1,086 research outputs found

    Combining Optimization and Machine Learning for the Formation of Collectives

    Get PDF
    This thesis considers the problem of forming collectives of agents for real-world applications aligned with Sustainable Development Goals (e.g., shared mobility and cooperative learning). Such problems require fast approaches that can produce solutions of high quality for hundreds of agents. With this goal in mind, existing solutions for the formation of collectives focus on enhancing the optimization approach by exploiting the characteristics of a domain. However, the resulting approaches rely on specific domain knowledge and are not transferable to other collective formation problems. Therefore, approaches that can be applied to various problems need to be studied in order to obtain general approaches that do not require prior knowledge of the domain. Along these lines, this thesis proposes a general approach for the formation of collectives based on a novel combination of machine learning and an \emph{Integer Linear Program}. More precisely, a machine learning component is trained to generate a set of promising collectives that are likely to be part of a solution. Then, such collectives and their corresponding utility values are introduced into an \emph{Integer Linear Program} which finds a solution to the collective formation problem. In that way, the machine learning component learns the structure shared by ``good'' collectives in a particular domain, making the whole approach valid for various applications. In addition, the empirical analysis conducted on two real-world domains (i.e., ridesharing and team formation) shows that the proposed approach provides solutions of comparable quality to state-of-the-art approaches specific to each domain. Finally, this thesis also shows that the proposed approach can be extended to problems that combine the formation of collectives with other optimization objectives. Thus, this thesis proposes an extension of the collective formation approach for assigning pickup and delivery locations to robots in a warehouse environment. The experimental evaluation shows that, although it is possible to use the collective formation approach for that purpose, several improvements are required to compete with state-of-the-art approaches. Overall, this thesis aims to demonstrate that machine learning can be successfully intertwined with classical optimization approaches for the formation of collectives by learning the structure of a domain, reducing the need for ad-hoc algorithms devised for a specific application

    Diversity and Social Network Structure in Collective Decision Making: Evolutionary Perspectives with Agent-Based Simulations

    Full text link
    Collective, especially group-based, managerial decision making is crucial in organizations. Using an evolutionary theoretic approach to collective decision making, agent-based simulations were conducted to investigate how human collective decision making would be affected by the agents' diversity in problem understanding and/or behavior in discussion, as well as by their social network structure. Simulation results indicated that groups with consistent problem understanding tended to produce higher utility values of ideas and displayed better decision convergence, but only if there was no group-level bias in collective problem understanding. Simulation results also indicated the importance of balance between selection-oriented (i.e., exploitative) and variation-oriented (i.e., explorative) behaviors in discussion to achieve quality final decisions. Expanding the group size and introducing non-trivial social network structure generally improved the quality of ideas at the cost of decision convergence. Simulations with different social network topologies revealed collective decision making on small-world networks with high local clustering tended to achieve highest decision quality more often than on random or scale-free networks. Implications of this evolutionary theory and simulation approach for future managerial research on collective, group, and multi-level decision making are discussed.Comment: 27 pages, 5 figures, 2 tables; accepted for publication in Complexit

