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Abstract

This thesis considers the problem of forming collectives of agents for real-world

applications aligned with Sustainable Development Goals (e.g., shared mobil-

ity and cooperative learning). Such problems require fast approaches that can

produce solutions of high quality for hundreds of agents. With this goal in

mind, existing solutions for the formation of collectives focus on enhancing the

optimization approach by exploiting the characteristics of a domain. However,

the resulting approaches rely on specific domain knowledge and are not trans-

ferable to other collective formation problems. Therefore, approaches that can

be applied to various problems need to be studied in order to obtain general

approaches that do not require prior knowledge of the domain.

Along these lines, this thesis proposes a general approach for the formation

of collectives based on a novel combination of machine learning and an Integer

Linear Program. More precisely, a machine learning component is trained to

generate a set of promising collectives that are likely to be part of a solution.

Then, such collectives and their corresponding utility values are introduced into

an Integer Linear Program which finds a solution to the collective formation

problem. In that way, the machine learning component learns the structure

shared by “good” collectives in a particular domain, making the whole approach

valid for various applications.

In addition, the empirical analysis conducted on two real-world domains

(i.e., ridesharing and team formation) shows that the proposed approach pro-
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vides solutions of comparable quality to state-of-the-art approaches specific to

each domain.

Finally, this thesis also shows that the proposed approach can be extended

to problems that combine the formation of collectives with other optimization

objectives. Thus, this thesis proposes an extension of the collective formation

approach for assigning pickup and delivery locations to robots in a warehouse

environment. The experimental evaluation shows that, although it is possible

to use the collective formation approach for that purpose, several improvements

are required to compete with state-of-the-art approaches.

Overall, this thesis aims to demonstrate that machine learning can be suc-

cessfully intertwined with classical optimization approaches for the formation

of collectives by learning the structure of a domain, reducing the need for

ad-hoc algorithms devised for a specific application.
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Chapter 1

Introduction

Choosing a line to stand in the supermarket, organizing activities during va-

cation trips, and thinking about the best way to get to work are examples of

everyday decisions that involve choosing, among several alternatives, the one

facilitating daily life. In the academic literature, problems involving finding a

solution that stands over others are known as optimization problems. In ad-

dition, if the solutions are obtained by considering a combination of different

elements, the problem is called combinatorial, e.g. choosing a set of cities to

visit during a road trip requires considering different possible combinations of

cities. Over the last century, the industry has used novel techniques emerg-

ing from academic research to solve combinatorial optimization problems in

order to automate tasks such as resource allocation, scheduling, and routing,

among others. In consequence, the impact of research in combinatorial op-

timization has promoted not only sustainable economic growth but also an

improvement in the quality of life and work environments. Actually, research

in this area has been aligned with UN sustainability goals to bring solutions to

current societal problems, such as building sustainable communities, promot-

ing sustainable production and consumption patterns, and ensuring access to

affordable and sustainable sources of energy and water.
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Combinatorial optimization is one of the most active research topics in

artificial intelligence because of how challenging and relevant these problems

are. On the one hand, many real-world combinatorial optimization scenarios

involve hundreds of elements whose combinations represent the space of possi-

ble solutions. Because the number of combinations grows exponentially with

the scale of the problem, i.e., the number of elements to be combined, finding a

solution by examining all possible solutions would take exponentially increas-

ing time as the scale of the problem grows. Although scalability issues can be

partially addressed by algorithms adopting dynamic programming strategies,

these algorithms aiming for optimal solutions cannot be applied to large-scale

scenarios with hundreds of elements. Moreover, because combinatorial opti-

mization problems are known to be NP-hard (Papadimitriou and Steiglitz,

1998), algorithms computing optimal solutions in polynomial time are not

known to exist. Therefore, research is constantly developing novel algorith-

mic solutions that study approximate solution approaches for these large-scale

scenarios. On the other hand, combinatorial optimization problems frequently

include requirements in the form of constraints that its solution must fulfil.

For example, when organizing activities during vacation trips, these need to

be scheduled considering weather conditions if they are held outdoors. One

strand of literature focuses on efficiently incorporating constraints into algo-

rithmic solutions.

In many relevant scenarios, the elements that must be combined to find

a solution are multiple computational units known as agents. In such multi-

agent systems, different agents pursuing a common objective need to establish

behavioural rules that guide them in order to meet their goals (Cerquides et

al., 2014). Developing methods to provide such agents with a way to behave

collectively sets up the combinatorial optimization problem studied in this

thesis, i.e., Collective Formation. As a combinatorial optimization problem,
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collective formation faces the same scalability issues and also requires efficient

modelling of the problem constraints. As a result, state-of-the-art approaches

to collective formation address the scalability issues by solving the problem

approximately, that is, by finding solutions close to the optimal one. More

precisely, these approaches shorten computation time by settling for subopti-

mal solutions of acceptable quality, reducing years of computation to seconds

for large-scale problems with hundreds of agents. In addition, these approaches

often exploit the structure of a particular domain by incorporating ad-hoc in-

structions that further accelerate the computation. For instance, Bistaffa et al.

(2019) propose an approximate solution approach to ridesharing, the problem

of arranging passengers in cars to reduce their total travel distance and the

derived environmental benefits. The authors noted that two car arrangements

differing only by one additional passenger would be of similar quality, especially

if the new passenger trip can be effectively integrated into the current route.

Thus, they propose an incremental approach to form collectives that selects

the best passengers to add by means of a greedy approach with a probabilistic

component. Andrejczuk et al. (2019) investigate the problem of forming teams

of students in a classroom to cover a set of competencies necessary to conduct

various tasks. Because teams need to cover all required competencies, they

should include complementary student profiles. For this reason, the authors

propose a solution that continuously combines and rearranges teams to adapt

to the structure of the domain.

A crucial factor for the success of ad-hoc approaches is the ability to exploit

domain-specific traits. However, this limits the applicability of the resulting

approaches to other collective formation problems with a different structure.

Moreover, as a result of the rapid advancement of technological tools and to

satisfy the needs of an increasingly interconnected society, new collective for-

mation problems are emerging on a continual basis. These emerging problems
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typically lack a previously studied structure that can be immediately exploited.

However, they still require fast approaches to produce high-quality solutions

for large-scale settings. In this paradigm, general approaches to collective for-

mation are crucial because they provide fast and high-quality solutions without

making domain-specific assumptions.

In this regard, machine learning has been successfully employed to build

general approaches in different domains such as natural language processing

and computer vision. One notorious application of machine learning is in

building general large language models (Brown et al., 2020) that exhibit an-

thropomorphic capabilities: able to handle conversations, generate articles or

poetry, follow instructions and even solve simple problems. However, these ap-

proaches fail when they are presented with more complex problems as they are

not designed to learn decisions solving combinatorial optimization problems

successfully.

Nonetheless, as noted by Bengio, Lodi, and Prouvost (2021), machine learn-

ing is starting to be employed to learn fast approximations replacing heavy

computations and enhancing the optimization approach by learning the struc-

ture of a specific domain. For example, Vinyals, Fortunato, and Jaitly (2015)

propose Pointer Networks, a machine learning approach exhibiting state-of-

the-art performance in generating convex hulls, Delaunay triangulations and

solving the travelling salesperson problem. Kool, Van Hoof, and Welling (2018)

propose an approach based on an attention operation (Bahdanau, Cho, and

Bengio, 2014) which also exhibits state-of-the-art performance on the travel-

ling salesperson problem and the vehicle routing problem. While both of these

approaches solve the problem in an end-to-end fashion, other ones consider ma-

chine learning as a component enhancing the performance of another classical

solution approach. For instance, Ding et al. (2020) incorporate graph convolu-

tional neural networks to predict the value of decision variables in mixed-integer
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linear programs. Although some attempts have been made to incorporate ma-

chine learning into combinatorial optimization, the use of machine learning for

collective formation did not receive significant attention in the literature.

1.1 Contributions

In the applications mentioned above, machine learning has been employed to

improve the performance of existing approaches in terms of solution quality

and computation time. In addition, in this thesis, machine learning is viewed

as a component able to learn the domain-specific structure of diverse collective

formation problems to enhance the generalization capability of the optimiza-

tion approach. To this end, this thesis proposed to train a machine learning

component to generate “good” candidate collectives. The candidates are then

incorporated into an integer linear program (ILP) formulation of the collective

formation problem, which is solved using conventional techniques. A high-level

representation of the proposed approach is depicted in figure 1.1.

