the DKP, since it became infeasible by the change, using

a deconstruction technique. The pheromone trails are af-

fected indirectly according to the changes made to the so-

lutions during the repair. In this way, partial knowledge of

the previous environment is preserved. On the same prob-

lem but with a different type of dynamic changes that does

not affect the representation of the problem, Baykasoğlu

and Ozsoydan [137] enhanced the diversity of FA by par-

tially restarting a part of the population when a dynamic

change occurs.

Montemanni et al. [67] addressed the DVRP by divid-

ing the working day into time slices. Basically, the dy-

namic problem is split into a series of several static prob-

lems that are optimized by ACO separately. Pheromone

conservation of the previous static problem was used to

prevent starting the optimization from scratch for the next
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Table 2: Swarm intelligence applications for discrete DOPs

ACO PSO ABC BFO AFSO FA

Dynamic Travelling Salesman Problem

[110, 54, 111, 66,

44, 65, 55, 21,

112, 113, 114,

115, 35, 55, 116,

36, 117]

[118, 119, 120,

121]

– – – –

Dynamic Vehicle Routing Problem

[67, 122, 123,

124, 125, 48, 49,

37, 33, 126, 127]

[128, 129, 130,

131, 132, 133,

134, 47, 135]

– – – –

Dynamic Job Shop Scheduling Problem

[136, 73, 74] – – – –

Dynamic Knapsack Problem

[75] – – – – [137]

Other Binary-Encoded Functions

[138, 76] – – – – –

Table 3: Swarm intelligence applications for continuous DOPs

ACO PSO ABC BFO AFSO FA

Moving Peaks Benchmark

- [140, 141, 142,

143, 144, 145,

146, 147, 148,

98, 149, 99, 150,

151, 152, 153,

154, 155, 156,

157, 158, 159,

160, 161, 162,

163, 97, 164,

102, 165, 166,

101, 167, 168]

[169, 170, 171,

172]

[173, 174, 175] [176, 177] [178, 179, 180,

181, 182, 183]

Generalize Dynamic Benchmark Generator

[184, 185] [186, 187] [188, 189] – – –

Other Time-Varying Functions

[190, 191] [192, 193, 194] [195, 196, 197] – – –

problem. Using time slices, the detection of change is not

necessary. However, the performance of the algorithm de-

pends on the number of time slices that is predefined. A

similar ACO approach was proposed in [122] and a PSO

approach in [135]. More PSO variations using time slices

were proposed by Khouadjia et al. [128, 129]. Each par-

ticle keeps track of its best solution which is later used to

form the initial swarm for the next time slice. In contrast,

the initial swarm of the next time slice in [133] is defined

by the previous global best within a given radius.

4.1.2. Maintaining diversity during execution

There are strategies that do not necessarily require the detec-

tion of change to increase diversity. Diversity is maintained

during the execution. In fact, unmodified ACO algorithms

were applied to the DJSSP [74] and binary-encoded problems

[138, 76]. Because pheromone evaporation helps to forget un-

used pheromone trails, it helps the adaptation process when a

dynamic change occurs. Another way is to gather statistics

from the pheromone trails to detect stagnation and re-initialize

the pheromone trails [139]. This way was used to the afore-

mentioned PSO with pheromone matrix for the DTSP [121].

Based on the pheromone evaporation effect, the pheromone

evaporation rate ρ was adapted during the optimization process

[55] for DTSP and DVRP to speed up the adaptation. The idea

is to increase the evaporation rate when the algorithm is ap-

proaching stagnation behaviour to eliminate pheromone trails

faster. Since the adaptive method required a fixed step size; a

self-adaptive evaporation rate was later proposed to address this

issue [116]. In particular, the evaporation rate is discretized to
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a set of values with which pheromone trails are associated. The

ants are responsible to select the appropriate rate at each itera-

tion.

Ankerl and Hämmerle [125] self-adapted the α and β param-

eters that control the weight of pheromone trails and heuris-

tic information, respectively. Each ant uses a different set of

these parameters, which initially are the same. This way en-

ables ants to explore different locations of the search space, and

thus, maintain diversity. Liu [117] modified the decision rule of

ACO instead of adapting the control parameters. A rank-based

non-linear selection pressure function is integrated to the deci-

sion rule. Although the integration enhances diversity, it causes

the introduction of new parameters that need to be optimized.

A very popular strategy integrated with ACO is the immi-

grants scheme [55, 21, 112, 113, 33, 127]. The general idea is

to introduce immigrant ants, either randomly or using the best

from the previous environment, to deposit pheromone trails. In

this way, diversity is maintained. However, if too many random

immigrant ants are generated, they may disturb the optimization

process.

4.1.3. Memory schemes

Another way to transfer knowledge from previous environ-

ments is to use an external memory. Typically, promising so-

lutions are stored in the memory and reused when a dynamic

change occurs. Again, this type of strategies require the detec-

tion of change to update the memory or even repair it.

One of the most popular ACO for the DTSP is the

population-based ACO (P-ACO) [66]. P-ACO maintains

a memory of the best ants that is used for updating the

pheromones. When a dynamic change occurs, the ants in the

memory are repaired heuristically, and thus, the pheromone val-

ues are modified. Similarly, with the η-strategy and τ-strategy

mentioned above, the location of changes is required for the

heuristic repair.

The memory-based immigrants ACO [37, 21, 33] uses a lim-

ited size memory to store the best representative solution from

several previously optimized environments. The idea is to gen-

erate immigrant ants based on the currently best memory to

transfer knowledge and increase diversity simultaneously.

