
Technical University of Catalonia

Master thesis

A Transparent,
Reputation-Based Architecture
for Semantic Web Annotation

Author:
Laia Subirats

Advisor:
Jordi Forné
Co-advisor:

David
Rebollo-Monedero

Internet Security Group
http://isg.upc.es

Department of Telematics Engineering
Barcelona July 29, 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons

https://core.ac.uk/display/301206376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c©2009 Laia Subirats. This work is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivs License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/es/.

<rdf:RDF

xmlns="http://web.resource.org/cc/"

xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns">

<Work rdf:about="">

<dc:title>A transparent, reputation-based architecture for semantic

web annotation</dc:title>

<dc:date>2009</dc:date>

<dc:creator>

<Agent><dc:title>Laia SUBIRATS</dc:title></Agent>

</dc:creator>

<dc:rights>

<Agent><dc:title>Laia SUBIRATS</dc:title></Agent>

</dc:rights>

<dc:type rdf:resource="http://purl.org/dc/dcmitype/Text"/>

<license rdf:resource=

"http://creativecommons.org/licenses/by-nc-nd/3.0/es"/>

</Work>

<License rdf:about="http://creativecommons.org/licenses/by-nc-nd/3.0/es">

<permits rdf:resource="http://web.resource.org/cc/Reproduction"/>

<permits rdf:resource="http://web.resource.org/cc/Distribution"/>

<requires rdf:resource="http://web.resource.org/cc/Notice"/>

<requires rdf:resource="http://web.resource.org/cc/Attribution"/>

<prohibits rdf:resource="http://web.resource.org/cc/CommercialUse"/>

</License>

</rdf:RDF>

BibTEX document entry:

@MastersThesis{LaiaSubirats:ITACA,

author={Subirats, Laia},

title={A transparent, reputation-based architecture for semantic web

annotation}

school={Escola T\‘{e}cnica Superior d’Enginyeria de Telecomunicaci{\’o}

de Barcelona, Universitat Polit\‘{e} de Catalunya},

year=2009,

month=sep,

address={Jordi Girona, 1-3, E-08034 Barcelona; Spain}

}

L. Subirats, “A transparent, reputation-based architecture for semantic web
annotation”, Master’s thesis, Escola Tècnica Superior d’Enginyeria de Teleco-
municació de Barcelona, Universitat Politècnica de Catalunya, Jordi Girona,
1-3, E-08034 Barcelona; Spain, Sep. 2009.

“I have frequently been questioned, especially by women, of how I could
reconcile family life with a scientific career. Well, it has not been easy.”

Maria Sklodowska

Acknowledgments

I would like to thank especially Jordi Forné and David Rebollo for all their
support and invaluable comments on this Master Thesis. I would also like to
thank all members of the department, the web technologies lab department of
Carlos III university and the semantic department of Lleida university for their
kindness and ideas on this project.

I am also very grateful to ”la Caixa” Foundation and the Google Anita
Borg scholarship who gave me financial support. I will never forget ”la Caixa”
scholars’ meetings or the Google retreat at Zurich, where I could meet other
telecommunication, computer science and mathematics student girls from Eu-
rope, Asia and Africa.

Regarding my office mates, thanks Jose for introducing me to the world of tea
and for helping me with LATEX, Elisabeth for her body classes knowledge, Aida
and Victoria for sharing with me the belly dance lessons, Joan for reminding me
of my Artesa de Segre roots, Rafa for his jokes and conversation, the Joomla!
team, and all nice people I have met during this master research period. I would
also like to mention the debate team for giving me the opportunity to enjoy this
quick, but nice, oratory experience. All of you have contributed to make my
first year at UPC a wonderful and unforgettable one.

I do not want to forget Esther, Maria, Rafa, Jara, “les nenes”, Laia and
many other people for all the happy memories we shared. I am very grateful to
my parents and family for their love and patience during my studies. Finally,
special thanks to David for sharing our lives, both the bad moments and the
happy ones, which have been many more.

Contents

Index of figures iii

Index of tables v

1 Introduction 3

2 The ITACA architecture 5

3 Definition of the proposed architecture 9
3.1 Block description . 9
3.2 Functional description . 10
3.3 Reputation approaches . 11

3.3.1 Democratic approach . 12
3.3.2 Credibility-based approach 14

4 Discussion 21
4.1 Clustering . 21
4.2 Security . 22
4.3 Data lifetime in cache . 24

5 Evaluation of the architecture 27
5.1 Definition of cache policies and storage requirements 27
5.2 Simulations . 28

6 Related work 31

7 Conclusion 35

8 Future lines of research 37

Glossary 39

References 41

i

List of Figures

1.1 Semantic web architecture (Source: World Wide Web Consor-
tium http://www.w3.org). 3

1.2 Mind map of the current proposal 4

2.1 Example of adding a semantic annotation to a URL. 7
2.2 ITACA architecture. 8

3.1 Architecture proposal. 10
3.2 DBpedia page example. 15
3.3 Sequence diagram of writing a semantic annotation. 16
3.4 Sequence diagram of reading a semantic annotation. 17
3.5 Sequence diagram of voting on a semantic annotation. 18

5.1 Evolution of messages sent and storage capacity requirements of
the architecture, according to three different scenarios. 30

iii

List of Tables

3.1 Variables stored in the indexing server, annotation servers and
users. 12

3.2 New variables added to the architecture in the credibility-based
approach in annotation servers and users. 14

5.1 Cache copies in annotation servers’ cache when writing (Fig. 3.3),
reading (Fig. 3.4) and / or voting (Fig. 3.5) on semantic annota-
tions. 27

5.2 Storage requirements of variables stored in users’ local machines,
annotation servers and the indexing server in the democratic ap-
proach. 28

5.3 Simulation assumptions in three different scenarios. 28

6.1 Reputation systems comparison (based on [1]). 34

v

Summary

New forms of conceiving the web such as web 2.0 and the semantic web have
emerged for numerous purposes ranging from professional activities to leisure.
The semantic web is based on associating concepts with web pages, rather than
only identifying hyperlinks and repeated literals. ITACA is a project whose aim
is to add semantic annotations to web pages, where semantic annotations are
Wikipedia URLs. Therefore, users can write, read and vote on semantic anno-
tations of a webpage. Semantic annotations of a webpage are ranked according
to users’ votes. Building upon the ITACA project, we propose a transparent,
reputation-based architecture. With this proposal, semantic annotations are
stored in the users’ local machines instead of web servers, so that web servers
transparency is preserved. To achieve transparency, an indexing server is added
to the architecture to locate semantic annotations. Moreover, users are grouped
into reputation domains, providing accurate semantic annotation ranking when
retrieving annotations of a web page. Cache copies of semantic annotations in
annotation servers are done to improve efficiency of the algorithm, reducing the
number of sent messages.

Keywords: Semantic web, semantic annotation, collaborative systems, rep-
utation.

Section 1

Introduction

Since Tim Berners Lee invented the World Wide Web (WWW) at the Euro-
pean organization of nuclear research (CERN), new forms of conceiving the
web, such as web 2.0 and the semantic web have emerged. Web 2.0 refers to
what is commonly known as social networks. Nowadays there are many social
networks used for numerous purposes such as professional activities, leisure, im-
age or video sharing and many commercial initiatives. The semantic web, also
known as web 3.0, is based on associating concepts with web pages, rather than
identifying hyperlinks and repeated literals.

Associating concepts with web pages allows semantic interoperability in web
applications. The semantic web also permits applications to easily decrease
interaction with the user, obtain the semantic distance between web pages,
and process pages whose content is nowadays only understandable by humans.
Regarding security, we note that each layer of the semantic web architecture
defined by the World Wide Web Consortium (W3C), which can be observed in
Fig. 1.1, can be secured [2, 3].

Figure 1.1: Semantic web architecture (Source: World Wide Web
Consortium http://www.w3.org).

In this paper, we present a novel approach for a transparent, reputation-
based architecture of a particular semantic web project which is called inquiry-

3

Section 1. Introduction

based, with a trustiness model support, semantic annotations and communities
formation assistance (ITACA) [4, 5, 6]. In ITACA, peers create semantic anno-
tations to web pages, where semantic annotations are Wikipedia URLs. Users
can perform three kinds of actions in ITACA: writing, reading and voting on
semantic annotations of a webpage. Semantic annotations are ranked with a
voting system, so when a user wishes to read semantic annotations of a web
page, the most voted semantic annotations will be displayed.

However, one desirable goal that this architecture does not seem to attain is
seamless integration with existing web services. Moreover, user reputation is not
considered and this can allow users to make inappropriate semantic annotations.
Our contribution improves the existing ITACA architecture by transforming it
into a transparent, reputation-based system. Furthermore, DBpedia [7, 8] URLs
are proposed to replace Wikipedia URLs, because DBpedia extracts semantic
relationships from Wikipedia concepts and more accurate semantic annotations
can be obtained. Concepts introduced in the current proposal are summarized
in Fig. 1.2.

Figure 1.2: Mind map of the current proposal

The rest of the paper is structured as follows. In Sec. 2, the ITACA archi-
tecture is introduced, along with some of its problems. In Sec. 3, our proposed
architecture is defined, including the block description in Sec. 3.1, functional
description in Sec. 3.2, two reputation approaches in Sec. 3.3 and discussion
about the defined architecture in Sec. 4 regarding clustering, security and data
lifetime. Experimental results are reported in Sec. 5. Sec. 6 reviews different
initiatives similar in spirit to ITACA. Finally, conclusions are drawn and future
lines of research are suggested in Sec. 7 and Sec. 8 respectively.