Figure 1.1: High-level schema of the proposed approach combining machine learning and an
ILP for collective formation.

This thesis studies different machine learning alternatives to generate can-

didate collectives for the proposed approach. In particular, this thesis con-

siders: (i) generative adversarial networks (Goodfellow et al., 2014), which

are a generative model with a lot of success in image generation; (ii) pointer

networks a sequence-to-sequence model with some applications in combinato-

rial optimization; and (iii) an attention-based model, which is inspired by the

model proposed by Kool, Van Hoof, and Welling (2018) for routing problems.
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Different learning methodologies are also discussed; these are: learning from

examples (supervised learning) and learning from experience (reinforcement

learning). While a supervised approach can be practical for some applica-

tions, it requires examples to train the models. Assuming that a large set of

examples can be obtained for any collective formation problem is a step back

in terms of the generality of the whole approach. Therefore, reinforcement

learning, which does not require external components, is more practical.

In addition, this thesis observes that generating “good” candidate collectives

is not enough to produce high-quality collective formation solutions because

the candidates produced by the machine learning component tend to be similar.

For this reason, this thesis proposes to maximize the entropy of the generated

candidates to improve their diversity and enhance the quality of solutions of

the general approach.

Two collective formation domains and their respective ad-hoc approaches

are considered for testing the performance of the proposed general approach.

The first is the ridesharing domain described in Bistaffa et al. (2019), whose

probabilistic-greedy approach exploits incremental solutions. The second is the

team formation domain studied in Andrejczuk et al. (2019), whose synergistic

approach exploits solutions obtained from recombining other ones. The gen-

eral approach proposed in this thesis produces solutions of comparable quality

to the ones obtained with the ad-hoc approaches. Thus, it succeeds in learning

the features associated with high-quality solutions in two structurally differ-

ent domains. These favourable results towards a general collective formation

approach were presented in the PRL workshop at IJCAI 2022. Moreover, an

extended version of the work, including additional experiments on the impact

of entropy has been submitted to the Artificial Intelligence Journal, receiving

a major revision with three positive reviews. A new version addressing the

comments provided by the reviewers is under preparation.
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With the goal of studying the limitations of the machine learning compo-

nent in generating collectives for more convoluted domains, an attention-based

model is devised for the capacitated multi-agent pickup and delivery (capaci-

tated MAPD) problem. This problem combines the assignment of pickup and

delivery tasks to agents with the path-planning of agents. Under this complex

scenario, the attention-based model is employed to produce collectives of tasks

that are continuously assigned to agents, which then plan their path to execute

the tasks using a conventional path-planning solver. For the task assignment,

which is treated as a collective formation problem, the ILP component cannot

be employed since the collective values are not known until the path-planning

has been executed. Instead, the attention-based model is trained to learn the

collectives with the best values so as to generate the assignments directly.

1.2 Structure of the Thesis

The rest of this thesis is organized as follows. Chapter 2 presents combina-

torial optimization and three combinatorial problems relevant to this work:

Mixed Integer Linear Programs, the Travelling Salesperson Problem and the

Vehicle Routing Problem. Following, it defines collective formation and clas-

sifies existing approaches according to their ability to find optimal solutions

into complete, anytime and heuristic approaches. The last part of this chapter

explains the meaning of learning algorithmic decisions, learning to generalize

and learning constraints. The chapter concludes with a review of the existing

machine learning approaches for combinatorial optimization.

Chapter 3 presents the proposed general approach combining machine learn-

ing with an ILP to solve collective formation problems. This chapter also in-

troduces the different machine learning alternatives for generating collectives

(GANs, pointer networks and attention-based models) and the diverse training

12



methodologies. The experimental evaluation conducted to assess the perfor-

mance of the proposed approach, along with all its variants, is presented at the

end of the chapter, including an extensive analysis to determine the impact of

the entropy term.

Chapter 4 introduces an extension of the attention-based model to conduct

the assignment of tasks inside the capacitated MAPD problem. The chapter

includes an experimental evaluation comparing the performance of the pro-

posed approach to other assignment algorithms. A discussion on the current

limitations of the model and possible ways to extend its applicability to ca-

pacitated MAPD closes the chapter.

Finally, chapter 5 discusses the contributions of the thesis and revises the

key outcomes and limitations of the studied approaches. Moreover, it exam-

ines the potential impact of these contributions on future work, laying the

groundwork for future research directions aiming at extending this work.
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Chapter 2

Background

This chapter contextualizes the goal of this thesis with a formal description of

the problems it attempts to solve and discusses the main related approaches,

as well as their contributions and limitations to their respective fields. In Sec-

tion 2.1, it is discussed the combinatorial optimization framework. Section 2.2

delves into the main combinatorial optimization problem tackled by this work,

Collective Formation, and surveys the most relevant and standard approaches

to this problem. Finally, Section 2.4 discusses the application of Machine

Learning in the combinatorial optimization field, together with different solu-

tions approaches.

2.1 Combinatorial Optimization

Combinatorial optimization problems, which consider tasks such as resource

allocation, scheduling, and routing, are among the most common problems

encountered in industry and research. These problems aim to find the best

arrangement out of several possibilities characterized by discrete variables. In

general, a combinatorial optimization problem can be formulated as a mini-
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mization problem with constraints (Peres and Castelli, 2021):

P = (S, f,Ω), (2.1)

where:

• P is the optimization problem,

• S is the search space of the domain,

• f is the objective function and

• Ω is the set of problem constraints.

The search space S is defined over a set of decision variables {X1, X2, . . .},

representing the decisions to be made to solve the problem. The set of problem

constraints Ω defines a sub-region of the search space where the constraints are

fulfilled named the feasible space of solutions FΩ(S). The objective function

specifies a metric for assessing the solution quality, i.e., it defines a mapping

f : S → R. In order to solve a combinatorial optimization problem, one has

to find a solution in the feasible region FΩ(S) with the minimum objective

function:

s∗ ∈ {s | f(s) ≤ f(s′) ∀s, s′ ∈ FΩ(S)}. (2.2)

Because of the discrete nature of combinatorial optimization problems, it

is not possible to use gradient methods (Ruder, 2016), which exploit continu-

ous domains by modifying a solution s in the direction of the gradient, which

provides the “fastest improvement” of the objective function. Moreover, the

number of decision variables enlarges the search space according to the possible

number of combinations between those. Therefore, optimally solving a combi-

natorial optimization problem becomes combinatorially harder as the problem
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size increases. Due to this complexity, most combinatorial optimization prob-

lems are classified as NP-hard (Papadimitriou and Steiglitz, 1998), i.e. they do

not admit an algorithm which can solve them in polynomial time. In this re-

gard, algorithms for solving combinatorial optimization problems are classified

as complete approaches, which aim to find the optimal solution, and approxi-

mate approaches, which settle for “good in practice” solutions in exchange for

faster computation time.

Approximate approaches, also known as heuristic approaches, use domain-

specific instructions exploiting the inherent structure of the problem to reduce

the search space. Some heuristic approaches even provide optimality guar-

antees (Sandholm et al., 1999; Dang and Jennings, 2004; Rahwan, Michalak,

and Jennings, 2011; Rahwan et al., 2009), although they are usually less spe-

cialized in the domain and thus slower than those that do not. Occasionally,

problem structure can barely be exploited; therefore, designing algorithmic in-

structions to tackle these problems becomes complicated. In those cases, one

might consider using generic strategies for exploring the search space, known

as meta-heuristics. The advantage of using these approaches is that they take

relatively few assumptions about the optimization domain. However, they

may also use domain-specific knowledge in the form of heuristics that are con-

trolled by an upper-level strategy (Blum and Roli, 2003). For example, in

genetic algorithms, genetic operators controlling the evolution of solutions are

usually designed for a particular domain structure (Holland, 1984). In recent

years, the interest in machine learning techniques playing the role of heuristics

for combinatorial optimization problems has risen in popularity. Section 2.4

presents various approaches following this trend.