4.1.4. Multiple population methods

The use of separate populations can naturally increase and

maintain diversity. The idea is to allocate different populations

into different areas in the search space.

A multi-colony ACO algorithm where each colony uses a

separate pheromone table in an attempt to maximize the search

area explored was proposed for the DTSP [36] and DVRP

[123, 124]. An explicit method to keep the colonies into differ-

ent areas was not applied, but the results showed that it performs

better than a single colony ACO algorithm. In contrast, multi-

colony ACO in which different colonies, called castes, use the

same pheromone table was proposed in [114, 115]. Each caste

uses different parameter settings that correspond to different be-

haviour for each caste that can cover different location of the

search space. A similar idea was adopted in PSO for the DVRP

[120].

For PSO, a multi-swarm algorithm based on the island model

was proposed for the DVRP [130]. Particles from different

swarms migrate regularly to others to maintain diversity. A dif-

ferent multi-swarm was introduced in [134], where the commu-

nication was performed only with the arrival of a new environ-

ment.

4.1.5. Hybridizations

The strategies in this category emphasize more on the hy-

bridization of the SI algorithm with a local search method. Usu-

ally, algorithms enhanced by a local search, known as memetic

algorithms, provide significantly better solutions with the price

of increasing the computation time. The idea is to let the main

algorithm provide an initial solution for the local search to opti-

mize. But since local search operators generate strong exploita-

tion the algorithms need to maintain diversity.

The P-ACO described above was improved in [44, 126],

where several local search steps based on simple and adaptive

inversions are applied to the iteration best ant. In addition the

diversity is enhanced with the triggered random immigrants en-

tering the memory, whenever all ants stored in the memory are

identical. Recently, another memetic-based ACO was proposed

in [35] that uses a local search whenever a new best solution

is found. Whenever the algorithm is entering stagnation be-

haviour (very often because of the local search), the pheromone

trails are re-initialized to the maximum value to maintain diver-

sity.

4.2. SI in dynamic continuous optimization

The MPB described in Section 2.5 is the most widely used

problem for DOPs in the continuous space. The key idea to

tackle this problem (and in general multimodal problems as

GDBP) is to locate and track all peaks (local optima) in the

search space. When a change occurs, one of these local optima

may become the global optimum. Other time varying functions

include the Sphere, Ackley, Griewanks, Rastrigin, Rosenbrock,

Schwefel, where a random value chosen from an exponential

distribution is added/subtracted in every dimension. The Sphere

and the two dimensional Rosenbrock functions are unimodal

whereas the remaining functions are multimodal, just like the

MPB and GDBP. Other time varying unimodal functions in-

clude the parabolic function.

From Table 3 it can be observed that PSO is mostly used

on continuous problems. Each particle in the swarm has its

own knowledge about its local environment. If the knowledge

helps to solve the problem when a dynamic change occurs, it

will quickly transfer among particles via simple interactions be-

tween particles. In this way, the position of the particles will be

updated (essentially) towards the global optimum. Similarly,

other SI algorithms can help to solve the problem but using dif-

ferent interactions. Nevertheless, all SI algorithms may need

some enhancements in some perspective to escape from the pre-

viously converged optimum and effectively track the new one.

Several strategies were proposed to address this issue, which

are categorized in the following subsections.
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4.2.1. Increasing diversity after a change

Similarly, with the corresponding category of discrete opti-

mization above, the strategies in this category depend on the

detection of change.

In [198, 199] a conventional PSO algorithm was applied on

the time-varying parabolic function that reflects a simple uni-

modal fitness landscape. When a dynamic change occurs, part

of the population is randomly initialized.

4.2.2. Maintaining diversity during execution

Strategies in this this category explicitly maintain the diver-

sity during the execution using different techniques, which are

further grouped as follows.

1. Special mechanisms. Inspired from the atom field, Black-

well et al. [97] introduced a multi-charged PSO (mCPSO)

and a multi-quantum swarm optimization (mQSO). In

mCPSO, a part of particles in each swarm, named

“charged” particles, repel each other and circle around

neutral particles. In mQSO, the “quantum” particles move

randomly around the best particle. Both algorithms were

improved by re-initializing the worst performing swarm

whenever all swarms converge for maintaining diversity

[164]. Li et al. [150] integrated the quantum particles

(from mQSO) to the SPSO to improve its adaptation ca-

pabilities. Thereafter, both SPSO and mQSO were further

improved by converting particles to quantum particles for

a single iteration after a dynamic change is detected [146].

The quantum principle introduced in [164] was also ap-

plied in a speciation FA (SFA) algorithm [179] and in a

continuous variation of ACO [190].

Another example is a BFO for dynamic environments

[174], where chemotaxis is performed every itera-

tion, reproduction is performed every fr iterations, and

elimination-dispersion is performed whenever a dynamic

change occurs. In this way, bacteria will spread out to the

search space, e.g., carrying out exploration.

2. Individual selection. Daneshyari and Yen [145] modified

both the particle selection and replacement mechanisms

so that the most diversified particles (measured by the

Hamming distance) are selected and the particles that have

close locations are replaced. Tang et al. [173] proposed a

dynamic BFO (DBFO) that uses a more flexible selection

scheme to maintain diversity, where the selection during

reproduction is made probabilistically, in a way similarly

to the one used in EAs. In [195], a modified ABC (MABC)

was proposed with the restriction of the communication

among bees to only the ones that are closer.