4

Section 2

The ITACA architecture

Our proposal is a review of the architecture presented in [4, 5, 9], where peers
create Wikipedia annotations to web pages. Semantic annotations are sim-
ply Wikipedia URLs. For instance, the web page http://www.google.com/
anitaborg-emena can be tagged with Wikipedia concepts such as http://en.
wikipedia.org/wiki/Anita_Borg.

This Wikipedia URL, together with some metadata information, would be
a semantic annotation of the aforementioned URL. In the current ITACA ap-
proach, in the first step peers search for a webpage using a search engine, or
provide a URL themselves. Afterwards, peers select several Wikipedia concepts
to associate with the web page being annotated. After that, a semantic anno-
tation, which consists in associating a Wikipedia URL to a webpage and some
metadata information, is created, as can be seen in Fig. 2.1. Finally, the seman-
tic annotation is stored in the web server so that when the URL in question is
retrieved, semantic annotations can be retrieved as well.

This functionality is implemented in the ITACA architecture, which is de-
picted in Fig. 2.2. This architecture defines also a voting system where peers
vote on the semantic annotations made by other users. Semantic annotation
reputation is computed as the average of user votes of this annotation. When a
user requests the semantic annotations of a URL, the list of annotations of the
URL is ranked by annotation reputation.

However, the main limitations of this architecture are:

• Web server transparency is not preserved, as web servers have to store
semantic annotations and perform new functionality.

• User reputation is not taken into account, which can lead to some users
making inappropriate semantic annotations, as they will not be penalized.
Furthermore, it is not possible to weight user votes by user reputation.

• Since both votes and semantic annotations are stored in web servers, pri-
vacy is not preserved, due to the fact that users have to trust every web
server they annotate.

• There is neither authentication nor access control of resources.

• The model is lacking in advanced functionalities, such as enabling users
to specify their language, trusted domains, preferences when reading se-

5

Section 2. The ITACA architecture

mantic annotations, etc. Therefore, the same annotations ranking is used
for all users.

• Wikipedia is a semi-formal ontology, and as such no structured se-
mantic information can be obtained between different Wikipedia concepts;
consequently, Wikipedia concepts are not part of structured information.

A transparent and secure architecture is defined in Sec. 3 in order to solve these
issues.

6

F
ig

u
re

2
.1

:
E

x
a
m

p
le

o
f

a
d

d
in

g
a

se
m

a
n
ti

c
a
n

n
o
ta

ti
o
n

to
a

U
R

L
.

7

Section 2. The ITACA architecture

Figure 2.2: ITACA architecture.

8

Section 3

Definition of the proposed
architecture

This section starts with a block description of the protocol (Sec. 3.1), followed by
a functional description (Sec. 3.2). Finally, we provide two approaches to com-
puting semantic annotation reputation: the democratic approach, introduced in
Sec. 3.3.1; and the credibility-based approach, explained in Sec. 3.3.2.

3.1 Block description

Our proposal consists in grouping users into trust domains, building a collabo-
rative semantic annotation system of web resources. Unlike ITACA, where all
semantic annotations were stored in web servers, in our work peers are grouped
into communities, and semantic annotations are shared among members of a
community. Therefore, transparency of web servers is preserved in this archi-
tecture. Our approach assumes that users in a community trust their annotation
server with regard to semantic information, votes and preferences. This archi-
tecture is formed by entities of the ITACA architecture, such as web servers
and users, and new entities such as annotation servers (which form reputation
domains), the indexing server and DBpedia severs, as depicted in Fig. 3.1.

There is seamless integration with existing web servers and DBpedia servers,
as they neither extend their functionality nor store new variables. Regarding
annotation servers, they split users into neighborhoods and they reply to
requests of their community, the indexing server or other annotation servers.
Additionally, they maintain neighborhood reputation by expelling users who do
not reach the required reputation of the neighborhood. They also keep cache
copies of both semantic annotations and user private information for efficiency.
Users must trust the annotation server of their community. Finally, the index-
ing server stores annotation server IDs (anServIDs) of the annotation servers
which contain semantic annotations of a determined URL.

When defining the protocol to provide the requirements of this architecture,
these main design criteria have been followed: transparency, ability of users to
decide their policies to read semantic annotations and create their own anno-
tation ranking, anonymity (users reputation is only known by their annotation
server) and efficiency (use of caching). Furthermore, DBpedia [7, 8] is suggested

9

Section 3. Definition of the proposed architecture

Figure 3.1: Architecture proposal.

as a replacement to Wikipedia, because DBpedia extracts structured informa-
tion from Wikipedia and semantic relationships between semantic annotations
can be obtained. If we follow the example in Fig. 2.1, we can see the corre-
spondent DBpedia entry, shown in Fig. 3.2. The DBpedia page follows “friend
of a friend” (FOAF) Vocabulary Specification 0.91 [10], describing relationships
among concepts with resource description framework (RDF) [11] and, conse-
quently, enabling easier automatic processing of pages.

3.2 Functional description

The three main actions of the architecture are writing, reading and voting on a
semantic annotation.

When writing a semantic annotation, the first action is to browse a
webpage and then search for a DBpedia concept. After that, the user commu-
nicates the semantic annotation he intends to perform to the annotation server
he previously registered to. Then, the control is handed over to the annotation
server. If that DBpedia concept is already associated to the URL, an exception
will be raised. If not, the annotation server stores the annotation and writes
the location tuple formed by its ID, the annotation server ID and the URL
(anID,anServID,URL) in the indexing server. Therefore, when users want to
browse that page, after asking the indexing server, they know which annotation
servers store annotations of that URL. Then, the indexing server confirms that
the annotation server ID has been written properly. Afterwards, the user writes
his annotation in his local machine. The process of writing an annotation is de-
tailed in Fig. 3.3. Note that the tuple (anID,anServID,URL) is stored in the
indexing server in order to locate semantic annotations in an annotation server
domain. With a view to avoiding bottlenecks in the indexing server, several

10

3.3. Reputation approaches

actions can be carried out, such as:

• Replicating indexing server information in several indexing servers, all of
them containing the same information. For simplicity and consistency
problems among indexing servers, this option is not considered.

• Copying indexing server information in annotation servers’ cache. Sec. 5
evaluates how cache copies help to avoid bottlenecks and improve scala-
bility of the architecture.

• Writing locating tuples in the indexing server, after having several of them
(event-driven) or after a timeout (time-driven). This action entails not
writing the tuple in every annotation. For simplicity, writing several lo-
cating tuples at the same time is left for future studies.

When reading a semantic annotation the user tells his annotation server
he wishes to browse a determined URL. Afterwards, the indexing server will be
in charge of selecting the annotation servers involved with this URL through its
location tuples. Location tuples are formed by identifiers of both of annotation
servers and annotations and URLs (anID, anServID,URL). Afterwards, the
annotation server asks other annotation servers for semantic annotations of this
webpage. Finally, the annotation server returns to the user a list of all semantic
annotations of this webpage. The process of reading a semantic annotation is
detailed in Fig. 3.4. If a user is thrown out of the reputation domain, all his
information stored in the annotation server is deleted. Cache memories are used
in annotation servers to store their users’ information and to communicate with
the indexing server. Furthermore, annotations are stored both at users’ local
machines and in the cache memory of annotation servers. This is done in order
to improve the algorithm efficiency and scalability. There is more information
about data lifetime in cache and scalability improvement with cache copies in
Sec. 4.3 and Sec. 5 respectively.

The action of voting on a semantic annotation is rather simple if the
annotation is stored in the same annotation server as the user who wants to
vote. In this situation, the user informs the annotation server of the annotation
ID and the vote value. Afterwards, the annotation server recomputes the an-
notations’ reputation values. Finally, an acknowledgment is sent to the user to
confirm that the action has been done correctly. However, when the annotation
is in a different annotation server from that of the user who wants to vote, the
annotation server should ask the indexing server about the annotation server
containing that annotation. Then, annotation reputation will be recomputed.
Fig. 3.5 shows the sequence diagram of voting on a semantic annotation. Notice
that, because of the use of cache memories, the annotation server may already
know in which annotation server the semantic annotation is. Consequently,
some of the queries of the sequence diagrams may be omitted.

3.3 Reputation approaches

Annotation reputation makes the ranking of semantic annotations simpler, as
annotations can be easily ordered by reputation. However, in a transparent and
decentralized scenario, user reputation enables annotation servers to impose a

11

Section 3. Definition of the proposed architecture

reputation threshold on users of their domain. In addition, neighborhood rep-
utation, which is computed as the average of the user reputations of a domain,
makes the user reputation solution much more scalable. To achieve the best of
both approaches, annotation reputation, user reputation and neighborhood rep-
utation have been included in the architecture. User reputation is computed as
the average of annotation reputation and neighborhood reputation is computed
as the average of user reputation.

As for annotation reputation, we propose two different approaches to com-
pute it: the democratic approach and the credibility-based approach. In the
first one, all votes have the same weight. The second approach is more complex,
as concepts of witness reputation error and trust come into play, and votes are
weighted by user reputation.

Table 3.1: Variables stored in the indexing server, annotation servers and
users.

Location Variable Access control
Indexing server Tuples to locate annotations:

anServIDs (annotation server
ID), anIDs (annotation IDs) and
URLs.