    A Middleware framework for self-adaptive large scale distributed services

    Get PDF
    Modern service-oriented applications demand the ability to adapt to changing conditions and unexpected situations while maintaining a required QoS. Existing self-adaptation approaches seem inadequate to address this challenge because many of their assumptions are not met on the large-scale, highly dynamic infrastructures where these applications are generally deployed on. The main motivation of our research is to devise principles that guide the construction of large scale self-adaptive distributed services. We aim to provide sound modeling abstractions based on a clear conceptual background, and their realization as a middleware framework that supports the development of such services. Taking the inspiration from the concepts of decentralized markets in economics, we propose a solution based on three principles: emergent self-organization, utility driven behavior and model-less adaptation. Based on these principles, we designed Collectives, a middleware framework which provides a comprehensive solution for the diverse adaptation concerns that rise in the development of distributed systems. We tested the soundness and comprehensiveness of the Collectives framework by implementing eUDON, a middleware for self-adaptive web services, which we then evaluated extensively by means of a simulation model to analyze its adaptation capabilities in diverse settings. We found that eUDON exhibits the intended properties: it adapts to diverse conditions like peaks in the workload and massive failures, maintaining its QoS and using efficiently the available resources; it is highly scalable and robust; can be implemented on existing services in a non-intrusive way; and do not require any performance model of the services, their workload or the resources they use. We can conclude that our work proposes a solution for the requirements of self-adaptation in demanding usage scenarios without introducing additional complexity. In that sense, we believe we make a significant contribution towards the development of future generation service-oriented applications.Las Aplicaciones Orientadas a Servicios modernas demandan la capacidad de adaptarse a condiciones variables y situaciones inesperadas mientras mantienen un cierto nivel de servio esperado (QoS). Los enfoques de auto-adaptación existentes parecen no ser adacuados debido a sus supuestos no se cumplen en infrastructuras compartidas de gran escala. La principal motivación de nuestra investigación es inerir un conjunto de principios para guiar el desarrollo de servicios auto-adaptativos de gran escala. Nuesto objetivo es proveer abstraciones de modelaje apropiadas, basadas en un marco conceptual claro, y su implemetnacion en un middleware que soporte el desarrollo de estos servicios. Tomando como inspiración conceptos económicos de mercados decentralizados, hemos propuesto una solución basada en tres principios: auto-organización emergente, comportamiento guiado por la utilidad y adaptación sin modelos. Basados en estos principios diseñamos Collectives, un middleware que proveer una solución exhaustiva para los diversos aspectos de adaptación que surgen en el desarrollo de sistemas distribuidos. La adecuación y completitud de Collectives ha sido provada por medio de la implementación de eUDON, un middleware para servicios auto-adaptativos, el ha sido evaluado de manera exhaustiva por medio de un modelo de simulación, analizando sus propiedades de adaptación en diversos escenarios de uso. Hemos encontrado que eUDON exhibe las propiedades esperadas: se adapta a diversas condiciones como picos en la carga de trabajo o fallos masivos, mateniendo su calidad de servicio y haciendo un uso eficiente de los recusos disponibles. Es altamente escalable y robusto; puedeoo ser implementado en servicios existentes de manera no intrusiva; y no requiere la obtención de un modelo de desempeño para los servicios. Podemos concluir que nuestro trabajo nos ha permitido desarrollar una solucion que aborda los requerimientos de auto-adaptacion en escenarios de uso exigentes sin introducir complejidad adicional. En este sentido, consideramos que nuestra propuesta hace una contribución significativa hacia el desarrollo de la futura generación de aplicaciones orientadas a servicios.Postprint (published version

    A Probability Collectives Approach with a Feasibility-Based Rule for Constrained Optimization

    Get PDF
    This paper demonstrates an attempt to incorporate a simple and generic constraint handling technique to the Probability Collectives (PC) approach for solving constrained optimization problems. The approach of PC optimizes any complex system by decomposing it into smaller subsystems and further treats them in a distributed and decentralized way. These subsystems can be viewed as a Multi-Agent System with rational and self-interested agents optimizing their local goals. However, as there is no inherent constraint handling capability in the PC approach, a real challenge is to take into account constraints and at the same time make the agents work collectively avoiding the tragedy of commons to optimize the global/system objective. At the core of the PC optimization methodology are the concepts of Deterministic Annealing in Statistical Physics, Game Theory and Nash Equilibrium. Moreover, a rule-based procedure is incorporated to handle solutions based on the number of constraints violated and drive the convergence towards feasibility. Two specially developed cases of the Circle Packing Problem with known solutions are solved and the true optimum results are obtained at reasonable computational costs. The proposed algorithm is shown to be sufficiently robust, and strengths and weaknesses of the methodology are also discussed

    Data-driven Computational Social Science: A Survey

    Get PDF
    Social science concerns issues on individuals, relationships, and the whole society. The complexity of research topics in social science makes it the amalgamation of multiple disciplines, such as economics, political science, and sociology, etc. For centuries, scientists have conducted many studies to understand the mechanisms of the society. However, due to the limitations of traditional research methods, there exist many critical social issues to be explored. To solve those issues, computational social science emerges due to the rapid advancements of computation technologies and the profound studies on social science. With the aids of the advanced research techniques, various kinds of data from diverse areas can be acquired nowadays, and they can help us look into social problems with a new eye. As a result, utilizing various data to reveal issues derived from computational social science area has attracted more and more attentions. In this paper, to the best of our knowledge, we present a survey on data-driven computational social science for the first time which primarily focuses on reviewing application domains involving human dynamics. The state-of-the-art research on human dynamics is reviewed from three aspects: individuals, relationships, and collectives. Specifically, the research methodologies used to address research challenges in aforementioned application domains are summarized. In addition, some important open challenges with respect to both emerging research topics and research methods are discussed.Comment: 28 pages, 8 figure

    The Extraction of Community Structures from Publication Networks to Support Ethnographic Observations of Field Differences in Scientific Communication

    Full text link
    The scientific community of researchers in a research specialty is an important unit of analysis for understanding the field specific shaping of scientific communication practices. These scientific communities are, however, a challenging unit of analysis to capture and compare because they overlap, have fuzzy boundaries, and evolve over time. We describe a network analytic approach that reveals the complexities of these communities through examination of their publication networks in combination with insights from ethnographic field studies. We suggest that the structures revealed indicate overlapping sub- communities within a research specialty and we provide evidence that they differ in disciplinary orientation and research practices. By mapping the community structures of scientific fields we aim to increase confidence about the domain of validity of ethnographic observations as well as of collaborative patterns extracted from publication networks thereby enabling the systematic study of field differences. The network analytic methods presented include methods to optimize the delineation of a bibliographic data set in order to adequately represent a research specialty, and methods to extract community structures from this data. We demonstrate the application of these methods in a case study of two research specialties in the physical and chemical sciences.Comment: Accepted for publication in JASIS