3. Operator selection. A PSO-based memetic algorithm

[144] was proposed, where two local search operators are

adaptively selected for maintaining the diversity.

4. Randomization. Kojima et al. [196] applied a dynamic

ABC (DABC) algorithm to the dynamic Rastring and

Rosenbrock functions, where independent food sources

are used for each search phase and the cauchy distribution

is taken in the employed phase.

In contrast, other strategies in this category focus on adjust-

ing the neighborhood of an individual to implicitly maintain

the diversity during the optimization process. For example,

the speciation based PSO (SPSO), proposed by Parrott and Li

[102, 165], adaptively organizes a neighbourhood of particles in

each iteration according to certain principles based on their fit-

ness and distance. In SPSO, the number and size of swarms are

adaptively adjusted by constructing an ordered list of particles,

ranked according to their fitness, with spatially close particles

joining a particular species. The speciation scheme was adopted

in a speciation FA (SFA) algorithm [179] to create sub-swarms.

Similarly, the compound concept derived by a branch of

physics was introduced in PSO [166, 101]. Instead of the

“fittest first” principle in SPSO, swarms are constructed based

on a “worst first” principle, but each composite particle con-

sists of three fixed particles. Thereafter, an opposite version

was proposed, where a sub-swarm is generated based on the

“fittest-oriented” principle [167].

Janson and Middendorf [162] proposed a partitioned hierar-

chical PSO (PH-PSO) that uses a dynamic tree-based neigh-

bourhood structure. Each particle is placed on a single node

of the tree and particles are arranged hierarchically according

to their fitness. Chen et al. [169] have used a bee life cycle

method to dynamically adjust the size of the colony according

to the local fitness landscape during optimization. Parsopoulos

and Vrahatis [193] proposed a unified PSO with a constriction

factor, which combines the global and local best PSO variants.

Furthermore, ACO variations that replace the conventional

discrete probability distribution by a continuous are applied on

different time-varying functions [191] and GDBG [184, 185].

By setting a higher evaporation rate ACO variations can adapt

to changes as described in Section 4.1.

4.2.3. Memory schemes

As mentioned above, the memory scheme aims to transfer

“useful” knowledge from previous search to accelerate the cur-

rent search. This scheme can also help maintain the diversity.

To implement a memory scheme, an external archive is nor-

mally needed. An archive population was used to store good so-

lutions whenever a dynamic change is detected or when a peak

is found in a tri-island model [141]. Best solutions are main-

tained in an archive whenever a change occurs in the employed

bee phase for a differential ABC algorithm [197] and an im-

proved ABC algorithm [171]. A history-driven SFA (HdSFA)

[180] algorithm uses two types of memory: a short-term mem-

ory, which is responsible for storing information regarding the

current environment, and a long-term memory, which is respon-

sible to store information regarding the previous environments.

The same memory scheme is adopted in PSO [181]. Recently,

SPSO was enhanced with a memory that stores particles from

different species [168].

4.2.4. Multiple population methods

The multi-swarm scheme is a kind of divide-and-conquer

strategy. Searching in a different area for each swarm means

that the search space is divided into multiple sub-spaces and
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each swarm is responsible for searching one sub-space. By do-

ing so, it has several advantages [200]. Firstly, the global diver-

sity can be maintained since swarms search in different areas.

Secondly, tracking multiple optima simultaneously is possible.

Thirdly, any scheme based on a single swarm approach can be

easily extended to a multi-swarm version. Multi-swarm strate-

gies can be classified to the following categories in terms of the

number of swarms.

1. Static (or fixed) number of swarms. This group of strate-

gies can be further classified to two types: competing and

collaborative types. For the competing type, swarms com-

pete with each other, i.e., they are not allowed to search

in the same area. On the contrary, in the collaborative

type, swarms are allowed to search in the same area and

cooperate with each other, i.e., they may share informa-

tion. Blackwell’s mCPSO and mQSO [164] belong to

the competing type. Each swarm has an exclusion ra-

dius to prevent sub-swarms from overlapping each other.

Similar ideas of the exclusion principle in mQSO were

adopted in other algorithms, such as the multi-swarm mod-

ified AFSO (MAFSO) [176, 177], multi-swarm FA al-

gorithms [178, 182, 183], multi-BFO (MBFO) algorithm

[175], multi-swarm ABC [188], and k-means clustering

ABC (CABC) [189]. A typical collaborative type of multi-

swarm algorithm is the collaborative evolutionary swarm

optimization (CESO) [157], where two heterogeneous

swarms cooperate with each other. The two swarms fol-

low the crowding differential evolution (CDE) [201] and

PSO models, respectively. The former swarm is responsi-

ble for diversity maintenance whereas the latter swarm is

responsible for tracking the global optimum. Similarly, the

dual-swarm approach was adopted in [192, 155]. An evo-

lutionary swarm cooperative algorithm (ESCA) with an

additional swarm, was proposed in [154]. Within ESCA,

three swarms are used and share information among each

other.