Public.

Annotation server
Domain information: anServID
and neRep (neighborhood repu-
tation).

Public.

Users’ information: uID (user
ID), uRep (user reputation) and
warn (warnings).

uID is public, and other
variables are private.

Cache: users’ semantic annota-
tions and preferences.

Private.

User
uID (user ID). Public.
User preferences: repThres
(reputation threshold) and
minV otes (minimum number of
votes).

Private (but their annota-
tion server have access).

Semantic annotations. Private (but their annota-
tion server have access).

Common variables used in both approaches are summarized in Table 3.1.
User variables are stored in their personal information model ontology (PIMO)
profile [6]. However, user identity can be removed from the ITACA archi-
tecture [12] in order to preserve anonymity of the semantic annotation (see
Sec. 4.2). Semantic annotations are formed by anID, DBpediaID, URL, time,
rep, numV otes; which are the variables of annotation ID, DBpedia ID, URL,
timestamp, reputation and number of votes received respectively. Furthermore,
in order to avoid bottlenecks and improve scalability, annotation servers main-
tain cache copies of semantic annotations and user information. Cache policies
will be studied in further detail in Sec. 5.

3.3.1 Democratic approach

There are three different algorithms in the democratic approach, namely: anno-
tation reputation computation, preservation of reputation of a domain and the

12

3.3. Reputation approaches

algorithm to retrieve semantic annotations of a URL. They are detailed in Algo-
rithm 1, Algorithm 2 and Algorithm 3 respectively. It is worth remarking that
although annotation reputation computation algorithm is triggered by a vote
on a semantic annotation, user reputation and neighborhood reputation com-
putation algorithms are triggered by a timeout specified by annotation servers.
Furthermore, user reputation and neighborhood reputation are computed as the
average of annotation reputations and the average of user reputations, respec-
tively.

Algorithm 1 Annotation reputation update. The algorithm is triggered when
someone votes on a semantic annotation.
Require: updateRep (rep, voteV alue, α)

rep: annotation reputation.
voteV alue: value of the vote on a semantic annotation which has triggered
the algorithm.
α: weight between 0 and 1 given to the last vote by the annotation server.
Usually α is closer to one as early votes will count more. This is a way to
reward early voters because it is more difficult to vote when there are no
references.

Ensure: rep is the updated annotation reputation.
1: rep← α ∗ rep+ (1− α) ∗ voteV alue
2: return rep

Algorithm 2 Preservation of neighborhood reputation. The algorithm is trig-
gered by a timeout specified by annotation servers.
Require: preservRep ({uIDs}, uID.uRep, uID.warn, β, γ)
{uIDs}: set of users who form the domain.
uID.uRep: user reputation of users of the domain.
uID.warn: number of warnings of users of the domain.
β: reputation threshold of the domain.
γ: maximum number of warnings before users are expelled from the domain.

Ensure: {usersBlackList} and {uIDs} are the set of blocked users who had
not fulfill reputation requirements of the domain and users in the domain
respectively.

1: for all {uIDs} do
2: if uID.uRep < β then
3: if uID.warn > γ then
4: {uIDs} ← {uIDs} - uID
5: {usersBlackList} ← {usersBlackList} ∪ uID
6: end if
7: uID.warn← uID.warn+ 1
8: end if
9: end for

10: return {usersBlackList},{uIDs}

13

Section 3. Definition of the proposed architecture

3.3.2 Credibility-based approach

Variables needed in the credibility-based approach are specified in Table 3.1 and
Table 3.2. The system should motivate and reward users that vote and annotate,
so that when users write or vote on a semantic annotation, their participation
increases. The higher the participation, the faster their petition to read, write
or vote on annotations will be processed by the annotation server. Moreover, it
should be advantageous to have a good reputation, to prevent newcomers from
reentering the system.

Table 3.2: New variables added to the architecture in the credibility-based
approach in annotation servers and users.

Location Variable Accesscontrol
Annotation
server

Users’ information: uID and wiRepError
(witness reputation error). Cache copies of
new users’ preferences

uID is public, and
other variables are
private.

User User preferences: wiRepErrorThres (witness
reputation error threshold), maxShare (max-
imum depth of the trusting graph), trusting
tuples (rt, p) (uID has voted rt’s annotations
with average p), participation and language.

Private (but their
annotation server
has access).

As for the algorithms, the witness reputation error computation algo-
rithm is detailed in Algorithm 4. Therefore, there are some variations on the
preservation of the neighborhood reputation in Algorithm 2, because in
addition, if user’s witness reputation error is above a threshold, the user can be
expelled from the neighborhood.

With regard to the trusting tuple computation, it is computed in a sim-
ilar way as the reputation computation in Algorithm 1, but having p as the rep
variable and having rt as the uID of the person you vote. Consequently, rep
is the average reputation given to a user uID by the community; while p is the
average reputation given to a user rt by the uID who voted him. In [13], trust
is described by several parameters: target, representation, method and compu-
tation. In this approach, the target of this system is users (we remark that, in
the previous scenario, trust was centered on annotations). The representation
is log files with past trust information. The method used is past interactions.
Regarding the computation, it will be triggered when someone votes someone
else with a value, and then the user who voted trusts the other user with a
certain probability.

In the credibility-based approach, the condition to retrieve annotations
includes not only annotations higher than a certain threshold, but also anno-
tations of users rt who have in the trusting tuple a p value higher than the
threshold. Therefore, both the community reputation and the reputation given
by the user to the writer of the annotation are considered.

14

3.3. Reputation approaches

F
ig

u
re

3
.2

:
D

B
p

ed
ia

p
a
g
e

ex
a
m

p
le

.

15

Section 3. Definition of the proposed architecture

Figure 3.3: Sequence diagram of writing a semantic annotation.

16

3.3. Reputation approaches

Figure 3.4: Sequence diagram of reading a semantic annotation.

17

Section 3. Definition of the proposed architecture

Figure 3.5: Sequence diagram of voting on a semantic annotation.

18

3.3. Reputation approaches

Algorithm 3 Obtaining semantic annotations of a URL considering user rep-
utation threshold and minimum of votes on an annotation. The algorithm is
triggered when someone reads a semantic annotation.
Require: obtainingAn (URL, {anServIDs}, anServID.neRep,

anServID.{anIDs}, anID.URL, anID.rep, anID.numV otes, repThres,
minV otes)
URL: web page where annotations will be retrieved from.
{anServIDs}: list of anServIDs which have annotations of the URL.
anServID.neRep: neighborhood reputation of a domain.
anServID.{anIDs}: annotations stored in a domain.
anID.URL: URL associated to the annotation.
anID.rep: annotation reputation.
anID.numV otes: number of received votes of an annotation.
repThres: annotation reputation threshold required by a user to consider
an annotation (it is part of user preferences).
minV otes: minimum number of votes required by a user to consider an
annotation (it is part of user preferences).

Ensure: {DBpediaIDs} is the set of semantic annotations of the URL.
1: for all {anIDs} do
2: if anID.URL == URL then
3: if anID.rep > repThres&anID.numV otes > minV otes then
4: DBpediaIDs ← DBpediaIDs ∪ DBpediaID
5: end if
6: end if
7: end for
8: for all {anServIDs} do
9: if anServID.neRep > repThres then

10: for all {anIDs} do
11: if anID.URL == URL then
12: if anID.rep > repThres&anID.numV otes > minV otes then
13: DBpediaIDs ← DBpediaIDs ∪ DBpediaID
14: end if
15: end if
16: end for
17: end if
18: end for
19: return DBpediaIDs

19

Section 3. Definition of the proposed architecture

Algorithm 4 Computation of witness reputation error. The algorithm is trig-
gered by a timeout specified by the annotation server.
Require: wiRepErrorComp (uID, uID.{rts}, rt.p, rt.rep, dMaxShare)
{uID}: ID of the user for whom reputation is being computed.
uID.{rts}: list of writers of the annotations voted by the user.
rt.p: the user voted rt’s annotations with an average value p.
rt.rep: rt’s reputation. In the algorithm there is a summation of the differ-
ences between the reputation given by the user and the reputation given by
the community.
dMaxShare: maximum depth of the trusting graph.

Ensure: wiRepError is the witness error reputation of the user.
1: if dMaxShare == 0 then
2: return wiRepError = 0
3: end if
4: wiRepError ← dMaxShare ∗ wiRepError +

∑
∀rt |rt.p− rt.rep| +

wiRepErrorComp (rt,rt.{rts},rt.rt.p, rt.rt.rep,dMaxShare− 1)
5: return wiRepError

20

Section 4

Discussion

In this section, we study clustering methods in Sec. 4.1, security in Sec. 4.2 and
data lifetime in cache in Sec. 4.3.

4.1 Clustering

It is important to define how users are assigned to annotation servers. Since
Napster was created, many P2P clustering methods have appeared, such as
Gnutella and Juxtapose (JXTA). In Gnutella, communities are created accord-
ing to their queries and the nodes themselves perform access control tasks [14],
while in JXTA some users of the P2P network are able to create explicit com-
munity groups [15]. Regarding annotation servers, they will store semantic
annotations, user preferences, and will act on behalf of the user sending mes-
sages to the web server and the DBpedia server. It would be a good idea to
use JXTA while giving annotation servers the possibility to specify their com-
munity in an explicit way, although for automatic clustering Gnutella would be
more appropriate. Communities might be specified with the goal of maximizing
the number of common web pages among users of a community, so that the
algorithm’s efficiency and scalability are improved. Furthermore, it must be
noted that annotation servers reject users if they do not fulfill reputation or
witness reputation error neighborhood requirements.

