1,953 research outputs found

    The effects of heterogeneity on stochastic cycles in epidemics

    Full text link
    Models of biological processes are often subject to different sources of noise. Developing an understanding of the combined effects of different types of uncertainty is an open challenge. In this paper, we study a variant of the susceptible-infective-recovered model of epidemic spread, which combines both agent-to-agent heterogeneity and intrinsic noise. We focus on epidemic cycles, driven by the stochasticity of infection and recovery events, and study in detail how heterogeneity in susceptibilities and propensities to pass on the disease affects these quasi-cycles. While the system can only be described by a large hierarchical set of equations in the transient regime, we derive a reduced closed set of equations for population-level quantities in the stationary regime. We analytically obtain the spectra of quasi-cycles in the linear-noise approximation. We find that the characteristic frequency of these cycles is typically determined by population averages of susceptibilities and infectivities, but that their amplitude depends on higher-order moments of the heterogeneity. We also investigate the synchronisation properties and phase lag between different groups of susceptible and infected individuals.Comment: Main text 16 pages, 9 figures. Supplement 5 page

    An “approximate knowledge”: event transmission in the post-9/11 informational culture

    Get PDF
    The aim of the essay is to look back at 9/11 from the temporal perspective of 2011 and interpret it as a singularity, that is a moment of destabilization that hit the media sphere, accelerating an already existing shift in communication politics towards affective involvement. The dimension of pathic engagement that the televised images of 9/11 inspired, their becoming a source of collective emotional instability (i.e. a global “culture of fear”), has amplified preexisting modes of communication that relied on the energetic and mobilizing lure of audiovisual transmission. Rather than approaching 9/11 as a metaphysical occurrence, an absolute ‘event’ unencumbered by the territorializing pull of its own geopolitical genealogy, the essay engages with it as a phase boundary whose transformative impact can be sensed in the tactics of mobilization that inform contemporary communication practices

    Aspiration Dynamics of Multi-player Games in Finite Populations

    Full text link
    Studying strategy update rules in the framework of evolutionary game theory, one can differentiate between imitation processes and aspiration-driven dynamics. In the former case, individuals imitate the strategy of a more successful peer. In the latter case, individuals adjust their strategies based on a comparison of their payoffs from the evolutionary game to a value they aspire, called the level of aspiration. Unlike imitation processes of pairwise comparison, aspiration-driven updates do not require additional information about the strategic environment and can thus be interpreted as being more spontaneous. Recent work has mainly focused on understanding how aspiration dynamics alter the evolutionary outcome in structured populations. However, the baseline case for understanding strategy selection is the well-mixed population case, which is still lacking sufficient understanding. We explore how aspiration-driven strategy-update dynamics under imperfect rationality influence the average abundance of a strategy in multi-player evolutionary games with two strategies. We analytically derive a condition under which a strategy is more abundant than the other in the weak selection limiting case. This approach has a long standing history in evolutionary game and is mostly applied for its mathematical approachability. Hence, we also explore strong selection numerically, which shows that our weak selection condition is a robust predictor of the average abundance of a strategy. The condition turns out to differ from that of a wide class of imitation dynamics, as long as the game is not dyadic. Therefore a strategy favored under imitation dynamics can be disfavored under aspiration dynamics. This does not require any population structure thus highlights the intrinsic difference between imitation and aspiration dynamics

    Evolutionary games on graphs

    Full text link
    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first three sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fourth section surveys the topological complications implied by non-mean-field-type social network structures in general. The last three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.Comment: Review, final version, 133 pages, 65 figure

    Data based identification and prediction of nonlinear and complex dynamical systems

    Get PDF
    We thank Dr. R. Yang (formerly at ASU), Dr. R.-Q. Su (formerly at ASU), and Mr. Zhesi Shen for their contributions to a number of original papers on which this Review is partly based. This work was supported by ARO under Grant No. W911NF-14-1-0504. W.-X. Wang was also supported by NSFC under Grants No. 61573064 and No. 61074116, as well as by the Fundamental Research Funds for the Central Universities, Beijing Nova Programme.Peer reviewedPostprin
    corecore