The following sections present the specific combinatorial optimization prob-

lems constituting the background of this thesis. A mixed integer linear program

is a widely used approach for diverse problems, and it is also the core of the
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solution approach presented in this thesis. The travelling salesperson problem

and the vehicle routing problem are among the most recurrent combinatorial

problems tackled with machine learning, and their solution approaches inspire

part of the solution provided in this thesis. Finally, collective formation is the

combinatorial optimization problem for which this thesis aims at obtaining a

general solution.

2.1.1 Mixed Integer Linear Programs

An integer linear program (ILP) solves a combinatorial optimization problem

considering a linear optimization function f , linear constraints Ω and integer

variables. In addition, if some variables are allowed to be non-integer, the

program is known as a mixed integer linear program (MILP). Formally, a

MILP in its canonical form is defined as:

minimize
∑
i

ci · xi,

subject to
∑
i

aij · xi ≤ bj ∀j,
(2.3)

where xi ≥ 0 and xi ∈ Z for all variables xi.

When all variables are non-integer, the problem can be solved in polynomial

time. Otherwise, MILPs are known to be NP-hard, but even so, efficient

algorithms exist to solve them (Lodi, 2010). These algorithms are based on a

hybrid of the branch-and-bound and cutting planes techniques.

The branch-and-bound algorithm (Land and Doig, 2010) starts by consid-

ering a relaxation of the MILP in which the integrality constraint has been

dropped. The resulting problem contains the feasible region of the original

problem, and since all of the variables are non-integer, it can be solved in

polynomial time. From there, the algorithm iteratively constructs a tree of

sub-problems where the root is the relaxation of the original MILP. At each
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node, the corresponding problem is solved, and two sub-problems are obtained

by selecting a variable with a non-integer solution x∗
i , constraining it to be an

integer and introducing the following constraints

xi ≤ ⌊x∗
i ⌋ and xi ≥ ⌊x∗

i ⌋+ 1. (2.4)

A child node is created for each sub-problem which, by construction, has dis-

joint feasible regions and excludes the solution of the previous problem relax-

ation. If a sub-problem does not admit a feasible solution or the solution is

MILP-compatible, the corresponding node is no further expanded. Eventually,

when the tree has been fully constructed, the best MILP-compatible solution

among all the sub-problems is also the solution to the original problem.

The cutting planes algorithm (Gomory, 2010) also considers a non-integer

relaxation to the problem. In that case, given a solution x∗ which is not MILP-

compatible, the algorithm proposes a “cutting plane” to the search space,

αTx ≥ α0, (2.5)

which excludes the infeasible solution, i.e. αTx∗ < α0, but is satisfied by

all other feasible solutions. By following this approach, the algorithm builds

a convex hull out of MILP-compatible solutions, from which it obtains the

solution to the original problem.

In practice, both algorithmic strategies can be integrated to reduce the

number of nodes that need to be explored in the branch-and-bound algorithm

by reducing the solution space with cutting planes. The resulting approach,

known as branch-and-cut, is the current state-of-the-art. Henceforth, it is

adopted by many commercial and non-commercial MILP solvers, which fur-

ther improve its performance through additional algorithmic components, pre-

processing and primal heuristics.
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This thesis proposes to formulate the generation of collectives as an ILP.

Section 2.2.2 explains the problems this formulation presents for collective

formation, and chapter 3 provides a solution approach to overcome these lim-

itations by employing machine learning to reduce the search space.

2.1.2 Travelling Salesperson Problem

Given a list of cities P , the travelling salesperson problem (TSP) aims at find-

ing the shortest possible route that enters and exits each city exactly once.

Despite the naive definition of the problem, it appears in many different ar-

eas, such as microchip design (Chan and Mercier, 1989), DNA sequencing

(Pevzner, Tang, and Waterman, 2001) and astronomy (Bailey, McLain, and

Beard, 2001). The problem is known to be NP-hard; in fact, the complexity

of the problem arises from the combinatorial number of possible solutions that

need to be considered, e.g. 15! = 1.3 trillion routes for only 15 cities.

The TSP, as many other combinatorial optimization problems, admits an

ILP formulation:

minimize
∑
i,j

dij · xij,

subject to
∑
i

xij = 1 ∀j ∈ P,

∑
j

xij = 1 ∀i ∈ P,

∑
i,j∈Q

xij ≤ |Q| − 1 ∀Q ⊂ P,

(2.6)

where i, j ∈ N are indices referring to each city, dij indicates the distance from

city i to city j, and, conforming a route, xij = 1 if a trip from city i to city j is

contained in the route, and xij = 0 otherwise. Regarding the constraints, the

first two impose that the route should enter and exit each city exactly once.
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The last constraint ensures that no sub-group of cities Q forms a sub-tour,

resulting in a solution with disjoint tours.

Most of the complete approaches to the TSP rely on the ILP formula-

tion, which is solved by employing problem-specific branch-and-cut algorithms

(Lenstra and Shmoys, 2009). While complete approaches can handle instances

up to 104 cities, heuristic approaches scale up to 106 cities while providing

solutions that are only 2− 3% off the optimal. The most popular heuristic ap-

proach for the TSP is the one by Christofides (1976) known as the Christofides

algorithm, which solution is guaranteed to be better than 1.5 times the optimal

one. Moreover, the TSP has motivated the design of some meta-heuristics such

as the popular ant colony optimization algorithm (Dorigo and Gambardella,

1997). This approach mimics the behaviour of real ants following a trail of

pheromones to find short paths between food sources and their nest. Current

solutions adopting the ant-colony optimization approach exhibit state-of-the-

art performance up to 2.33% off the optimal (Wang and Han, 2021).

2.1.3 Vehicle Routing Problem

The vehicle routing problem (VRP) is a generalization of the TSP in which a

set of vehicles aim at delivering to a set of customers. All the routes start and

end at a common depot, and the goal is to reduce the sum of distances travelled

by each vehicle. After being defined by Dantzig and Ramser (1959), the VRP

has been gradually adopted by the transportation industry as a solution to a

wide range of applications for which variations to the original problem have

been proposed. Examples are the capacitated VRP (which includes vehicle

capacity constraints), the VRP with time windows or the VRP with pickup

and delivery.

Similar to the TSP, complete approaches for the VRP are not practical for

large-scale problems. For this reason, heuristic and meta-heuristic approaches
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are the ones preferred by commercial solvers. On the one hand, heuristic

approaches can achieve high-quality solutions within a modest computation

time. Furthermore, most of them are easily extensible to account for the wide

range of real-world constraints. On the other hand, meta-heuristics place a

greater emphasis on deep exploration of interesting regions in the solution

space, resulting in longer computation times but higher quality solutions.

2.2 Collective Formation

Many problems consider the existence of different agents with a common goal.

Depending on the application domain, agents may pursue altruistic or selfish

goals. For example, in ridesharing (Bistaffa et al., 2019), agents aim to achieve

an environmental benefit in favour of shorter travel times. Instead, in energy

purchasing (Vinyals et al., 2012), agents cooperate intending to increase mone-

tary savings. However, in most applications, agents pursue both altruistic and

selfish goals; for example, in ridesharing, an agent may additionally benefit by

lowering travel costs associated with fuel consumption. Such problems require

some collective intelligence which guides agents on how to behave. Conse-

quently, solutions are designed to answer the following question: “How should

collectives be assembled in order to achieve a common objective?” (Cerquides

et al., 2014). Fortunately, this question can be answered by formalizing a

collective formation problem in the context of combinatorial optimization.

More in particular, this thesis considers the optimization problem of com-

puting the best set of non-overlapping collectives (i.e. subsets) of agents be-

longing to a universal set A, so as to maximize the total value provided by

a domain-specific utility function, e.g., the reduction in terms of cost or CO2

emissions associated to the arrangement of a shared trip (Bistaffa et al., 2019)

or the improvement thanks to cooperation within a team of students (An-
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drejczuk et al., 2019).