Notice that when every user has an associated annotation server, we are left
with the case of a P2P network. On the other hand, when all users belong to
a single annotation server, the architecture becomes a centralized one. Conse-
quently, the whole spectrum of intermediate situations between a centralized
and a distributed architecture can be analyzed this way.

This architecture has several benefits, such as solving bottlenecks, preser-
vation of anonymity and encouragement of good users’ behavior. Regarding
anonymity, user identity is not used at all by the ranking algorithm, and user
reputation is only known by its annotation server. Bottlenecks are avoided
through cache copies in the indexing server. As for encouraging good behav-
ior, reputation gives an incentive to making proper annotations, and likewise
witness reputation error promotes fair voting. If a user reputation or witness
reputation error are not above thresholds β and γ specified by its domain, the
user will be expelled from the domain.

21

Section 4. Discussion

4.2 Security

Several security services are taken into account in this architecture, such as
authentication, anonymity, availability and access control.

• Regarding authentication and anonymity, in the ITACA approach
defined in Sec. 2, every user signs its annotations, leading to the following
disadvantages:

– Integration of key management with existing systems: from a prac-
tical viewpoint, most users do not seem to have digital certificates,
needed to verify a private key signature; consequently, they are not
able to sign messages.

– Repeated authentication of the reputation value: when the reputa-
tion value changes, users should provide their annotation and sign a
message again. This can be inefficient if reputation values are fre-
quently modified.

– Privacy: As users sign their messages, anonymity is lost.

Due to the foregoing limitations, it seems more appropriate that it be
the annotation servers, rather than the users, who sign the messages.
However, in our proposal, the authentication scheme is dependent on the
action performed, whether it is writing, reading or voting an annotation:

– Writing an annotation: Users must specify their uID and their an-
notation server must authenticate the domain to the indexing server.
For the sequence diagram of writing an annotation see Fig. 3.3.

– Reading an annotation: Users do not have to specify their uID, but
their annotation server specifies the domain that issued the request
to read an annotation. In that case, users use a pseudonym. Conse-
quently, there will be a list of pseudonym and user pairs in the an-
notation server, reflecting this anonymous reading. For the sequence
diagram of writing an annotation see Fig. 3.4.

– Voting an annotation: Users must specify their uID and their anno-
tation server must authenticate the domain to the indexing server.
For the sequence diagram of writing an annotation see Fig. 3.5.

• Cache copies increase the availability of both resources and entities.
Caching and the associated duplication of information improves not only
availability but also scalability. However, with the use of caching the
question arises of what the best tradeoff between availability and required
storage capacity is. The mechanisms to improve availability of resources
and entities are:

– Resource availability: if a user is not available in the system, and his
annotation server has a cache copy of the annotation, the annotation
will still be available to the community.

– Availability of the indexing server and annotation servers: if there
is a decline in the number of sent messages among entities, the in-
dexing server and annotation servers will be more readily available,

22

4.2. Security

thus helping to avoid bottlenecks. Annotation servers’ availability
can be improved with cache copies of annotations of its domain, or
even cache copies of annotations of other domains. As for the in-
dexing server, cache copies of location tuples can be time-driven or
event-driven; the same question can be asked for writing location
tuples in the indexing server and writing votes on annotations of
other domains. With time-driven cache copies, location tuples are
periodically copied to annotation servers. On the other hand, with
event-driven cache copying, location tuples can be copied in annota-
tion servers when writing, reading or voting on an annotation.

Availability is studied in further detail in Sec. 5.

• Access control of variables of different entities is specified in Table 3.1.

We proceed to study several possible attacks on the architecture. The source
of these attacks can be roughly classified into malicious peers, malicious collec-
tives or malicious spies:

• In the credibility-based approach, malicious peers can make a number
appropriate annotations, with a view to building a good reputation. Then,
attackers proceed to make a high number of bad annotations in a short
period of time. As their reputation has not been updated yet (user reputa-
tion is updated usually once per day), and as they have a good reputation,
their opinions will be trusted by the community. This attack could easily
be solved by annotation servers, if we ensure user reputation computa-
tion is not only time-driven but also event-driven (for example, every δ
new annotations from users, their user reputation must be recomputed).
Other problems arise from improper recommendations or malicious peers
manipulating the reputation of other nodes (slandering), so that lower
reputations are reported. Some studies have already appeared tackling
this issue [16, 17, 1]. In the credibility-based approach, improper rec-
ommendations are detected by means of the witness reputation error in
Algorithm 4. When malicious peers exceed the allowed witness reputation
error, they are expelled from the neighborhood.

• Reputation or trust outside the community can prove to be quite danger-
ous. A malicious collective forming a domain might falsely pretend to
have a high reputation (i.e. to have highly reputed users). In other words,
annotation servers can be malicious and pretend to have a reputed com-
munity. Malicious annotation servers can also notify the indexing server
that a user has written an annotation when he has not. This could be
detected if every annotation server computed neighborhood reputation of
other domains. For instance, suppose that currentServID makes his own
estimate of the neighborhood reputation of anServID, as detailed in Al-
gorithm 5. If the neighborhood reputation computed by currentServID
differs by more than ε1 from that provided by anServID, then anServID
might be a malicious collective. Consequently, anServID would be added
to currentServID’s black list, and neither anServID’s resources, votes
nor petitions to read annotations will be considered by currentServID.

1ε ∈ R is a threshold specified by every annotation server.

23

Section 4. Discussion

Algorithm 5 Update of the anServID’s reputation computed by
currentServID. The algorithm is triggered by the vote of a user of
currentServID.
Require: myNeRepUpdate (vote, anServID, anServID.myNeRep,

anServID.elements)
vote: a user of currentServID votes on an annotation stored in anServID
with value vote.
anServID: ID of the annotation server where the annotation is stored.
myNeRep: average of votes on annotations stored in anServID voted by
currentServID’s users.
elements: number of annotations stored in anServID voted by
currentServID’s users.

Ensure: myNeRep is the updated anServID’s reputation computed by
currentServID.

1: anServID.elements← anServID.elements+ 1
2: myNeRep← myNeRep+vote

anServID.elements
3: return myNeRep

• Malicious spies write correct annotations of the most popular web sites,
and likewise vote rightfully on the most popular semantic annotations,
but behave maliciously on the less voted annotations or less annotated web
pages. This attack is difficult to detect, as users sometimes act maliciously
and sometimes do not, and thus their behaviour can remain unnoticed. A
deeper study on the detection and prevention of these attacks is left for
further work.

4.3 Data lifetime in cache

Data lifetime in cache can refer both to the indexing server variables or to the
annotation servers’ variables. Data lifetime in cache of the indexing server
is permanent, the reason being that once the tuple to locate an annotation is
erased, the annotation will no longer be available to other domains.

As for data lifetime in cache of the annotation server, it can refer to users’
preferences, users’ information, the tuples to locate annotations and semantic
annotations. The list of uIDs could be saved in order to prevent malicious
peers from reentering the system. However, the following information could be
deleted:

• User preferences and information of expelled users.

• Unread annotations2. This can be applied to all policies shown in Ta-
ble 5.1. Another option, which applies only to the third policy, would be
to delete annotations created in different domains which have not been
read. In this case, the user who created the annotation does not belong
to the annotation server’s domain.

2A counter to compute the number of times that an annotation has been read could be a
simple mechanism to discover unread annotations.

24

4.3. Data lifetime in cache

• Locating tuples of annotation servers which have not been used. This can
be applied to both the second and third policies.

• Unread annotations originated from different domains, together with their
correspondent locating tuple of the annotation server. This can be applied
only to the third policy.

Even though the deletion of unread annotations would decrease storage ca-
pacity requirements while incurring in a very small increase in the number of
messages, neither semantic annotations nor location tuple deletions have been
considered in simulations, in order to keep the architecture simple.

25

Section 5

Evaluation of the
architecture

We state our assumptions and definitions concerning simulations in Sec. 5.1 and
then proceed to discuss the simulations themselves in Sec. 5.2.

5.1 Definition of cache policies and storage re-
quirements

Regarding the architecture defined in Fig. 3.1, bottlenecks in the indexing server
are avoided by storing the tuple to locate annotations (anServID,URL, anID)
in the annotation servers’ cache. In order to reduce bottlenecks in the indexing
server, reduce the number of sent messages in the architecture and improve
scalability, three different policies are shown in Table 5.1. These three policies
are evaluated in Sec. 5.2

Table 5.1: Cache copies in annotation servers’ cache when writing
(Fig. 3.3), reading (Fig. 3.4) and / or voting (Fig. 3.5) on semantic

annotations.

Policy Writing semantic
annotations

Reading seman-
tic annotations

Voting semantic
annotations

1 Domain’s annotations
User preferences

2 Domain’s annotations
User preferences

Tuple to locate annotations
3 All domains’ annotations

User preferences
Tuple to locate annotations

In order to simulate the improvement on efficiency with caching, the storage
requirements of a semantic annotation, user preferences, and the tuple to store
annotations have been computed in Table 5.2 assuming that the average URL,
IDs and timestamp size are 63.4 bytes [18], 8 bytes and 8 bytes [19], respectively.