2. Dynamic number of swarms. This type of strategies can

be further grouped to two models in terms of the way to

create sub-swarms: regrouping and splitting models. The

regrouping model regroups individuals by a certain means

every iteration or when a certain criterion is satisfied, such

as the speciation based PSO (SPSO) [102, 165] and the

randomized regrouping multi-swarm PSO [194]. The clus-

tering PSO (CPSO) algorithm proposed by Li and Yang

[149, 99] uses a hierarchical clustering method to gener-

ate sub-swarms whenever a change is detected. To avoid

change detection, CPSO was later on improved with a new

version, called CPSOR [98], where random particles are

introduced and clustered into new swarms when the total

number of particles drops to a threshold ratio. The split-

ting model normally generates sub-swarms by splitting off

from a main swarm when a certain criterion is met, such

as the fast multi-swarm optimization (FMSO) algorithm

[159]. FMSO starts with a parent swarm. Whenever the

best particle gets better, a child swarm is generated with

the best particle and particles within a given distance from

the best one. Similar ideas were adopted in a multi-swarm

PSO algorithm (mPSO) [158], and algorithms proposed in

[152, 151].

3. Adaptive number of swarms. To efficiently solve DOPs

by the multi-swarm scheme, one key issue is to adapt the

number of swarms [200, 163, 164]. This issue becomes

more challenging for DOPs with a changing number of

optima. The basic idea is to increase swarms when current

swarms are converging and remove swarms when they are

over-crowded. Blackwell [163] proposed the self-adaptive

multi-swarm optimizer (SAMO) which is the first adap-

tive method regarding the number of populations. It begins

with a single free swarm (e.g., a non-converging popula-

tion). Free swarms gradually transform themselves into

converging swarms. Converging swarms are identified

when their radius is less than a given convergence radius

rconv). A new free swarm is randomly generated if there

is no free swarm. This way, the number of populations

is able to adaptively change based on the status of current

swarms. An adaptive multi-swarm optimizer (AMSO) was

proposed [148], where the number of swarms is adjusted

according to the differences of the number of swarms be-

tween two successive “checking points”. A multi-swarm

AFSO was proposed [172], where a child swarm is gen-

erated whenever a parent swarm locates a new peak. The

child swarm tracks the peak has been located. Recently,

the number of swarms was adapted [147] using a database

that collects heuristic information of the algorithm be-

haviour changes to better track multiple optima. Nseef et

al. [170] proposed a multi-colony ABC algorithm. The

number of colonies is adaptively maintained based on the

dynamic change strength.

4.2.5. Hybridizations

The hybridization with different domain knowledge, e.g., ge-

netic algorithms, differential evolution, or other meta-heuristic

methods, e.g., microbial life, fuzzy, and cellular automata, is

also an important research topic.

1. Hybridization with other domain knowledge. For exam-

ple, a multi-strategy ensemble PSO (MEPSO) [161] uses

Gaussian local search and differential mutation for ex-

ploration and exploitation. A dynamic macro-mutation

operator was introduced in a PSO algorithm [160]. A

PSO-based memetic algorithm [142] uses a ring topology

structure and a fuzzy cognition. A fuzzy cognition with

multiple local searches was also used in [143]. An im-

proved mQSO algorithm (mQSOE) [186] uses an evapo-

ration mechanism as used in ACO to penalize the fitness

value of the best position found by each particle in the past.

2. Hybridization with other meta-heuristic methods.

Hashemi and Meybodi [140, 156] proposed a hybrid

model of PSO with cellular automata to address DOPs,

where the search space is embedded with cellular au-

tomata and is separated into several cells. Each cell is

allowed to contain only a specified number of particles to

prevent diversity loss. Rezazadeh et al. [153] proposed
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an adaptive PSO algorithm. The algorithm uses a fuzzy

C-means mechanism to adapt the exclusion radii and

inertia weight parameters. Karimi et al. proposed particles

inspired from the microbial life that can reproduce new

infant particles to replace the old particles.

4.3. SI in dynamic constrained optimization

Dynamic constrained optimization problems are challenging

because they often affect the feasibility of the algorithmic solu-

tions. Liu [77] transformed the problem into a series of static

constrained optimization problems of different periods. Each

designed static problem is assigned with an individual fitness

function based on the original objective and its constraints. The

PSO algorithm is then applied to each designed problem with-

out the need to take care of the feasibility of the particles. The

experimental results showed that this PSO algorithm can find

the optimal solutions on a set of benchmark problems.

Differently, Dewan and Nayak [202] used a penalty based

function with PSO to handle infeasible particles whereas new

types of particles for local search are introduced for feasible

particles. The algorithm was tested on a known benchmark set

and was compared with the results of other EAs. The PSO re-

sults are quite competitive in comparison with EAs.

Yin and Sun [203] proposed a novel adaptive mutation PSO

(AMPSO) algorithm based on a generalized dynamic con-

straints satisfaction strategy. The mutation operator within

AMPSO is applied to the inactive (e.g., particles that have made

no progress for a number of iterations) or less fit particles of the

swarm according to an adaptively changing mutation probabil-

ity.

Bu et al. [56] applied a variation of the SPSO with an ensem-

ble of strategies to locate and track feasible regions. The strate-

gies include: a gradient-based repair, an adaptive local search,

constraint handling, memory and prediction strategy.

4.4. SI in dynamic multi-objective optimization

Dynamic multi-objective optimization problems are more

challenging than DOPs (single-objective) because a set of

Pareto optimal solutions needs to be tracked rather than a single

optimal solution. Wei and Wang [204] proposed a hyper rectan-

gle search based PSO algorithm to tackle such problems. The

algorithm utilizes a hyper rectangle search to approximately

predict the next optimal solutions. The experimental results on

a known benchmark set showed that PSO can effectively locate

and track the set of Pareto optimal solutions over time.