    Synchronization in complex networks

    Get PDF
    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.Comment: Final version published in Physics Reports. More information available at http://synchronets.googlepages.com

    A Transparent, Reputation-Based Architecture for Semantic Web Annotation

    Get PDF
    New forms of conceiving the web such as web 2.0 and the semantic web have emerged for numerous purposes ranging from professional activities to leisure. The semantic web is based on associating concepts with web pages, rather than only identifying hyperlinks and repeated literals. ITACA is a project whose aim is to add semantic annotations to web pages, where semantic annotations are Wikipedia URLs. Therefore, users can write, read and vote on semantic annotations of a webpage. Semantic annotations of a webpage are ranked according to users' votes. Building upon the ITACA project, we propose a transparent, reputation-based architecture. With this proposal, semantic annotations are stored in the users' local machines instead of web servers, so that web servers transparency is preserved. To achieve transparency, an indexing server is added to the architecture to locate semantic annotations. Moreover, users are grouped into reputation domains, providing accurate semantic annotation ranking when retrieving annotations of a web page. Cache copies of semantic annotations in annotation servers are done to improve eficiency of the algorithm, reducing the number of sent messages

    A job response time prediction method for production Grid computing environments

    Get PDF
    A major obstacle to the widespread adoption of Grid Computing in both the scientific community and industry sector is the difficulty of knowing in advance a job submission running cost that can be used to plan a correct allocation of resources. Traditional distributed computing solutions take advantage of homogeneous and open environments to propose prediction methods that use a detailed analysis of the hardware and software components. However, production Grid computing environments, which are large and use a complex and dynamic set of resources, present a different challenge. In Grid computing the source code of applications, programme libraries, and third-party software are not always available. In addition, Grid security policies may not agree to run hardware or software analysis tools to generate Grid components models. The objective of this research is the prediction of a job response time in production Grid computing environments. The solution is inspired by the concept of predicting future Grid behaviours based on previous experiences learned from heterogeneous Grid workload trace data. The research objective was selected with the aim of improving the Grid resource usability and the administration of Grid environments. The predicted data can be used to allocate resources in advance and inform forecasted finishing time and running costs before submission. The proposed Grid Computing Response Time Prediction (GRTP) method implements several internal stages where the workload traces are mined to produce a response time prediction for a given job. In addition, the GRTP method assesses the predicted result against the actual target job’s response time to inference information that is used to tune the methods setting parameters. The GRTP method was implemented and tested using a cross-validation technique to assess how the proposed solution generalises to independent data sets. The training set was taken from the Grid environment DAS (Distributed ASCI Supercomputer). The two testing sets were taken from AuverGrid and Grid5000 Grid environments Three consecutive tests assuming stable jobs, unstable jobs, and using a job type method to select the most appropriate prediction function were carried out. The tests offered a significant increase in prediction performance for data mining based methods applied in Grid computing environments. For instance, in Grid5000 the GRTP method answered 77 percent of job prediction requests with an error of less than 10 percent. While in the same environment, the most effective and accurate method using workload traces was only able to predict 32 percent of the cases within the same range of error. The GRTP method was able to handle unexpected changes in resources and services which affect the job response time trends and was able to adapt to new scenarios. The tests showed that the proposed GRTP method is capable of predicting job response time requests and it also improves the prediction quality when compared to other current solutions

    Risk-Aware Planning for Sensor Data Collection

    Get PDF
    With the emergence of low-cost unmanned air vehicles, civilian and military organizations are quickly identifying new applications for affordable, large-scale collectives to support and augment human efforts via sensor data collection. In order to be viable, these collectives must be resilient to the risk and uncertainty of operating in real-world environments. Previous work in multi-agent planning has avoided planning for the loss of agents in environments with risk. In contrast, this dissertation presents a problem formulation that includes the risk of losing agents, the effect of those losses on the mission being executed, and provides anticipatory planning algorithms that consider risk. We conduct a thorough analysis of the effects of risk on path-based planning, motivating new solution methods. We then use hierarchical clustering to generate risk-aware plans for a variable number of agents, outperforming traditional planning methods. Next, we provide a mechanism for distributed negotiation of stable plans, utilizing coalitional game theory to provide cost allocation methods that we prove to be fair and stable. Centralized planning with redundancy is then explored, planning for parallel task completion to mitigate risk and provide further increased expected value. Finally, we explore the role of cost uncertainty as additional source of risk, using bi-objective optimization to generate sets of alternative plans. We demonstrate the capability of our algorithms on randomly generated problem instances, showing an improvement over traditional multi-agent planning methods as high as 500% on very large problem instances
    corecore