Formally, let A = {a1, a2, . . . , an} be a set of n agents and f : F(A) → R

a utility function (also referred to as characteristic function) that maps every

feasible collective1 F(A) to a real number. Then, the collective formation

problem consists in computing the best set S∗ of non-overlapping subsets of A

(also referred to as a coalition structure Chalkiadakis, Elkind, and Wooldridge

(2011)) that maximizes the sum of the values associated to each collective

S ∈ S∗, i.e.,

S∗ = argmax
S∈

∏
(A)

∑
S∈S

f(S), (2.7)

where
∏
(A) is the set of all partitions of A into non-overlapping feasible sub-

sets. This thesis aims to study the use of machine learning techniques for the

formation of collectives. Therefore, the following sections are devoted to re-

viewing the classical collective formation approaches, i.e., those not including

machine learning components. The approaches are presented according to their

classification as complete or heuristic solutions. In addition, some complete

approaches for coalition formation are known as anytime approaches because

of their ability to provide suboptimal solutions before completion, deserving a

distinction with respect to purely complete algorithms.

2.2.1 Complete Approaches

Yun Yeh (1986) approach can be visualized on the coalition structure graph

2.1, consisting of partitions (nodes) organized in levels Π1,Π2, . . . ,Πn, where

level Πi contains coalition structures with exactly i coalitions. Two nodes in

consecutive levels, Πi and Πi+1, are connected if the coalition structure in Πi+1

1Depending on the considered domain, such a set of feasible collectives can be the entire
set of subsets of A or, for example, the set of all collectives that satisfy a given constraint (e.g.,
cardinality constraints (Shehory and Kraus, 1998) or graph-based constraints (Myerson,
1977)).
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Figure 2.1: Coalition structure Graph.

can be obtained from the one in Πi by splitting one coalition into two. The

DP approach evaluates the nodes in one level of the graph and then selects

the best move until reaching an optimal node.

One strand of literature (Ieong and Shoham, 2005; Tran-Thanh et al., 2013;

Bistaffa, Chalkiadakis, and Farinelli, 2021) has focused on alternative utility

function representations, which allow one to reduce the computational com-

plexity of the CSG problem by exploiting specific properties of the adopted

representation. For example, Ieong and Shoham (2005) proposed a concise

representation called marginal contribution nets, or MC-nets, where the cal-

culation of the utility is based on a collection of rules. Tran-Thanh et al.

(2013) proposed a representation called coalitional skill vector model, where

there is a set of skills in the system, and each agent has a skill vector (a vector

consisting of values that reflect the agents’ level in different skills). More re-

cently, Bistaffa, Chalkiadakis, and Farinelli (2021) focused on the well-known

induced subgraph game representation originally introduced by Deng and Pa-

padimitriou (1994) and proposed a CSG algorithm based on graph-clustering

that exploits the succinctness of the representation.

The approaches presented above avoid an exhaustive search of the space

of solutions by exploiting specific properties of the representation or by em-

ploying a DP strategy. However, a big disadvantage is that, for most of them,
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no intermediate solution can be obtained before completion, meaning it is im-

possible to trade computation time for solution quality. In order to overcome

this issue, anytime approaches, which can return a solution better than the

initial one at any time of the computation, are preferred. Although anytime

approaches guarantee optimal solutions, they are rarely used for this purpose

because finding an optimal solution in a feasible amount of time becomes im-

possible because of the complexity of enumerating all possible coalition struc-

tures, even for a small number of agents. In the following section, the main

anytime solutions for CSG are presented.

2.2.2 Anytime Approaches

This section describes the main anytime approaches for the CSG problem.

According to their solution strategy, these approaches are divided into three

categories: identifying subspaces with worst-case guarantees, dynamic pro-

gramming approaches and integer linear programming approaches.

Identifying Subspaces with Worst-case Guarantees

With the goal of achieving an anytime solution approach for CSG, Sandholm

et al. (1999), Dang and Jennings (2004), and Rahwan, Michalak, and Jennings

(2011) have designed algorithms which divide the search space into disjoint

sub-spaces and establish an order in which each sub-space must be searched,

ensuring that the worst-case guarantee on the solution quality improves after

each sub-space.

While the approaches mentioned above consider divisions of the coalition

structure graph, other approaches explore other types of search space divisions.

For instance, Rahwan et al. (2009) presents an algorithm that searches over

the integer partition graph. An integer partition is a set of positive integers
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specifying the size of the coalitions in the subspace. For example, {1, 1, 2} is the

subspace of all coalition structures composed of two size-one and one size-two

coalitions. The integer partition graph connects integer partitions which can

be obtained by summing two of their integer values, e.g., {1, 1, 2} is connected

to {2, 2} and {1, 3}. The authors propose a method to evaluate the bounds of

each integer partition, thus defining an order in which they must be searched.

Dynamic Programming Approaches

Alternatively, Rahwan et al. (2015) and Michalak et al. (2016) showed that it

is also possible to build a dynamic programming anytime algorithm for coali-

tion formation by implementing a dynamic programming approach compatible

with the integer partition graph. To date, this approach is the best anytime

algorithm for CSG problems, although it cannot be applied to problems with

more than 40 agents. These scalability issues manifest the need for approaches

that can produce faster solutions which scale to real large-scale problems with

hundreds of agents, even if these approaches need to leave behind optimality

guarantees or lose on generality by making assumptions about the application

domain.

Integer Linear Programming

Different from the previous approaches, the CSG problem can be formulated

as an ILP :

maximize
∑

S∈F(A)

f(S) · xS,

subject to
∑

S∈F(A)

bi,S · xS = 1, ∀ai ∈ A,
(2.8)

where xS is a binary decision variable that encodes whether collective S in the

feasible set of coalitions F(A) is inside the coalition structure S, and bi,S is a
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binary value that encodes whether agent ai ∈ A belongs to the collective S.

With this formulation, it is possible to apply an ILP solver, e.g., CPLEX

(Cplex, 2009). Although these solvers can also provide a solution before com-

pletion, they are highly inefficient compared to previous approaches due to

the large number of feasible coalitions that need to be considered in the ILP

formulation (Rahwan et al., 2015).

Despite its limitations, the ILP formulation of the CSG problem is essen-

tial for this thesis because, when combined with an appropriate reduction of

the search space, it is possible to solve the ILP in a reasonable amount of time.

Some approaches use this technique already, e.g., Bistaffa et al. (2019) formu-

late the ILP with a reduced set of good coalitions, proposed by their approach.

As a result, they reduce the size of the problem and solve it in a reasonable

computation time. Notice that optimality guarantees are lost due to a domain-

specific space reduction. Thus, the resulting approach is no longer considered

to be anytime but rather a heuristic approach. The following section describes

other relevant heuristic approaches following a similar direction.

2.2.3 Heuristic Approaches

Anytime approaches present a solution to the CSG problem, which not only

provides optimality guarantees on the solutions but can also be applied to any

CSG problem, regardless of the application domain. Despite these advantages,

these approaches cannot be considered for real large-scale problems since they

suffer from severe scalability issues. To overcome these, heuristic approaches

enhance CSG by introducing instructions based on assumptions about the

application domain. In other words, these approaches trade the generality of

complete approaches for an affordable computation time, becoming suitable

for real large-scale problems.

Some approaches directly focus on the specific properties of the application
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domain. For instance, the work mentioned above by Bistaffa et al. (2019) pro-

poses a solution algorithm for large-scale ridesharing that, by heavily relying

on the greedy nature of the domain, is capable of computing solutions of ex-

cellent quality for hundreds of agents within one minute. Previously, Farinelli

et al. (2017) proposed an approach based on hierarchical clustering that also

relies on a greedy heuristic in order to identify the most promising couple of

coalitions that can be merged until no beneficial merge can be executed. Un-

fortunately, these approaches cannot be applied in other CSG domains not

characterized by such a greedy nature, e.g., the team formation domain dis-

cussed in (Andrejczuk et al., 2019).

More recently, Wu and Ramchurn (2020) proposed a CSG solution algo-

rithm which defines a search strategy on the coalition structure graph based

on Monte-Carlo Tree Search. Despite this approach can structurally be ap-

plied to any CSG problem, it employs a simulation policy based on a greedy

heuristic similar to the one proposed by Farinelli et al. (2017). Indeed, the

authors report good performance on synthetic datasets that are characterized

by a greedy nature.2

All these approaches rely on specific properties of the application domain,

which is exactly the opposite of the goal of this work, i.e., obtaining a general

approach for collective formation problems that do not rely on domain-specific

instructions while scaling the number of agents present in real-world problems.