27

Section 5. Evaluation of the architecture

Table 5.2: Storage requirements of variables stored in users’ local
machines, annotation servers and the indexing server in the democratic

approach.

Location Variable Size
Indexing server anServID, URL, anID 79.4 bytes

Annotation server Domain information: anServID and
neRep

16 bytes

Users’ information: uID, uRep and
warn

24 bytes

User uID 8 bytes
Semantic annotations: anID,
DBpediaID, URL, timestamp,
reputation, numV otes

158.8 bytes

User preferences: repThres, minV ote 16 bytes

5.2 Simulations

Fig. 5.1 has been obtained using Matlab 7.6.0 2008 and Eclipse IDE for Java
EE Developers, version 1.2.0.20090621-0820.

The evolution in time of the number of messages and bytes trans-
ferred has been studied in different policies and scenarios. Taking into account
the three policies described in Table 5.1 and three scenarios described in Ta-
ble 5.3, the evolution of messages and bytes can bee seen in Fig. 5.1.

Table 5.3: Simulation assumptions in three different scenarios.

Variable 1st scenario 2nd scenario 3rd scenario
Writing frequency 2 per day 4 per day
Reading frequency 4 per day
Voting frequency 1 per day 4 per day
Increment of the fre-
quency in writing, reading
and voting annotations

0.01 0.1

Number of domains 20 10000 10
Number of users per do-
main (random number be-
tween an interval)

[100, 1000] [1000000, 2000000]

Increment of users per do-
main (random number be-
tween an interval)

[1, 100] [1, 1000]

Number of read annota-
tions

Proportional to the simulation time

In the first scenario (Fig. 5.1a), the number of sent messages decreases con-
siderably by applying the second policy. This decrease is somewhat higher with
the third policy. However, regarding Fig. 5.1b, the required storage capacity of
the third policy is considerably higher. Therefore, the second policy exhibits
a better tradeoff for this architecture and the described scenario.

In the second scenario, the number of domains increases. A proper selec-

28

5.2. Simulations

tion of the policy applied becomes crucial for preserving architecture scalability,
as depicted in Fig. 5.1c and Fig. 5.1d.

In the third scenario, the frequency of writes and votes on annotations
increases, as well as the number of users per domain. The number of sent
messages for the second and third policies become more similar, as can be seen in
Fig. 5.1e. In Fig. 5.1f, the number of users in the domain also affects considerably
the required storage capacity.

29

Section 5. Evaluation of the architecture

(a) Evolution in time of number of sent
messages considering first scenario of

Table 5.3.

(b) Evolution in time of required bytes
considering first scenario of Table 5.3.

(c) Evolution in time of sent messages when
the number of domains increases. Parameters
are detailed in second scenario of Table 5.3.

(d) Evolution in time of the number of bytes
when the number of domains increase.

Parameters are detailed in second scenario of
Table 5.3.

(e) Evolution in time of sent messages when
the number of users increases. Parameters are

detailed in third scenario of Table 5.3.

(f) Evolution in time of the number of bytes
when the number of users increases.

Parameters detailed in third scenario of
Table 5.3.

Figure 5.1: Evolution of messages sent and storage capacity requirements
of the architecture, according to three different scenarios.

30

Section 6

Related work

There are different types of P2P applications, such as file sharing, distributed
processing and instant messaging [20]. ITACA is the case of a P2P application
that attempts to be secure using concepts such as trust, reputation, access
control, authentication and privacy.

Trust [21] becomes much more complicated when dealing with decentralized
networks, which were first analyzed by [22]. The problem of trust in P2P net-
works is that the availability and reliability of a node are not guaranteed [13].
In decentralized networks, monitoring and log files may be needed [23, 24] and
some considerations must be taken into account to handle trust in the semantic
web [25].

User reputation can be computed in different ways (e.g. considering users
behavior, users capability, etc.), and in different types of P2P networks, such
as Gnutella or Juxtapose (JXTA) [26]. Scalability can be improved using the
concept of neighborhood reputation and witness reputation [27].

Regarding access control in a semi-decentralized solution, usually there is
a central node storing certificates. However, very demanding software and hard-
ware requirements are needed in implementations of completely decentralized
architectures, in which path discovery can be a daunting task [28, 29, 30].

As for authentication schemes, we can talk about trusted third parties
(TTPs). Users trust a TTP and TTPs cooperate between them, increasing the
scalability of a P2P network, and reputation information can be shared among
these servers [31, 32, 33].

Finally, there is the issue of architecture privacy. In semantic networks, it
is normal for users to set up their privacy preferences, which include the user
with whom information is shared, the type of relationship with the user, and
the maximum depth of the privacy graph [34].

Some initiatives have appeared that resemble ITACA, such as reputation as-
sessment for trust establishment among web services (RATEWeb) [35]. There
are several algorithms to compute web service reputation. It must be noted that
in that article, members of the community do not evaluate their annotations, but
services offered by other web service providers, based on their perceived quality
of service (QoS). In their analysis, it is really interesting to investigate the con-
cepts of web service reputation and user credibility, and ontologies are used
in order to form communities. However, our democratic approach explained
in Sec. 3.3.1 includes the concept of neighborhood reputation, the centralized

31

Section 6. Related work

authority of the indexing server, and each person’s vote has the same weight in
the reputation computation.

Another initiative is the Quatro project [36]. The Quatro project is a Euro-
pean project where web pages can carry useful and trustworthy metadata to
make the web a safer place, where users can read the metadata before accessing
the website. However, it has an important difference with respect to ITACA:
trust in Quatro is generated by labeling authorities, who grant their reliability,
whereas in ITACA trust is structured in a collaborative system through user
votes, reputation systems, trust systems and witness systems. In the same phi-
losophy as Quatro, [20] presents a reliable polling algorithm which checks if the
resources offered are malicious before starting the download of a resource.

There are other initiatives such as infrastructures for semantic gossiping
where peers have their semantic schemas and, as time goes on, peers should de-
cide whether to implement other people’s schemata or adapt their own schema.
In this scenario, it would be interesting to see if some particular schemas
dominate the network [37]. Furthermore, some research has been carried out
regarding decreasing resources of secure P2P file-sharing protocols [38]. There
are also systems engineered to discover resource-sharing communities, consider-
ing the community is a resource described by the metadata specified in an XML
Schema description [39].

Another example of a P2P resource sharing initiative is the personalized trust
model with reputation and risk evaluation (PET) [40]. That paper differs from
others in that it considers the risk value, which allows us to consider short-
time reputation, thus eliminating the need to wait for a long time to know the
reputation of a person. In that project, when calculating the reputation, more
weight is supposed to be given to the most recent values. However, we do not
consider the risk value with an explicit parameter, as has been done in [40].

There are also studies about how reputation models increase the number
of successful recommendations as the number of messages increases. In
[41], global reputation is a mixture of local reputation and recommendation
reputation, and evaluations are made in a Gnutella-like network.

A visualization of analysis framework for reputation systems, pro-
posed in [1], can be of great use to summarize differences among reputation
systems. Other reputation systems, ITACA and the current proposal, are com-
pared in Table 6.1. The following values have been given to ITACA, defined in
Sec. 2, and the current proposal:

• Formulation

– Source of information: manual in both ITACA and the current pro-
posal. Votes are obtained from users ratings, after having written an
annotation on a webpage.

– Information type: both reputation systems include positive, neutral
and negative events as an annotation can be voted with 3, 2 or 1
points. Consequently, the reputation metric is discrete in both repu-
tation systems.

– Temporal aspects: in both systems, reputation does not change over
time. However, in the current proposal, earlier votes have more
weight on reputation computation, as showed in Algorithm 1.

32

– Reputation metric: in both systems, annotations’ reputation is de-
termined by votes, and consequently, it is deterministic. Reputation
is a R number in the interval [1, 3].

• Calculation

– Distribution: in ITACA, the calculation structure is distributed, as
web servers compute annotation reputation of their web pages. In the
current proposal, the same distribution is followed for annotation rep-
utation. However, new concepts of reputation are introduced, such
as user and neighborhood reputation, which are computed by anno-
tation servers. As in the current proposal there can be a wide range
of intermediate situations between a centralized and a distributed
architecture (see Sec. 4.1), the distribution of the current proposal
will be defined as centralized / distributed.

– Determinism: in both systems, the calculation is deterministic, be-
cause there are deterministic calculations for global reputation values.

– Efficiency: in both systems, the efficiency of the calculation is O(1)
as the algorithm’s complexity of the average reputation value is in-
dependent of the number of votes. Annotation reputation of ITACA
can be computed as updatedAnRep = anRep+newV alue

numElements+1 and annota-
tion reputation of the current proposal is detailed in Algorithm 1.

• Dissemination

– Distribution: in ITACA, the dissemination of reputation is done by
web servers, and hence is distributed. However, in the current pro-
posal, user and neighborhood reputation are distributed by annota-
tion servers and the indexing server. Consequently, the distribution
of the current proposal is distributed / centralized.

– Determinism: the dissemination is deterministic in both systems be-
cause their communication mechanisms include distribution hierar-
chies instead of epidemic-based techniques.

– Data lifetime in cache: permanent in both cases. For more infor-
mation regarding data lifetime in cache of the current proposal see
Sec. 4.3.

– Redundancy: there is no redundancy in ITACA, as annotation rep-
utation is only stored in web servers. In the current proposal, there
is partial redundancy as user reputations are computed through an-
notation reputations and stored in annotation servers. In the same
way, neighborhood reputation also contributes to this redundancy in
reputation.