Differently, Wei and Jia [205] integrated a new points selec-

tion strategy with PSO to generate the initial swarm of the next

time interval, which acts as a restart strategy. In addition, an

attraction based local search operator is incorporated to utilize

the information of the swarm.

A multi-swarm PSO was proposed where each swarm solves

a single objective function independently and communicates

with other swarms to transfer the knowledge [206, 207]. In

order to maintain diversity, a percentage of the swarm are re-

initialized whenever a dynamic change is detected by sentry

particles.

4.5. SI in dynamic classification

Several PSO algorithms, e.g., QPSO, CPSO and CCPSO,

proposed in dynamic continuous optimization, were applied for

training supervised feed-forward neural networks in classifica-

tion problems [208, 209]. The dynamic changes during training

occur to the decision boundaries, known as concept drift. Since

training a neural network is a continuous optimization problem

the aforementioned algorithms were applied directly. The ex-

perimental results showed that QPSO, CPSO and CCPSO had

better classification error than a PSO with a restart and a gradi-

ent descent algorithm, e.g., back propagation algorithm.

4.6. Discussions

Every strategy for adapting SI to dynamic environments has

advantages and limitations. For example, the diversity main-

taining/increasing strategy can well address the diversity loss

issue, but it is hard to know the optimal frequency for diversity

increasing and to design efficient diversity maintaining mech-

anisms. Memory schemes are able to help an algorithm to

quickly adapt to new environments, but it does not help in envi-

ronments with significant changes. The multi-swarm strategy is

able to maintain the diversity at the global level, but the optimal

number of swarms and the search area of each swarm are very

hard to configure.

Due to the advantages and limitations of different strategies

aforementioned, multiple strategies are usually considered in

most studies. For example, in many multi-swarm algorithms,

diversity maintaining and memory strategies are commonly

used to enhance the performance. No matter what strategies are

used, the balance of knowledge transfer and diversity mainte-

nance should always be considered for handling environmental

changes.

5. Real-world applications of SI in dynamic environments

In the this section real-world applications that appear in

SIDO are reviewed and classified into discrete and continuous

applications. The difference between “real-world applications”

and the applications discussed in Tables 2 and 3 is rather arbi-

trary [210]. In this paper, the applications discussed in Tables 2

and 3 focus on well-known models that aim to model a real-

world problem or setting (e.g., multi-objective or constraint

handling). Such models may provide an indication whether

such an application may work in the real-world. On the other

hand, the real-world applications discussed in the following

sections focus in applications that were used in some industries

or were tested on real data.

5.1. Discrete applications

The field of network routing has been extensively studied

by ACO algorithms. Generally, the routing problem in net-

works is defined as the problem of defining path flows to for-

ward incoming data traffic such that the overall network per-

formance is maximized. According to the characteristics of

the processing and transmission components, the traffic flow

pattern, and the performance expected to be delivered of the
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network, different types of routing problems can be defined.

Mainly, there are two categories of network routing problems

in which ACO has been applied: wired, e.g., wired best effort

networks [211, 212, 213, 214, 215] and wired quality of ser-

vice (QoS) networks [216, 217, 218, 214, 219, 220], and wire-

less, e.g., mobile ad hoc networks [221, 222, 223, 224, 225].

The telecommunication algorithms simply rely on the adapta-

tion capabilities of ACO.

Liu et al. [226] proposed a multicast routing protocol based

on AFSO to address the latency and bandwidth constraints

of QoS networks. The simulation results showed that AFSO

achieves promising performance and robustness in real-time

multimedia transmission networks. ABC algorithms were also

studied for mobile ad hoc networks [227, 228] and PSO for

peer-to-peer networks [229, 230].

Vogel et al. [231] proposed an ACO algorithm to address dy-

namic changes in the production system. A Position-Operation-

Pheromone matrix is maintained to store the operations. When-

ever a new job arrives, the pheromone values are re-initialized.

Their experiments on a real-world data collection showed that

the proposed ACO method outperforms the manual method and

a traditional priority-rule method. In contrast, the ACO method

was outperformed by an EA.

Silva and Runkler [68] addressed the cash machine problem

using a conventional ACO algorithm. Basically, the problem is

that a cash logistics company needs to fill the cash containers

according to their money levels for a number of cash machines

of a specific bank in Frankfurt. The results showed that ACO is

able to automatically output solutions with the minimum travel-

ling time, considering the distances between the cash machines

and their money levels. However, there are no comparisons

with any other automatic or manual methods.

Nakrani and Tovey [232] used a new bee algorithm (e.g.,

honey bee algorithm development) for the dynamic server al-

location in an internet server colony. Foraging bees and flower

patches in their model represent the servers and HTTP dy-

namic request queues, respectively, in an internet server colony.

Their experimental results on cases of a hosting center with two

and three virtual servers composed from a total of fifty servers

showed that the honey bee algorithm performs better than other

traditional algorithms, especially in highly dynamic and unpre-

dictable internet environments, due to its adaptation capabili-

ties.

Triwate and Luangpaiboon [233] applied a bee algorithm

(e.g., bee algorithm development) to minimize the imbalance of

a dynamic multi-zone dispatching system, where each bee rep-

resents a dispatching pattern. The simulation study was based

on real-world data from Thai local transportation firms. The

authors concluded that the bee algorithm reaches the optimum

very fast on small problems but requires more time for medium

and large size problems.