Section 2.4 discusses why machine learning is a promising candidate to achieve

this goal and reviews the previous attempts integrating machine learning in

combinatorial optimization routines.
2According to the methodology reported in (Wu and Ramchurn, 2020), the value of

a coalition S is correlated with its cardinality |S|, hence forming bigger coalitions is, on
average, more beneficial.

27



2.3 Capacitated Multi-Agent Pickup and Deliv-

ery

This section presents capacitated Multi-Agent Pickup and Delivery (capaci-

tated MAPD), a problem involving several agents carrying packages from their

pickup to their delivery locations. This problem is relevant for this thesis since

it combines a collective formation problem (assigning pickup and delivery tasks

to agents) with another combinatorial optimization problem (path-finding for

multiple agents). Thus, with minor adjustments, the assignment of tasks can

be solved by employing an approach for collective formation. Within this con-

text, the capacitated MAPD problem is relevant to this thesis as it allows

studying to what extent the proposed approach for collective formation may

be used in more complex scenarios and what limitations are confronted.

The following parts of this section provide the definition of the problem and

the most relevant literature related to the main techniques useful for solving

the capacitated MAPD problem.

2.3.1 Problem Definition

The capacitated MAPD problem is conformed by a set of agents A = {a1, a2,

. . . , an} which aim at completing a set of tasks K = {k1, k2, . . . , km}. A task ki

consists of moving an item from its pick-up location pi to its delivery location

di on a map defined over an undirected graph G = (V,E). Each agent ai has

a capacity Ci, which means that it can execute at most Ci tasks at the same

time. Then, the goal is to assign to each agent ai a subset of tasks κi ⊆ K

and, for each agent, find a conflict-free path Pi = ⟨vi0, vi1, . . . , vip⟩, such that

vit ∈ V , (vit, vit+1) ∈ E. For every task tj assigned to ai, its pick-up location

must appear previous to its delivery location in the path, i.e., t < s ∀vpjit , v
dj
is ,
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where the superindex indicates that a given vertex in the path corresponds

to a pick-up pj or a delivery dj location. Moreover, the load lit of an agent

ai, calculated as the number of picked-up items not yet delivered at timestep

t, should never exceed the capacity, i.e., lit ≤ Ci ∀t. A path is said to be

conflict-free if:

(i) No vertex is occupied by more than one agent at the same timestep,

vit ̸= vjt ∀ai, aj, t. (2.9)

(ii) No edge is traversed by more than one agent at the same timestep,

(vit, vit+1) ̸= (vjt+1, vjt) ∀ai, aj, t. (2.10)

The goal of the capacitated MAPD is finding an assignment whose agents,

following optimal conflict-free paths, minimize the total travel distance, i.e.

the sum of path lengths over all agents,

TTD =
∑
ai

|Pi|. (2.11)

Similar to the capacitated MAPD problem, there exist other problems

which aim at planning paths for multiple agents. Such problems are known as

Multi-Agent Path Finding (MAPF ), and many of the techniques applied for

it are also useful for the capacitated MAPD. Following, the widely adopted

Conflict-Based Search approach for conflict resolution in MAPF is presented,

along with some of its most popular variants which are employed later on as

part of the proposed methodology.

29



2.3.2 Conflict-Based Search and Variants

Conflict-Based Search (CBS ) (Sharon et al., 2015) is a prominent algorithm for

optimally solving MAPF problems. CBS relies on a bi-level search to resolve

conflicts by adding constraints at the higher level and replanning paths for

agents that respect these constraints at the lower level. The higher level of CBS

performs a best-first search on a binary search tree known as the constraint

tree. A node N in the constraint tree contains the following information:

1. Nconstraints is the set of constraints imposed thus far in the search. There

are two types of constraints: i) vertex constraints derived from violating

equation 2.9; and ii) edge constraints derived from violating equation

2.10.

2. Nsolution is a set of individual optimal paths for each agent while con-

sidering the constraints in Nconstraints. The optimal paths are found via

a low-lever search strategy such as the space-time A* algorithm (Silver,

2005), a variation of A* introduced to take constraints into account.

3. Ncost is the sum of costs of individual optimal paths in Nsolution.

4. Nconflicts is the set of conflicts between any two paths in Nsolution.

At a higher level, CBS starts with a constraint tree with only one node

whose set of constraints is empty. The constraint tree is continuously expanded

in a best-first fashion, always expanding the node with the lowest Ncost. Af-

ter selecting a node to expand, CBS checks the conflicts in Nconflicts and, if

none exist, CBS terminates and returns Nsolution. Otherwise, CBS chooses

one of the conflicts at random and adds two child nodes to N . Each child

node inherits Nconstraints from the parent and adds a constraint for one of the

conflicting agents. Then, employing the low-level path-finding strategy, the
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optimal path of the agent affected by the new constraint is recomputed, and

Ncost and Nconflicts are updated. CBS guarantees an optimal solution because

it explores the constraint tree in a best-first manner, only avoiding expand-

ing tree nodes with a lower bound solution cost better than the current best

solution cost.

Several approaches have been devised upon CBS, mainly improving on

the random conflict-selection strategy adopted by the original version. For

instance, Boyarski et al. (2015) introduced Improved CBS (ICBS ) which clas-

sifies conflicts into three types in order to prioritize them: when expanding N

into two child nodes, (i) cardinal conflicts derive into two child nodes with costs

higher than Ncost; (ii) semi-cardinal conflicts derive into one child node with

cost higher than Ncost; and, (iii) non-cardinal conflicts derive into no child node

with cost higher than Ncost. The cost of child nodes can be determined without

expanding a node by employing Multi-Valued Decision Diagrams. ICBS is able

to improve its efficiency by first resolving cardinal conflicts, then semi-cardinal

conflicts and finally non-cardinal conflicts since it increases the lower bound

on the optimal cost faster by generating child nodes with higher costs.

Barer et al. (2014) presented Greedy CBS, a sub-optimal variant of CBS.

The authors propose a relaxation of the high-level strategy by introducing five

heuristics for selecting nodes to expand. These are the number of conflicts,

the number of conflicting agents, the number of pairs of agents that have at

least one conflict between them, a vertex cover of conflicts and an alternating

heuristic (Röger and Helmert, 2010). Finally, Ma et al. (2019) proposed PBS,

an approach that incorporates prioritized planning into CBS. PBS establishes

a priority in which agents must plan their paths. Then, the path of each agent

is planned based on their priority using a low-level strategy that only considers

conflicts with previously planned agent paths. Although the approach does not

guarantee finding optimal solutions, the authors show state-of-the-art solution
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quality and runtimes when compared to other sub-optimal approaches.

CBS and its variants are a general approach for conflict resolution in the

context of Multi-Agent Path Finding. However, CBS alone does not capture

the nature of many real-world problems, where agents able to plan for executing

multiple tasks are constantly engaged with new tasks. The following section

discusses approaches which expand the limits of CBS by incorporating a task

assignment component.

2.3.3 Integrated Task Assignment and Conflict Based Search

Ma et al. (2017) consider a stream of tasks that arrive to the agents in an

online setting. The authors introduce the token-passing approach, which first

assigns tasks to agents with the Hungarian method and then employs CBS

to plan conflict-free paths. Similar to the problem formulation considered in

this thesis, Liu et al. (2019) consider an offline version of the problem, which

assumes all incoming tasks are known in advance and agents can carry more

than one task. The authors propose TA-Hybrid, which first solves a TSP

formulation of the task assignment problem with an existing TSP solver and

then plans the conflict-free paths employing CBS.

Previous approaches perform the task assignment and planning of conflict-

free paths separately. Thus, assignments are performed not considering the

increment in the path cost caused by conflicts appearing during the conflict

resolution strategy. To address this, Chen et al. (2021) propose an approach in-

tegrating PBS into the assignment of tasks. To this end, their approach contin-

uously updates a priority heap determining which task is going to be assigned

to which agent based on a regret-based marginal-cost assignment (RMCA).