33

Section 6. Related work

T
a
b

le
6
.1

:
R

ep
u

ta
tio

n
sy

stem
s

co
m

p
a
riso

n
(b

a
sed

o
n

[1
]).

R
eputation

F
orm

u
lation

C
alcu

lation
D

issem
in

ation
system

s
Source

of
Inform

ation
Inform

ation
T

ype
T

erm
poral

A
spects

R
eputation

M
etric

D
istribution

D
eterm

inism
E

ffi
ciency

D
istribution

D
eterm

inism
D

ata
lifetim

e
in

cache
R

edundancy
B

eth
[42]

M
,

A
I

P,N
/D

Y
D

/C
D

D
O

(a
n)

D
N
A
φ

N
A
φ

N
A
φ

Z
im

m
erm

ann
[43]

M
,

A
I

P
/D

,C
N

D
/D

,C
D

D
O

(n
2)

D
D

P
N

eB
ay

[44]
M

P,N
/D

N
D

/D
C

D
O

(n)
C

D
P

N
Y

u
[45]

A
D

,A
I

P,N
/C

N
D

/C
D

D
O

(n)
D

D
T

N
P

-G
R

ID
[46]

M
N

/B
N

D
/D

D
P

O
(log

n)
D

D
P

P
C

O
R

E
[47]

A
D

,A
I

P,N
/C

Y
D

/C
D

D
O

(n)
D

D
T

N
X

-R
ep

[20]
M

P,N
/B

N
P

/D
D

P
N
A
φ

D
P

P
N

E
igentrust

[38]
M

P,N
/B

,D
N

D
/C

D
P

O
(n)

D
D

T
F

L
ee

[48]
M

P,N
/B

,C
Y

D
/C

D
D

O
(n)

D
D

T
P

T
rustm

e
[49]

N
A
θ

N
A
θ

N
A
θ

N
A
θ

D
D

O
(n)

D
D

P
F

X
iong

[50]
M

N
/B

Y
D

/B
D

D
O

(n)
D

D
T

N
B

uchegger
[51]

M
,A

I
P

/C
Y

D
/B

,
C

D
D

O
(1)

D
D

T
P

Feldm
an

[52]
M

P,N
/D

,C
Y

D
/C

D
P

O
(log

n)
D

D
P

N
G

uha
[53]

M
P,N

/C
Y

D
/B

,
C

C
P

O
(n

2)
C

D
T

N
M

arti
[54]

M
P

/C
Y

D
/C

D
D

O
(n)

D
D

T
N

A
R

A
[55]

A
D

P
/C

Y
D

/C
D

D
O

(n)
D

N
A
φ

T
P

Scrivener
[56]

A
D

P,N
/D

N
D

/D
D

D
O

(1)
D

D
P

P
Song

[57]
M

,A
I

P
/C

Y
P

/C
D

P
O

(n)
D

N
A
φ

N
A
φ

N
A
φ

T
rustguard

[58]
N
A
θ

P,N
/C

Y
D

/C
N
A
θ

N
A
θ

O
(log

n)
N
A
φ

N
A
φ

N
A
φ

N
A
φ

C
redence

[59]
M

P,N
/D

Y
D

/C
D

D
N
A
φ

D
P

P
P

P
ow

erT
rust

[60]
M

P,N
/D

N
D

/C
D

P
O

(n)
D

D
T

F
P

2P
R

ep
[61]

M
,

A
D

P
/C

Y
P

/C
D

P
O

(n)
D

D
T

P
L

i
[62]

M
,

A
D

P,N
/C

Y
P

/C
D

P
O

(n)
D

D
T

N
IT

A
C

A
[4]

M
P

,N
/D

N
D

/D
D

D
O

(1)
D

D
P

N
C

u
rren

t
p

rop
osal

M
P

,N
/D

N
D

/D
C

/D
D

O
(1)

C
/D

D
P

P

A
b
b
rev

ia
tio

n
s:

F
o
rm

u
la

tio
n

:
so

u
rce

o
f

in
fo

rm
a
tio

n
is

m
a
n
u
a
l

(M
),

a
u
to

m
a
tic

in
d
irect

(A
I)

a
n
d

a
u
to

m
a
tic

d
irect

(A
D

);
in

fo
rm

a
tio

n
ty

p
e

is
p

o
sitiv

e
(P

),
n
eg

a
tiv

e
(N

)
/

b
in

a
ry

(B
),

d
iscrete

(D
)

a
n
d

co
n
tin

u
o
u
s

(C
);

tem
p

o
ra

l
fo

cu
s

is
stro

n
g

em
p
h
a
sis

(Y
)

a
n
d

n
o
t

a
stro

n
g

em
p
h
a
sis

(N
);

a
n
d

rep
u
ta

tio
n

m
etric

is
d
eterm

in
istic

(D
)

a
n
d

p
ro

b
a
b
ilistic

(P
)

/
b
in

a
ry

(B
),

d
iscrete

(D
)

a
n
d

co
n
tin

u
o
u
s

(C
).

C
a
lc

u
la

tio
n

:
d
istrib

u
tio

n
is

cen
tra

lized
(C

)
a
n
d

d
istrib

u
ted

(D
);

d
eterm

in
ism

is
d
eterm

in
istic

(D
)

a
n
d

p
ro

b
a
b
ilistic;

a
n
d

effi
cien

cy
m

ea
su

res
th

e
tim

e
co

m
p
lex

ity
o
f

ca
lcu

la
tin

g
th

e
rep

u
ta

tio
n

m
etric

va
lu

e
fo

r
a

sin
g
le

en
tity,

n
(n

u
m

b
er

o
f

n
o
d
es)

a
n
d
t

(n
u
m

b
er

o
f

h
isto

rica
l

n
o
d
es).

D
isse

m
in

a
tio

n
:

d
istrib

u
tio

n
is

cen
tra

lized
(C

)
a
n
d

d
istrib

u
ted

(D
);

d
eterm

in
ism

is
d
eterm

in
istic

(D
)

a
n
d

p
ro

b
a
b
ilistic

(P
);

d
a
ta

lifetim
e

in
ca

ch
e

is
tra

n
sien

t
(T

)
a
n
d

p
erm

a
n
en

t
(P

)
a
n
d

red
u
n
d
a
n
cy

is
fu

ll
(F

),
p
a
rtia

l
(P

)
a
n
d

n
o
n
e

(N
);

φ
m

ea
n
s

th
a
t

th
e

p
ro

p
erty

so
lely

d
ep

en
d
s

o
n

th
e

p
ro

p
erty

o
f

th
e

u
n
d
erly

in
g

p
eer-to

-p
eer

n
etw

o
rk

.
θ

m
ea

n
s

th
a
t

th
e

p
ro

p
erty

so
lely

d
ep

en
d
s

o
n

th
e

p
ro

p
erty

o
f

th
e

u
n
d
erly

in
g

rep
u
ta

tio
n

sy
stem

.

34

Section 7

Conclusion

Semantic annotations are undoubtedly essential in the new ways of conceiving
the web, where web resources are not only accessible by literals but also by
concepts. Adding concepts or semantic meaning to web pages is the aim of
ITACA, which adds Wikipedia URLs to web pages. Through a collaborative
voting system, each web page has its ranking of semantic annotations. There-
fore, a user is able to write, read or vote on semantic annotations.

However, in the ITACA approach, all annotations are stored in web servers,
which is not really convenient in terms of web server transparency. Therefore,
in the architecture we propose, peers are grouped into communities and an
indexing server is added to map URLs to users. Each community is managed by
an annotation server, where votes of users who form the community are stored.
Semantic annotations are written in the users’ local machines and cached in the
annotation servers when consulted.

To provide a more detailed semantic annotation ranking when retrieving se-
mantic annotations of a webpage, a reputation system is created. Ranking
is performed through semantic annotation reputations. The reputation of an
annotation can be computed by two approaches: the democratic approach,
where user votes have the same weight, and the credibility-based approach,
where user votes have different weights depending on their reputation. User
reputation is computed as the average of semantic annotation reputations, and
neighborhood reputation is computed as the average of user reputations. This
reputation model allows each domain to control its users’ reputation and con-
sequently, semantic annotation reputation. DBpedia [7, 8] is preferred to be
used in place of Wikipedia, as DBpedia extracts structured information from
Wikipedia and semantic relationships between semantic annotations can be ob-
tained.

When discussing this architecture, several items have been studied, such as
clustering, security and possible attacks on the architecture. JXTA is thought
to be a better option as it gives annotation servers the possibility to specify
their community in an explicit way, although for automatic clustering Gnutella
would be more appropriate. Several security services are taken into account in
this architecture, such as authentication, anonymity, availability and access
control. Regarding authentication, it is more suitable that annotation servers
digitally sign messages rather than relying on users doing it. Forcing users to
sign messages has a number of drawbacks, such as difficult integration of key

35

Section 7. Conclusion

management with existing systems, repeated authentication of the repu-
tation value and privacy. Several attacks have been classified into malicious
peers, malicious collectives and malicious spies, the last one being the most
difficult to prevent, as sometimes users act maliciously and sometimes do not.

Three different policies have been evaluated, and the requirements of stor-
age capacity and the number of sent messages through cache copies have been
analyzed. In the first one, annotations are copied into their annotation server’s
cache when writing or voting on an annotation. The first policy has the largest
number of sent messages and this can lead to bottlenecks and inefficient archi-
tectures.