Wedde et al. [234] used a bee algorithm (e.g., BeeHive al-

gorithm development) to route vehicles on the roads with lower

traffic jams and congestions to minimize transportation times.

The topological road data of eastern German Ruhr District was

considered and several traffic scenarios were generated. The

comparison with a traditional shortest-path algorithm (e.g., Di-

jkstra algorithm) showed that the BeeHive algorithm has better

congestion handling. This is because the time-linkage of the

problem is considered by BeeHive, which routes vehicles on

different paths dynamically, whereas Dijkstra’s algorithm al-

ways selects the shortest one. The authors showed that after

some time heavy congestions occur with Dijkstra-based rout-

ing, whereas Bee-based routing remains congestion free.

Sulaiman et al. [235] used an FA to solve the optimal alloca-

tion and sizing problem of distributed generation units in distri-

bution networks. For the experiments an IEEE 69-bus distribu-

tion test system was used. Their results show that the determi-

nation of the optimal location and size of distributed generation

units reduces power losses and improves the voltage profile of

the power system. In addition, the comparison of the proposed

FA with an EA showed comparable results.

Teodorović and Dell’Orco [236] applied a bee algorithm

(e.g., bee colony optimization development) with fuzzy logic

to the ride-matching problem. The problem is to optimize the

routing and scheduling of vehicles and passengers for a given

period of time. The uncertainties in this application appear by

possible delays caused by the passengers or by traffic conges-

tion. The authors considered the ride sharing demand of 97

travellers from Trani, a small city in Italy. The results obtained

by the algorithm are very promising.

Garcia et al. [237] uses an ACO to solve the problem of

path planning for mobile robots with obstacle avoidance. The

workspace (search space) is discretized in a matrix of 50 × 50

nodes, where the mobile robot is able to navigate and build

paths. PSO is used for the same problem with moving obsta-

cles [238].

Li et al. [239] applied a discrete version of PSO to the re-

source allocation problem in a cooperative OFDMA system to

maximize the average utility of all mobile stations under multi-

service. The correlation between adjacent frames is exploited

to transfer knowledge. Their results proved that knowledge

transfer reduced the computation complexity significantly and

achieved better performance in terms of maximizing utility.

Hsu [240] hybridized a PSO with an event-based heuristic to

solve two essential seaside operations planning problems, i.e.,

berth allocation and quay crane assignment problems, simulta-

neously. The key idea of the approach is to support variable-in-

time quay crane assignment rather than time-invariant. In this

way, the assignment of quay cranes is utilized because they can

be adjusted accordingly.

Eaton et al. [241] uses an ACO to reschedule trains at junc-

tions and stations when train delays occur. A new feasible

schedule is generated based on the previous infeasible one us-

ing a path-preserving heuristic.

5.2. Continuous applications

The dynamic economic dispatch (DED) problem has been

extensively studied by SI algorithms such as BFO [242], PSO

[243, 244, 245, 246], FA [247], AFSO [248] and ABC algo-

rithms [249, 250, 251, 252, 253]. Moreover, a hybrid SFLA al-

gorithm [254] outperformed PSO- and ABC-based algorithms.

The main objective of the DED problem is to reduce the opera-
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tional costs in an electrical power system without violating a set

of various security and efficiency constraints simultaneously.

Niknam et al. [255] used a bee algorithm (e.g., honey bee

mating optimization development) to solve the dynamic opti-

mal power flow4 and minimize the total system generation cost.

The proposed bee algorithm differs from the original develop-

ment of the bee algorithm because it uses a mutation operator

to increase the population diversity. The experimental results

on 14-,30-, and 118-bus test systems showed that this mutation

improves the quality of the conventional bee algorithm.

Tang et al. [256, 257] proposed a BFO algorithm to solve the

optimal power flow problem with power system dynamic loads.

The reproduction process of the BFO uses a selection scheme

based on the roulette wheel method to maintain diversity. The

dispersion and elimination processes are not considered in or-

der to avoid too much randomization. An IEEE 30- and 118-

bus test system is used for the experiments. The proposed BFO

algorithm was compared with conventional BFO and PSO on

three different levels of load changes, showing satisfactory per-

formance.

Takano et al. [258] used an ABC algorithm to coordinate

rescue agents in dynamic disaster environments, e.g., a city

after an earthquake occurrence. The algorithm is modified to

only communicate with nearby bees. The experiments on the

RoboCup Rescue Simulation System showed that ABC can res-

cue all victims quickly.

FA [259] and PSO [260] were used to tune the proportional

integral derivative controller for an automatic voltage regulator

system. The optimal tuning of the controller is based on the

time-variability of real-world power system operation. Com-

parisons between the recent FA and PSO algorithms showed

that the former is more robust than the latter. BFO [261] was

also used for the tuning of the controller and was more robust

and efficient than an EA.

Gomes [262, 263] used PSO and FA algorithms as optimiza-

tion engines on structural mass optimization. The structural op-

timization of shape and size is considered as highly non-linear.

The problem contains dynamic constraints that may affect the

fitness function. Hence, a penalty function technique is used

to address violations. Three examples of 10-, 37-, and 128-

truss bar structures were taken into account and showed that

FA performed slightly worse than PSO but both SI algorithms

performed better than traditional optimization methods.

ACO and ABC were applied to the dynamic load balancing

problem [264]. The main objective of the problem is to find

the optimal allocation of workloads among systems, e.g., re-

duce the load from busy resources and transfer them to idle re-

sources. The experimental study on a cluster of four machines

and the Amazon EC2 cloud showed that the ABC is faster than

ACO and other traditional algorithms.