This thesis proposes an integrated solution detailed in chapter 4, similar to

the one by Chen et al. (2021), incorporating an attention-based model to learn

the priority heap and guide the task assignment process.
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2.4 Machine Learning for Combinatorial Opti-

mization

The use of machine learning techniques to solve combinatorial optimization

problems is a recent yet very active topic that has received significant atten-

tion during the last few years (Bengio, Lodi, and Prouvost, 2021; Kotary et

al., 2021). According to Bengio, Lodi, and Prouvost (2021), machine learning

can contribute to the optimization field in two ways: i) replace some heavy

computations by learning fast approximations without deriving new explicit

algorithms, and ii) improve the optimization approach by deriving a policy

learning from the domain-specific structure. In addition, learning can be use-

ful to generalize across a class of different combinatorial optimization problems

with similar structures. The objective of this thesis is the study of machine

learning solutions to enhance the performance of classical combinatorial opti-

mization solvers by learning the domain-specific structure. Moreover, general-

ization across a class of different problems can be achieved, given that learning

can be performed offline for a given domain before the deployment of the solu-

tion. Therefore, because of its practical interest, the generalization capability

of the approaches is a crucial aspect also studied in this work.

The above objectives result in key challenges for machine learning ap-

proaches. The following sections provide a detailed discussion of the main

learning challenges of combining machine learning and combinatorial optimiza-

tion: learning algorithmic decisions, learning to generalize, and learning prob-

lem constraints. Following that, a literature review of the recent approaches

in the field will be presented.
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2.4.1 Learning Algorithmic Decisions

Following the previous discussion, machine learning seeks to substitute a set

of instructions that comprise a part or the totality of an algorithmic solu-

tion. To this end, the machine learning component must improve its decisions

by learning the ones producing satisfactory outcomes. While Reinforcement

Learning improves the decisions by optimizing their observed outcome, Super-

vised Learning copies the decisions made by a benchmark algorithm. These

frameworks will be discussed further below as emerging solutions for learning

decisions. The discussion stems from the mathematical formulation of learning

algorithmic decisions inspired by the one from Bischl et al. (2016) and Bengio,

Lodi, and Prouvost (2021).

Given a set of algorithms A, one might ask which is the best one for a

problem from which several instances I are observed, each with probability P .

The performance of an algorithm is measured by a function m : I × A → R

which traditionally is the cost of a solution but can also incorporate other

information, e.g., the running time or variety of solutions. Assuming that

lower m is better, one would say that the best algorithm is the one which

satisfies

min
a∈A

Ei∼Pm(i, a). (2.12)

Since it is not practical to compute the expected performance by consider-

ing the average over all instances, a dataset with a reduced number of instances

is used to estimate these quantities:

min
a∈A

1

|D|
∑
i∈D

m(i, a). (2.13)

As a deep learning approach, neural networks can behave as algorithms

without including specific instructions other than several algebraic operations
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between its parameters θ ∈ Rp. In that sense, instead of searching for the best

algorithm in a finite set, one can search over a continuous space of parameters,

min
θ∈Rp

1

|D|
∑
i∈D

m(i, aθ). (2.14)

Since the parameters θ are defined over a continuous space, gradient meth-

ods are handy for solving the learning task. Nevertheless, the performance

measure is usually not differentiable, meaning that equation 2.14 needs to be

manipulated in order to apply gradient methods. One possibility is to substi-

tute the performance measure from the previous equation with a loss function

Li(a
∗, aθ) representing the distance between the neural network outputs aθ and

the expert algorithm ones a∗. The optimization goal then becomes minimizing

the distance between decisions until the neural network eventually mimics the

expert, resulting in a supervised learning approach. It is worth noting that,

in this case, the cost function m is removed from the equation, becoming a

viable approach for domains where this function is unknown, does not align

with the real optimization goal, or is prohibitively expensive to compute dur-

ing training. Still, a significant disadvantage is that the performance of the

learned decisions is bounded to the expert algorithm, which quality might be

unsatisfactory.

Another problem to consider is the presence of different sources of ran-

domness, e.g., non-deterministic domains and models. In this situation, one

might also need to estimate the performance measure accounting for a source

of randomness τ ,

min
θ∈Rp

1

|D|
∑
i∈D

Eτ [m(i, aθ)] . (2.15)

A commonly used framework when learning over a stochastic domain with

sequential decisions is a Markov Decision Process, which models the dynamics
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of the environment as stochastic transitions over a state space. A straightfor-

ward solution approach to this framework is the one of RL. In this framework,

a stochastic policy πθ, making algorithmic decisions, is optimized directly by

adjusting the probabilities to those showing a better performance measure

(expected reward in the MDP formulation).

In conclusion, one may employ a supervised learning approach imitating

algorithmic decisions which replace heavy computation with a fast approxima-

tion. Furthermore, if one is interested in discovering new strategies, the rein-

forcement learning framework can learn algorithmic decisions solely through

experience.

To this point, the learning instances have been assumed to define the learn-

ing problem entirely. In practice, since not all instances from P will be ob-

served during training, the model may learn a behaviour specific to the training

instances. Moreover, some instances requiring an effective policy may be un-

derrepresented in P or not represented at all. While reinforcement learning

approaches address this issue by employing a stochastic policy to enhance

exploration of the search space, supervised learning approaches need to con-

sider training instances carefully crafted to facilitate the learning task (Kotary,

Fioretto, and Van Hentenryck, 2021). The ability of an approach to perform

well on unseen instances is referred to as its generalization ability. This con-

cept is expanded in the following section, and the methods for achieving various

forms of generalization are described.

2.4.2 Learning to Generalize

The term generalization can usually refer to a variety of things; this thesis

considers generalization to i) unseen instances, ii) a reparameterized problem,

and iii) different problems.

When training an algorithm with equation 2.14, the performance measure

36



is optimized only considering the instances in the dataset. In reality, one would

like an algorithm that performs well on any problem instance. To assess the

capacity of a model to learn decisions for instances other than the ones in the

dataset, it is a widespread procedure to create a test dataset with instances

unseen during training and evaluate the performance measure improvement on

this one (Raschka, 2018).

On an upper generalization level, the objective is abstracting the logic be-

hind solving one problem to different reparametrizations of the same problem.

In this situation, instances may be similar, if not identical, but the problem

may have various parameterizations or include new constraints. For exam-

ple, consider a model trained for the capacitated VRP ; one could change the

maximum vehicle capacity or set a different scenario, such as another city. In

this case, it is unlikely that good performance on the reparameterized prob-

lem can be obtained without retraining the model. Nevertheless, this is not

a problem in practice since training can be done beforehand, and this has no

impact on the computation time of the learned algorithmic approach used to

solve the problem. Moreover, the reparameterized problem shares its structure

with the original one; thus, most algorithmic decisions will not change from

one approach to the other. Therefore, it is unnecessary to retrain the neural

network entirely. Instead, some of its parameters can be fixed, only retraining

some following a transfer learning approach (Weiss, Khoshgoftaar, and Wang,

2016).

The highest level of generalization considered in this thesis is the knowl-

edge abstraction to different problems. The difficulty in this scenario stems

from the diverse structures found in different problems. Routing problems,

for example, assemble a sequence of waypoints, whereas set partitioning con-

structs a set of partitions, or one problem may consider continuous variables

while another only accepts integer ones. Moreover, since the problem struc-

37



ture is entirely different, the underlying logic behind algorithmic decisions also

changes. Therefore, applying any transfer learning approach as in the previous

case would probably fail, and the only option is to retrain a model for the new

problem. As discussed in the upcoming chapter, this thesis proposes a gen-

eral approach for the formation of collectives, a set of problems with a shared

structure, allowing for a common solution generalizing over this class of prob-

lems. The following section presents the last challenge of combining machine

learning and combinatorial optimization: learning problem constraints.

2.4.3 Learning Constraints

One core challenge when employing a machine learning approach for learning

strategies to solve combinatorial optimization problems is learning to fulfil the

hard constraints inherent to the problem. Hopfield and Tank (1985) proposed

Hopfield Networks with a modified energy function to emulate the loss function

of a TSP and employed Lagrange multipliers to penalize the violation of prob-

lem constraints. When carefully benchmarked, Hopfield Networks have not

yielded satisfying results (La Maire and Mladenov, 2012; Sarwar and Bhatti,

2012). As a result, these approaches have fallen in popularity in favour of ap-

proaches forestalling the problem. Most current methods either i) hard-encode

the constraints into the network structure, e.g., by setting the input and out-

put network size to the constrained one or ii) employ a classical solver such

as an ILP to encode the constraints not considered by the learning approach.