The second policy is the one allowing a better tradeoff between the number
of sent messages and the storage capacity requirements. Not only annota-
tions, but also the tuple to locate them, are copied in annotation server’s cache
memory.

Finally, in the third policy, the annotation servers store not only annotations
of their domain, but also annotations of other domains The tuple to locate an an-
notation is also copied in the annotation server’s cache memory. Consequently,
the third policy requires the highest storage capacity of all three.

36

Section 8

Future lines of research

Several improvements can be made on the reputation field, such as considering
future reputation [63] and qualitative voting. Another improvement to the
architecture would be associating a reputation level with each area of knowledge,
and studying area reputation propagation. The propagation of other variables
such as trust, considering a certain attenuation law could be also studied. An-
other area of research would be the use data reliability indicators, such as
confidence intervals; along with a probabilistic model to improve the reputation
algorithm. This would give more information about both annotation reputation
and user reputation. Another possible model would add semantic annotations
with similar meanings. This would prevent a URL from having two different
annotations which share the same concept.

Regarding the semantic distance between concepts, it can be useful to
apply it to privacy analysis [64]. Depending on the semantic fields that users
are most interested in, they will have access to certain annotations. Semantic
distance can be also applied to clustering. It would be interesting to define
proximity metrics in order to analyze quantitatively the distance between two
users’ interests. This way, clustering methods and privacy would depend on
how far apart the interests of two users are.

As for cache copies, another improvement would be to study a fourth policy
consisting in only caching semantic annotations that are useful for the domain.
Furthermore, studying the possibility of maintaining a domain interest list or
the profile of other neighborhood reputation domains or areas, could lead to a
considerable performance improvement. Therefore, the capacity requirements
of annotation servers would be reduced. Another area to study is whether cache
copies should be event-driven, time-driven or both. The same question can be
asked for writing location tuples in the indexing server and votes on annotations
in other domains.

Another possibility is studying data lifetime in cache. Semantic annota-
tions in a transient (non-permanent) mode in annotation servers would improve
the efficiency of the system. If annotations not frequently read were deleted from
the annotation server, storage capacity would become available again without
increasing the number of messages sent.

A great improvement to this architecture would be to detect and avoid
malicious spies or other possible attacks on the system.

37

Glossary

ARA A robust audit to prevent free-riding in P2P net-
works, 34

CERN European center for nuclear research, 3
CORE A collaborative reputation mechanism to en-

force node cooperation in mobile ad hoc net-
works, 34

FOAF Friend of a friend, 10

ITACA Inquiry-based, with a trustiness model support,
semantic annotations and communities forma-
tion assistance, 1

JXTA Juxtapose model with reputation and risk eval-
uation, 21

P-Grid Trust overlay networks for global reputation ag-
gregation in P2P grid computing, 34

P2P Peer to peer, 21
PET Personalized trust, 32
PIMO Personal information model ontology, 12
PowerTrust A robust and scalable reputation system for

trusted peer-to-peer computing, 34

QoS Quality of service, 31

RATEWeb Reputation assessment for trust establishment
among web services, 31

RDF Resource description framework, 10

TrustMe Anonymous management of trust relationships
in decentralized P2P systems, 34

TTPs Trusted third parties, 31

URL Uniform resource locator, 1

W3C World Wide Web Consortium, 3

39

Glossary

WWW World Wide Web, 3

XML Extensible markup language, 32

40

Bibliography

[1] K. Hoffman, D. Zage, and C. Nita-Rotaru, “A survey of attack and defense
techniques for reputation systems,” Purdue University, Tech. Rep. 4, 2009.

[2] B. Thuraisingham, “Security issues for the semantic web,” in Proc. of the
Int. Conf. on Computer Software and Applications (COMPSAC). IEEE
Computer Soc., 2003, p. 632.

[3] ——, “Security standards for the semantic web,” Computer Standards &
Interfaces, vol. 27, no. 3, pp. 257–268, 2005.

[4] N. Fernández, J. M. Blázquez, J. Arias, and L. Sánchez, “A semantic web
portal for semantic annotation and search,” in Proc. Semantic Web En-
gineering Applications (SWEA), colocated with the International Conf. on
Knowledge-Based and Intelligent Inform. and Engineering Systems (KES),
2006.

[5] N. Fernández, J. B. del Toro, L. S. Fernández, and V. L. Centeno, “Ex-
ploiting Wikipedia in integrating semantic annotation with information
retrieval,” in Advances in Web Intelligence and Data Mining. Beer-Sheva,
Israel: Springer-Verlang, 2006, pp. 61–70.

[6] N. Fernández, L. Sauermann, and A. B. L. Sánchez, “PIMO population and
semantic annotation for the Gnowsis semantic desktop,” in Proc. of the Se-
mantic Desktop and Social Semantic Collaboration Workshop (SemDesk).
Proc. of the Int. Semantic Web Conf. (ISWC), 2006.

[7] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives,
“DBpedia: A nucleus for a web of open data,” in Proc. Int. Semantic Web
Conf., Busan, Korea, 2008, pp. 722–735.

[8] DBpediacommunity, “DBpedia webpage,” 2007. [Online]. Available:
http://wiki.dbpedia.org

[9] N. Fernández, L. S. Fernández, J. B. del Toro, and V. L. Centeno, “Ex-
ploiting user queries and web communities in semantic annotation,” in
Proc. Int. Workshop on Knowledge Markup and Semantic Annotation (Se-
mannot), colocated with the International Semantic Web Conf. (ISWC),
2005.

[10] D. Brickley and L. Miller, “Friend of a friend (FOAF) vocabulary
specification 0.91,” 2007. [Online]. Available: http://xmlns.com/foaf/spec

41

Bibliography

[11] World wide web consortium (W3C), “Resource description framework
(RDF),” 2004. [Online]. Available: http://www.w3.org/RDF

[12] N. Fernández-Garćıa, L. Sánchez-Fernández, J. B. del Toro, and
D. Larrabeiti, “An ontology-based P2P system for query-based semantic
annotation sharing,” in Proc. Workshop on Ontologies in P2P Communi-
ties (OntoP2P) colocated with the European Semantic Web Conf. (ESWC),
Heraklion, Crete, 2005.

[13] D. Artz and Y. Gil, “A survey of trust in computer science and the semantic
web,” Web Semantics, vol. 5, no. 2, pp. 58–71, 2007.

[14] M. Portmann, P. Sookavatana, S. Ardon, and A. Seneviratne, “The cost
of peer discovery and searching in the gnutella peer-to-peer file sharing
protocol,” in Proc. IEEE Int. Conf. on Networks, 2001, pp. 263–268.

[15] S. Botros and S. Waterhouse, “Search in JXTA and other distributed net-
works,” in Proc. Int. Conf. on Peer-to-Peer Computing, 2001, pp. 30–35.

[16] Y. Wang and J. Vassileva, “Trust and reputation model in peer-to-peer
networks,” in Proc. Int. Conf. on Peer-to-Peer Computing (P2P). Wash-
ington, DC, USA: IEEE Computer Soc., 2003, p. 150.

[17] D. Donato, M. Paniccia, M. Selis, C. Castillo, G. Cortese, and S. Leonardi,
“New metrics for reputation management in P2P networks,” in Proc. Int.
Workshop on Adversarial Inform. retrieval on the web (AIRWeb). New
York, USA: ACM, 2007, pp. 65–72.

[18] J.-L. Guillaume, M. Latapy, and L. Viennot, “Efficient and simple en-
codings for the web graph,” in Proc. Int. Conf. on Advances in Web-Age
Inform. Management(WAIM). Springer-Verlag, 2002, pp. 328–337.

[19] K. Ylitalo and Y. Kortesniemi, “Privacy in distributed reputation manage-
ment,” in Workshop of the Int. Conf. on Security and Privacy for Emerging
Areas in Communication Networks, 2005, pp. 63–71.

[20] E. Damiani, D. C. di Vimercati, S. Paraboschi, P. Samarati, and F. Vi-
olante, “A reputation-based approach for choosing reliable resources in
peer-to-peer networks,” in Proc. ACM Conf. on Computer and commu-
nications security (CCS). New York, USA: ACM, 2002, pp. 207–216.

[21] A. Josang, Trust and Reputation Systems. Springer-Verlag, 2007.

[22] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust management,”
in Proc. IEEE Symp. on Security and Privacy (SP). IEEE Computer Soc.,
1996, p. 164.

[23] D. Robertson, F. Giunchiglia, F. van Harmelen, M. Marchese, M. Sabou,
M. Schorlemmer, N. Shadbolt, R. Siebes, C. Sierra, C. Walton, S. Dasmaha-
patra, D. Dupplaw, P. Lewis, M. Yatskevich, S. Kotoulas, and A. Perreau,
“Open knowledge - coordinating knowledge sharing through peer-to-peer
interaction,” in Proc. Int. Workshop of Languages, Methodologies and De-
velopment Tools for Multi-Agent Systems (LADS), vol. 5118, Durham, UK,
2008, pp. 1–18.

42

Bibliography

[24] A. C. Squicciarini, E. Bertino, E. Ferrari, and I. Ray, “Achieving privacy
in trust negotiations with an ontology-based approach,” IEEE Trans. on
Dependable and Secure Computing, vol. 3, no. 1, pp. 13–30, 2006.