A BFO algorithm was applied to determine the shortest fea-

sible path from a current position to the target position in a

2D space with moving obstacles [265]. The algorithm is able

to avoid obstacles and find a path towards the target position.

4The optimal power flow problem may also contain discrete variables.

Similarly, PSO algorithms showed that they are also able to

plan an optimal path for a robot by avoiding moving obstacles

[266, 267, 268].

A contaminant source identification problem in water distri-

bution networks is a nonlinear programming problem. The aim

of the problem is to search for the location and the time his-

tory of the contaminant according to the observed data up to

the current time. Liu et al. [269] used a multi-swarm based

PSO algorithm to solve this problem.

6. Conclusions and future work

This paper attempts to review the related work of SIDO

found from several web-search engines. The most important

applications of SIDO are classified into continuous or discrete

problems. The strategies used to enhance SI algorithms to cope

with dynamic changes are grouped and extensively discussed.

In addition, SIDO real-world problems are reviewed in this pa-

per.

The review of this paper was constructed as follows. The

search was conducted from five recognized scientific databases,

i.e., IEEExplore5, Science Direct6, SpringerLink7, Scopus8 and

Google Scholar9 using terms like “ant colony optimization”

AND (“dynamic environment” OR “dynamic optimization” OR

“dynamic function” OR “time-varying” OR “dynamic prob-

lem” OR “dynamic routing” OR “dynamic scheduling” OR

“dynamic multi-objective” OR “dynamic constraint”) for ACO.

The same search format was used for PSO with “particle swarm

optimization” instead and similarly for the other SI algorithms.

The bibliography retrieved includes journal articles, confer-

ences papers, book chapters and technical reports. Then, the

results were categorized by: (a) SI algorithms in Fig. 3 and (b)

year of publication in Fig. 4.

From Fig. 3, it can be observed that ACO and PSO have at-

tracted more attention than the other SI algorithms in SIDO.

This is natural because they were proposed much earlier than

other SI algorithms. It may also be the case that they are more

effective than the recently proposed SI algorithms. This is be-

cause in many cases the SI algorithms were using core compo-

nents from these algorithms. For example, the local best posi-

tion component of the particle introduced in PSO was used as

an enhancement strategy in many cases in ABC, AFSO, FA and

BFO. From Fig 4, it can be observed that roughly the field of

SIDO began to grow in 2001 and gradually grew until 2009.

Since then the field has its ups and downs regarding the number

of publications.

In general, all SI algorithms have been mainly applied on

dynamic versions of the corresponding stationary optimization

problems that they were initially developed. For example, ACO

is mainly used in dynamic discrete problems that are modelled

5http://ieeexplore.ieee.org
6http://www.sciencedirect.com
7http://link.springer.com
8http://www.scopus.com
9http://scholar.google.com
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by graphs because it is a graph-search algorithm. Also, the en-

hancement strategies integrated to the different SI algorithms

usually improve their performance when the changing environ-

ments are similar. Finally, a local search operator is a core com-

ponent of SI algorithms when addressing DOPs. SI algorithms

perform global optimization and they are not accurate in their

output. Hence, a local search operator can significantly im-

prove the quality of the output. However, the integration of

local search in SI algorithms has to be done in such a way that

does not significantly increase the computation time or waste

evaluations [35].

Although the research in SIDO showed significant increase,

it still has several aspects for future directions that may con-

tribute to further grow the field of SIDO, which are summarized

as follows:

• Experimentation protocols: Since there is not any agreed

computational experimentation protocol yet, it may be

necessary to define different experimentation protocols for

different problem classes, e.g., continuous, discrete and

constrained problems, due to the different characteristics

regarding both the methodologies used and the search

space.

• Benchmark generators: The fields of dynamic multi-

objective and dynamic constrained optimization are still

young. Most benchmark generators used are simply ex-

tensions from the static instances. It may be necessary to

develop benchmark generators especially for these recent

fields to compare new algorithms developed.

• Avoiding change detection: Change detection methods by

re-evaluating individuals cannot always guarantee a suc-

cessful detection, especially in the case where a change

does not affect current solutions in the fitness landscape.

Such situations may happen in dynamic environments

where a part of the fitness landscape changes. In addition,

such detection methods will never work in dynamic en-

vironments with noise since noise will be misinterpreted

as changes in every re-evaluating operation. Therefore,

avoiding change detection is needed to handle changes

more effectively.

• Modelling real-world scenarios: It will be interesting to

consider other research areas in dynamic optimization that

have attracted less interest and model many real-world sce-

narios, e.g., constrained DOPs, dynamic multi-objective

problems or even dynamic constrained multi-objective

problems.

• Consideration of other prospectives: The tracking moving

optimum (TMO) framework is usually used in SIDO to

tackle DOPs. Recently, a new perspective on DOPs has

been established, known as robust optimization over time

(ROOT), where the target is to find the chain of solutions

which are robust over time [46]. Particularly, a solution

is robust over time when its quality is acceptable to the

changing environments during a predefined time interval.

In fact, problems in scheduling and vehicle routing have

the time-linkage property. Therefore, the TMO framework

may not be the best choice, because a decision that im-

proves the performance at present may affect the perfor-
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mance in the future. As a result, the overall performance

may be degraded in the long run. So far, ROOT was inte-

grated only with PSO.