In this work, a combination of both is considered, as described in the next

chapter.

However, previous practices do not provide the network with information

about the constraints it encodes, so these are never learned. Neural networks

being agnostic about the constraints is a limiting factor in the design of general

machine learning approaches for combinatorial optimization since the network
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structure must be explicitly hand-tuned for each problem constraint. Recently,

some approaches employ the Lagrangian duality to introduce problem con-

straints into the learning objective of problems such as the Optimal Power Flow

(Fioretto, Mak, and Van Hentenryck, 2020; Chatzos et al., 2020), transprecis-

sion computing (Fioretto et al., 2021) and fair classification (Tran, Fioretto,

and Van Hentenryck, 2021). In the context of this thesis, constraints can be

hard-encoded into the architecture because they are well-defined properties of

the domain, e.g., the size of collectives. However, introducing constraints with

the previous techniques is an interesting direction to increase the generality of

the proposed approach.

2.4.4 Prominent Machine Learning Approaches for Com-

binatorial Optimization

This section describes the main approaches combining machine learning and

combinatorial optimization. Because there are so many existing solutions, they

are categorized adopting Bengio, Lodi, and Prouvost (2021)’s classification

along two axes: algorithmic structure and learning methodology.

Along the first axis, depending on the structure of the overall approach,

Bengio, Lodi, and Prouvost (2021) identifies two alternatives: i) end-to-end

machine learning approaches which are able to directly construct a solution for

optimization problems, and ii) mixed approaches which use machine learning

as a subroutine of a classical optimization approach, either as a preprocessing

step or used alongside the classical approach in an online scheme. The second

axis considers the learning methodology used, i.e., supervised, unsupervised,

or reinforcement learning. This section presents machine learning approaches

for combinatorial optimization based on this classification.
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Algorithmic Structure

Examining machine learning approaches for combinatorial optimization from

its algorithmic structure, these can be classified either as end-to-end approaches

or mixed approaches.

End-to-End Approaches - A wide variety of end-to-end approaches are de-

veloped to bring approximate and fast solutions to combinatorial optimization

problems. For instance, Vinyals, Fortunato, and Jaitly (2015) propose the

pointer network architecture, an encoder-decoder architecture consisting of a

combination of recurrent neural networks with an attention operation to solve

the problem of previous sequence-to-sequence models unable to produce vari-

able size output sequences. This new architecture enables the generation of

permutations of the input sequence, providing a practical use case of their

approach to generating convex hulls, Delaunay triangulations, and TSP so-

lutions. Khalil et al. (2017) propose a graph embedding network to learn

combinatorial optimization algorithms over graphs, managing to learn a solu-

tion algorithm for Minimum Vertex Cover, Maximum Cut and the TSP. In the

same direction, Joshi, Laurent, and Bresson (2019) proposes Graph Convolu-

tional Networks to improve the solution quality for the TSP. However, because

their approach fails to generalize to variable problem sizes, the authors sug-

gest that training in a reinforcement learning setting, rather than a supervised

learning one, could address this issue. Motivated by the success in machine

translation of pure attention-based architectures (Vaswani et al., 2017), Kool,

Van Hoof, and Welling (2018) proposed a similar encoder-decoder approach

for the TSP, VRP, Orienteeing Problem and Stochastic Prize-Collecting TSP,

only employing attention operations in the network. In addition to the pre-

vious approaches, other end-to-end approaches have been devised for variants

of the VRP, such as the capacitated VRP (Nazari et al., 2018) or the online

capacitated VRP (James, Yu, and Gu, 2019).
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Another strand of literature focuses on designing combinatorial optimiza-

tion neural layers to enhance learning combinatorial decisions. Amos and

Kolter (2017) started this line of research by providing differentiable KKT

conditions, which solve a Quadratic Program optimally. Donti, Amos, and

Kolter (2017) showed that neural layers could also be trained to learn deci-

sions in stochastic domains such as an inventory stock problem, a real-world

energy grid scheduling task and a real-world energy storage arbitrage task.

Other notable approaches propose similar solutions for problems with linear

objectives (Elmachtoub and Grigas, 2022) and satisfiability problems (Wang

et al., 2019).

Mixed Approaches - Mixed approaches aim at combining machine learn-

ing with classic optimization procedures. In this line of research, a strand of

literature focuses on using machine learning as a preprocessing step before a

classical optimization approach. In particular, the approach proposed by Ding

et al. (2020) solves eight different classical problems, including TSP and VRP,

employing Graph Convolutional Neural Networks which predict the value of

binary variables in a MILP formulation of these problems. The solution is

then found by means of a branch and bound approach, which uses the values

to guide the search. In the same way, Li, Chen, and Koltun (2018) tackle

benchmark satisfiability problems related to social network graphs utilizing

Graph Convolutional Neural Networks to select the nodes in a graph that are

likely to appear in an optimal solution and then solve the problem for the

reduced graph. Similar to neural networks, Support Vector Machines can also

play the role of a heuristic approach as a preprocessing step for optimization

problems. For instance, the work of Xavier, Qiu, and Ahmed (2021) uses k-

Nearest Neighbors in addition to a Support Vector Machine to significantly

reduce the problem size for Security-Constrained Unit Commitment problems

in power systems and electricity markets. Another example is the work of

41



Sun, Li, and Ernst (2019), which uses a Support Vector Machine to find a

graph reduction for the maximum weight clique problem. Many of the ap-

proaches which use machine learning as a preprocessing step focus on reducing

the optimization problem (i.e., making the problem smaller and computation-

ally tractable). Although problem reduction with machine learning does not

provide any optimality guarantee, these approaches can usually provide high-

quality solutions due to the “backbone” structure of the optimization problems

they tackle (according to the terminology adopted by (Kilby, Slaney, Walsh,

et al., 2005)), i.e., optimal solution and high-quality solutions are likely to

share a specific structure. In contrast to approaches using machine learning

as a preprocessing step, some mixed approaches aim to incorporate machine

learning into well-established optimization approaches. For example, Hottung

and Tierney (2019) use an attention-based model in order to reconstruct so-

lutions inside a Large Neighborhood Search setting for the Capacitated VRP.

Another example is the work of Hottung and Tierney (2019), in which neural

networks are used as a heuristic to guide search inside a tree search approach

for the container pre-marshalling problem.

This thesis employs a mixed approach combining a machine learning com-

ponent and an ILP solver. In contrast to end-to-end approaches, this combi-

nation allows the machine learning component to be agnostic about the con-

straints and focus on generating high-quality collectives. The ILP solver con-

siders the generated collectives and assembles a solution composed of disjoint

collectives.

Learning Methodology

According to the learning methodology, approaches are classified either as

learning from demonstration (supervised learning) or learning from experience

(reinforcement learning). Unsupervised approaches are not discussed since
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their application to combinatorial optimization is scarce.

Supervised Learning - Several approaches adopt supervised learning strate-

gies with the objective of imitating the outputs of an already existing solution

algorithm, hence, by following Bengio, Lodi, and Prouvost (2021)’s terminol-

ogy, “replacing it by its ML approximation”. For example, the work by Li,

Chen, and Koltun (2018) makes use of supervised learning to train Graph

Convolutional Neural Networks for Maximal Independent Set, Minimum Ver-

tex Cover, Maximal Clique, and SAT. Khalil et al. (2016) propose an approach

to learn from a precomputed dataset a ranking function which is then used as

a branching heuristic for MILP. Gasse et al. (2019) and Nair et al. (2020) also

aim at constructing a branching heuristic for solving MILP, but in their case,

they directly learn to imitate the decisions made by an expert by means of a

cross-entropy loss. Most of these approaches aim to select an option among

several alternatives, e.g., variable selection in branch-and-bound approaches.

Another alternative is using machine learning to decide if a computationally

demanding sub-routine needs to be performed. Following this direction, the

work by Kruber, Lübbecke, and Parmentier (2017) uses a supervised learn-

ing approach to determine whether a Dantzig-Wolfe decomposition should be

applied to a MILP instance in order to solve it faster.