[25] J. Debenham and C. Sierra, “A map of trust between trading partners,”
in Proc. Int. Conf. on Trust, Privacy and Security in Digital Business
(TrustBus). Berlin, Heidelberg: Springer-Verlag, 2008, pp. 8–17.

[26] M. Gupta, P. Judge, and M. Ammar, “A reputation system for peer-to-
peer networks,” in Proc. Int. Workshop on Network and operating systems
support for digital audio and video (NOSSDAV). New York, USA: ACM,
2003, pp. 144–152.

[27] J. Sabater and C. Sierra, “Review on computational trust and reputation
models,” Artificial Intelligence Review, vol. 24, no. 1, pp. 33–60, 2005.

[28] B. Carminati and E. Ferrari, “Enforcing access control in web-based social
networks,” ACM Trans. on Inform. and System Security, 2008.

[29] E. Bertino, B. Carminati, and E. Ferrari, “Access control for XML doc-
uments and data,” Inform. Security Technical Report, vol. 9, pp. 19–34,
2004.

[30] L. Qin and V. Atluri, “Concept-level access control for the semantic web,”
in Proc. of the ACM Workshop on XML security (XMLSEC). New York,
USA: ACM, 2003, pp. 94–103.

[31] M. Rodŕıguez-Pérez, O. Esparza, and J. Muñoz, “Analysis of peer-to-peer
distributed reputation schemes,” in Proc. Int. Conf. on Collaborative Com-
puting: Networking, Applications and Worksharing, 2005, pp. 6 pp.–.

[32] M. Rodŕıguez-Pérez, O. Esparza, and J. L. Muñoz, “Surework: a super-
peer reputation framework for P2P networks,” in Proc. ACM Symp. on
Applied computing (SAC). New York, USA: ACM, 2008, pp. 2019–2023.

[33] E. Bertino, B. Carminati, E. Ferrari, B. Thuraisingham, and A. Gupta, “Se-
lective and authentic third-party distribution of XML documents,” IEEE
Trans. on Knowledge and Data Engineering, vol. 16, no. 10, pp. 1263–1278,
2004.

[34] B. Carminati and E. Ferrari, “Privacy-aware collaborative access control in
web-based social networks,” in Proc. 22nd annual IFIP WG 11.3 working
Conf. on Data and Applications Security. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 81–96.

[35] A. Rezgui, B. Athman, and M. Zaki, A Reputation-Based Approach to
Preserving Privacy in Web Services. Berlin, Heidelberg: Springer-Verlag,
2003, vol. 2819/2003.

[36] QuatroPartners, “The European project Quatro,” 2006. [Online].
Available: http://www.quatro-project.org

[37] K. Aberer, P. Cudré-Mauroux, and M. Hauswirth, “A framework for se-
mantic gossiping,” SIGMOD Record, vol. 31, no. 4, pp. 48–53, 2002.

43

Bibliography

[38] S. D. Kamvar, M. T. Schlosser, and H. Garćıa-Molina, “The eigentrust
algorithm for reputation management in P2P networks,” in Proc. Int. Conf.
on World Wide Web (WWW). New York, USA: ACM, 2003, pp. 640–651.

[39] A. Mukherjee, B. Esfandiarl, and N. Arthorne, “U-P2P: a peer-to-peer
system for description and discovery of resource-sharing communities,” in
Proc. Int. Conf. on Distributed Computing Systems Workshops (ICDCS),
2002, pp. 701–705.

[40] Z. Liang and W. Shi, “PET: A personalized trust model with reputation
and risk evaluation for P2P resource sharing,” in Proc. Hawaii Int. Conf.
on System Sciences (HICSS), 2005, pp. 201b–201b.

[41] W. Wang, G. Zeng, and L. Yuan, “A semantic reputation mechanism in
P2P semantic web,” in Proc. Asian Semantic Web Conf. (ASWC), 2006,
pp. 682–688.

[42] T. Beth, M. Borcherding, and B. Klein, “Valuation of trust in open net-
works,” in Proc. European Symp. on Research in Computer Security (ES-
ORICS), 1994, pp. 3–18.

[43] P. R. Zimmermann, The official PGP user’s guide. Cambridge, MA, USA:
MIT Press, 1995.

[44] I. Onur and K. Tomak, “Impact of ending rules in online auctions: the
case of yahoo.com,” Decision Support Systems, vol. 42, no. 3, pp. 1835–
1842, 2006.

[45] B. Yu and M. P. Singh, “A social mechanism of reputation management
in electronic communities,” in Proc. Int. Workshop on Cooperative Inform.
Agents IV, The Future of Inform. Agents in Cyberspace (CIA). London,
UK: Springer-Verlag, 2000, pp. 154–165.

[46] R. Zhou and K. Hwang, “Trust overlay networks for global reputation ag-
gregation in P2P grid computing,” in Proc. IEEE Int. Parallel and Dis-
tributed Processing Symp. (IPDPS), 2006, pp. 10 pp.–.

[47] P. Michiardi and R. Molva, “CORE: a collaborative reputation mechanism
to enforce node cooperation in mobile ad hoc networks,” in Proc. IFIP
TC6/TC11 Sixth Joint Working Conf. on Communications and Multimedia
Security. Deventer, The Netherlands: Kluwer, B.V., 2002, pp. 107–121.

[48] S. Lee, R. Sherwood, and B. Bhattacharjee, “Cooperative peer groups in
NICE,” in Proc. IEEE Computer and Communications Societies (INFO-
COM), vol. 2, 2003, pp. 1272–1282.

[49] A. Singh and L. Liu, “Trustme: anonymous management of trust relation-
ships in decentralized P2P systems,” in Proc. Int. Conf. on Peer-to-Peer
Computing (P2P), 2003, pp. 142–149.

[50] L. Xiong and L. Liu, “A reputation-based trust model for peer-to-peer e-
commerce communities,” in Proc. IEEE Int. Conf. on E-Commerce (CEC),
2003, pp. 275–284.

44

Bibliography

[51] S. Buchegger and J. Y. Le Boudec, “A robust reputation system for P2P
and mobile ad-hoc networks,” in Proc. Workshop on the Economics of
Peer-to-Peer Systems, 2004.

[52] M. Feldman, K. Lai, I. Stoica, and J. Chuang, “Robust incentive techniques
for peer-to-peer networks,” in Proc. ACM Conf. on Electronic commerce
(EC). New York, USA: ACM, 2004, pp. 102–111.

[53] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins, “Propagation of trust
and distrust,” in Proc. Int. Conf. on World Wide Web (WWW). New
York, USA: ACM, 2004, pp. 403–412.

[54] S. Marti and H. Garcia-Molina, “Limited reputation sharing in P2P sys-
tems,” in Proc. ACM Conf. on Electronic commerce (EC). New York,
USA: ACM, 2004, pp. 91–101.

[55] M. Ham and G. Agha, “ARA: A robust audit to prevent free-riding in P2P
networks,” in Proc. IEEE Int. Conf. on Peer-to-Peer Computing (P2P).
Washington, DC, USA: IEEE Computer Soc., 2005, pp. 125–132.

[56] A. Nandi, T.-W. J. Ngan, A. Singh, P. Druschel, and D. S. Wallach,
“Scrivener: Providing incentives in cooperative content distribution sys-
tems,” in Proc. ACM/IFIP/USENIX Int. Conf. on Middleware (Middle-
ware). New York, USA: Springer-Verlag New York, Inc., 2005, pp. 270–291.

[57] S. Song, K. Hwang, R. Zhou, and Y.-K. Kwok, “Trusted P2P transactions
with fuzzy reputation aggregation,” IEEE Internet Computing, vol. 9, no. 6,
pp. 24–34, 2005.

[58] M. Srivatsa, L. Xiong, and L. Liu, “Trustguard: countering vulnerabilities
in reputation management for decentralized overlay networks,” in Proc.
Int. Conf. on World Wide Web (WWW). New York, USA: ACM, 2005,
pp. 422–431.

[59] K. Walsh and E. G. Sirer, “Experience with an object reputation system
for peer-to-peer filesharing,” in Proc. Conf. on Networked Systems Design
and Implementation (NSDI). Berkeley, CA, USA: USENIX Association,
2006, pp. 1–1.

[60] R. Zhou and K. Hwang, “Powertrust: A robust and scalable reputation sys-
tem for trusted peer-to-peer computing,” IEEE Trans. Parallel Distributed
Systems, vol. 18, no. 4, pp. 460–473, 2007.

[61] R. Aringhieri, E. Damiani, S. D. C. Di Vimercati, S. Paraboschi, and
P. Samarati, “Fuzzy techniques for trust and reputation management in
anonymous peer-to-peer systems: Special topic section on soft approaches
to information retrieval and information access on the web,” Journal of
Amer. Soc. for Inform. Science, vol. 57, no. 4, pp. 528–537, 2006.

[62] F. Li and J. Wu, “Mobility reduces uncertainty in MANETs,” in Proc.
IEEE Int. Conf. on Computer Communications (INFOCOM), 2007, pp.
1946–1954.

45

Bibliography

[63] M. Mej́ıa, N. Peña, J. L. Muñoz, and O. Esparza, “A review of trust mod-
eling in ad hoc networks,” Internet Research, vol. 19, pp. 88 – 104, 2009.

[64] D. Rebollo-Monedero, J. Forné, L. Subirats, A. Solanas, and A. Mart́ınez-
Ballesté, “A collaborative protocol for private retrieval of location-based
information,” in Proc. Int. Conf. e-Society (IADIS), 2009.

46