• Choice of algorithms: So far, many SI algorithms have

been proposed in the last 30 years. For a specific problem,

most readers are not sure what algorithms to choose. This

is because making a right choice is again an optimization

problem. Experience and trail-and-error based choice are

still the major ways to make the choice. Therefore, finding

the right algorithms most suitable for a given problem or

problems with a certain type of properties would also be

an interesting topic in SIDO in the future.

• Theoretical development: Usually, the performance of the

algorithms in DOPs is analyzed empirically, rather than

theoretically, due to the mathematical challenges of SI al-

gorithms, or metaheuristics in general. Although theoreti-

cal works exist the research area is still limited. Theoreti-

cal development in SIDO should be enhanced significantly

in order to have a deep understanding on why and how SI

algorithms work in DOPs.
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tions of Evolutionary Computation, Vol. 7835 of Lecture Notes in Com-

puter Science, Springer Berlin Heidelberg, 2013, pp. 606–615.

[56] C. Bu, W. Luo, L. Yue, Continuous dynamic constrained op-

timization with ensemble of locating and tracking feasible re-

gions strategies, IEEE Trans. Evol. Comput. PP (99) (2016) 1–1.

doi:10.1109/TEVC.2016.2567644

[57] C.-K. Goh, K. Chen T., An investigation on noisy environments in evo-

lutionary multiobjective optimization, IEEE Trans. Evol. Comput. 11 (3)

(2007) 354–381.

[58] E. Zitzler, K. Deb, L. Thiele, Comparison of multiobjective evolutionary

algorithms: Empirical results, Evol. Comput. 8 (2) (2000) 173–195.

[59] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a compar-

ative case study and the strength pareto approach, IEEE Trans. Evol.

Comput. 3 (4) (1999) 257–271.

[60] M. Câmara, J. Ortega, F. Toro, Parallel processing for multi-objective

optimization in dynamic environments, in: 2007 IEEE International Par-

allel and Distributed Processing Symposium, 2007, pp. 1–8.

[61] C.-K. Goh, K. Chen T., A competitive-cooperative coevolutionary

paradigm for dynamic multiobjective optimization, IEEE Trans. Evol.

Comput. 13 (1) (2009) 103–127.

[62] P. Rohlfshagen, P. Lehre, X. Yao, Dynamic evolutionary optimization:

an analysis of frequency and magnitude of change, in: Proceedings of

the 11th Annual Conference on Genetic and Evolutionary Computation,

GECCO ’09, ACM, New York, NY, 2009, pp. 1713–1720.

[63] P. Rohlfshagen, X. Yao, Dynamic combinatorial optimisation problems:

An analysis of the subset sum problem, Soft Comput. 15 (9) (2011)

1723–1734.

[64] J. Lewis, E. Hart, G. Ritchie, A comparison of dominance mechanisms

and simple mutation on non-stationary problems, in: A. Eiben, T. Bäck,
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[103] D. Teodorović, Bee colony optimization (BCO), in: C. Lim, L. Jain,

S. Dehuri (Eds.), Innovations in Swarm Intelligence, Vol. 248 of Studies

in Computational Intelligence, Springer Berlin Heidelberg, 2009, pp.

39–60.

[104] S. Bitam, M. Batouche, E.-G. Talbi, A survey on bee colony algo-

rithms, in: Parallel Distributed Processing, Workshops and Phd Forum

(IPDPSW), 2010 IEEE International Symposium on, 2010, pp. 1–8.

[105] D. Karaboga, B. Gorkemli, C. Ozturk, N. Karaboga, A comprehensive

survey: artificial bee colony (ABC) algorithm and applications, Artif.

Intel. Rev. 42 (1) (2014) 21–57.

[106] S. Dasgupta, S. Das, A. Abraham, A. Biswas, Adaptive computational

chemotaxis in bacterial foraging optimization: an analysis, IEEE Trans.

Evol. Comp. 13 (2009) 919–941.

[107] V. Gazi, K. M. Passino, Bacteria foraging optimization, in: Swarm Sta-

bility and Optimization, Springer Berlin Heidelberg, Berlin, Heidelberg,

2011, pp. 233–249.

[108] B. Xing, W.-J. Gao, Fish inspired algorithms, in: Innovative Computa-

tional Intelligence: A Rough Guide to 134 Clever Algorithms, Vol. 62

of Intelligent Systems Reference Library, Springer International Pub-

lishing, Cham, 2014, pp. 139–155.

[109] M. Garey, D. Johnson, Computer and intractability: A guide to the the-

ory of NP-completeness, Freeman, San Francisco, 1979.

[110] D. Angus, T. Hendtlass, Ant colony optimisation applied to a dynami-

cally changing problem, in: T. Hendtlass, M. Ali (Eds.), Developments

in Applied Artificial Intelligence, Vol. 2358 of Lecture Notes in Com-

puter Science, Springer Berlin Heidelberg, 2002, pp. 618–627.

[111] M. Guntsch, M. Middendorf, H. Schmeck, An ant colony optimization

approach to dynamic TSP, in: Proceedings of the 2001 Genetic and Evo-

lutionary Computation Conference, 2001, pp. 860–867.

[112] M. Mavrovouniotis, S. Yang, Memory-based immigrants for ant colony

optimization in changing environments, in: C. Di Chio, S. Cagnoni,
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gorithms for the dynamic vehicle routing problem with time windows,

in: J. M. Ferrández Vicente, J. R. Álvarez Sánchez, F. de la Paz López,
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