Reinforcement Learning - Alternatively, reinforcement learning aims at

learning a policy (i.e., a system which determines a course of action) which opti-

mizes the sum of future expected rewards observed from the actions the policy

performs. The policy is usually modelled inside a Markov Decision Process

and interacts with the environment by executing an action and receiving an

observation and a reward signal. The use of reinforcement learning is appeal-

ing in the context of mixing machine learning with combinatorial optimization

because classical algorithms used for this purpose usually involve sequential

decisions, which can be modelled as a Markov Decision Process. Moreover,
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in contrast with supervised learning, reinforcement learning does not require

other approaches to learn from since it learns purely from experience. Several

approaches aim to replace supervised learning with reinforcement learning in

the context of combinatorial optimization. For example, the work by Bello et

al. (2016) and the work by Nazari et al. (2018) propose reinforcement learning

as an alternative way to train Pointer Networks, previously trained with super-

vised learning (Vinyals, Fortunato, and Jaitly, 2015). Another example is the

work by Kool, Van Hoof, and Welling (2018), which also uses reinforcement

learning to train an attention-based model for the TSP and the VRP.

In this work, supervised learning is initially considered to train the machine

learning component learning to generate collectives. However, it is abandoned

because it limits the performance of the machine learning model to the training

examples obtained from a benchmark approach. As a result, it is replaced by

reinforcement learning, which does not require training examples as it learns

solely through experience.

2.4.5 Prominent Machine Learning Approaches for MAPF

Machine learning has received little attention from the MAPF community.

The first attempt to incorporate machine learning into existing optimization-

based solutions was by Sartoretti et al. (2019), who proposed a combination of

reinforcement and supervised learning to learn decentralized policies for agents

aiming to find the shortest path while avoiding conflicts in a large factory-like

environment. Later, Damani et al. (2021) extend the work by Sartoretti et al.

(2019) to the capacitated MAPD problem, achieving better performance on

more dense environments populated with up to 2048 agents.

Huang, Koenig, and Dilkina (2021) propose a machine learning framework

for conflict selection that learns the decisions made by a linear ranking func-

tion inspired in Khalil et al. (2016). Similarly, Huang, Dilkina, and Koenig
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(2021) combine supervised learning and curriculum learning to learn a node-

selection strategy to accelerate a variant of CBS. In Huang et al. (2022), the

authors propose an anytime solution that uses machine learning to learn how

to choose a subset of agents from a collection of subsets, such that replanning

will increase the solution cost the most. Zhang et al. (2022) propose a machine

learning framework to learn a good priority ordering, similar to the one in Ma

et al. (2019). Instead, this thesis adapts the machine learning approach for

collective formation to perform the task assignment in the capacitated version

of the MAPD problem.
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Chapter 3

Machine Learning for Collective

Formation

There exist several contemporary applications involving the formation of collec-

tives, such as ridesharing and team formation, which are studied in this thesis.

Also, due to an increasingly interconnected society, new problems involving

the formation of collectives are emerging and becoming more relevant in the

last decades. Therefore, general-purpose solvers able to produce high-quality

solutions are required to tackle these emerging problems efficiently. In this

direction, this thesis aims to study machine learning as a possible approach

to address the lack of generality of current ad-hoc approaches for collective

formation problems.

In the previous chapter, a variety of combinatorial optimization problems

were discussed, along with the challenges and limitations of current solution

approaches. One of the most critical challenges is designing algorithmic so-

lutions that are fast, general and exact. For real-world applications, which

typically consist of hundreds of variables, fast solutions can only be obtained

by sacrificing exact solutions in favour of approximate heuristics. Furthermore,

these heuristics typically include domain-specific instructions to improve their
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performance in these large-scale settings, resulting in more ad-hoc and less

general approaches.

Along these lines, machine learning has gained popularity as a promising

approach to achieve fast and general solutions to combinatorial optimization

tasks, in some cases even improving the state-of-the-art. Within the purview

of the literature review conducted for this thesis, the solutions presented in

the previous chapter are the vanguard employing machine learning for com-

binatorial optimization tasks. Still, none applies to collective formation. The

following section proposes a solution approach incorporating machine learning

into a general-purpose solver for collective formation.

3.1 Solution Approach

Collective formation is a combinatorial problem in the sense that forming one

collective influences the possibility of forming others. Consequently, an optimal

solution is likely to be formed by collectives that are not only high-quality but

also do not constrain the formation of other high-quality ones. Therefore,

an end-to-end approach aiming for optimal solutions must ponder collectives

from these two different perspectives, i.e., quality and constraints. The solution

approach proposed in this thesis attacks this dual perspective by combining

machine learning and a classical solution approach. On the one hand, machine

learning excels at learning the inherent structure of high-quality collectives,

although it does not successfully capture the combinatorial influence these

exert on one another. On the other hand, a classical approach is used to

resolve the constraints imposed by the combinatorial nature of the problem,

which the machine learning approach does not take into account.

In this direction, the proposed approach considers the ILP formulation

of the coalition formation problem described in equation 2.8. As discussed
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previously, an ILP cannot be fully solved in a reasonable time because of

the intractable number of possible coalitions appearing in large-scale CSG

problems (Rahwan and Jennings, 2008). This thesis proposes a technique

to reduce the number of coalitions that need to be considered by the ILP.

More precisely, by learning the inherent structure of the domain, a machine

learning component proposes a reduced set of promising collectivesR(A), from

which an ILP solver computes a suboptimal high-quality solution from the ILP

formulation:
maximize

∑
S∈R(A)

f(S) · xS,

subject to
∑

S∈R(A)

bi,S · xS ≤ 1, ∀ai ∈ A.
(3.1)

As depicted in figure 3.1, the approach is divided into two separate steps. First,

the machine learning component receives the agents and proposes a reduced

set of candidate collectives R(A). Then, equation 3.1 is formulated with the

collectives S ∈ R(A) and solved to obtain the collective formation solution.

Figure 3.1: General approach for collective formation. The machine learning component
generates a reduced set of collectives from which an ILP solver computes the solution.

As previously stated, an optimal solution is made up of lower-quality collec-

tives in addition to higher-quality ones. As a result, the machine learning com-

ponent, despite being trained to generate high-quality collectives, should also

provide lower-quality alternatives. One possible way to achieve this is by con-

sidering a model defining a probability distribution over collectives, from which

diverse collectives can be sampled. This technique is employed by sequential

decision models such as pointer networks and attention-based approaches. An-

other possibility is using a random latent variable, as in generative models such
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as generative adversarial networks, which introduce a source of variance within

the models. The following sections discuss these approaches to implement the

machine learning component in figure 3.1 to generate collectives.

3.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a generative model composed

of two neural networks, a generator and a discriminator, competing with

one another (Goodfellow et al., 2014). The task of the generator network

(parametrized by θg) is, given a random latent vector of inputs z, to generate

an output sample x = g(z;θg) that resembles a sample from a probability

distribution pdata. The task of the discriminator d (parametrized by θd) is,

given a sample x, to classify it as real if it belongs to the data distribution

x ∼ pdata, or fake if it belongs to the generator distribution x ∼ pg(z).

The two networks are trained simultaneously with adversarial goals set-

ting a two-player mini-max game. The discriminator, presented with a binary

classification task (fake vs real samples), is trained to minimize a binary cross-

entropy loss V (d, g). The generator, aiming at generating realistic samples

which can fool the discriminator, is trained to maximize the same loss. During

training, each network tries to optimize its objective, resulting in

min
g

max
d

[
V (d, g) = Ex∼pdata [log d(x)] + Ex∼pg(z) [log(1− d(g(z)))]

]
. (3.2)

Conveniently, only the right summand in equation 3.2 depends on the gen-

erator parameters θg. Thus, considering only this term in the loss does not

change the gradients for the generator. Hence, as pictured in figure 3.2, it is

enough for the generator to minimize Ex∼pg(z) log(1 − d(g(z))), which is the

same as maximizing Ex∼pg(z) log d(g(z)).
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Figure 3.2: Schema of the Generative Adversarial Networks training. The generator network
receives a latent vector and produces a fake sample. The discriminator receives a combination
of real and fake samples and classifies them according to their origin. The loss is computed
with the predictions of the discriminator, and the gradients are propagated to each parameter
of the network.

Simultaneously training both networks in a competitive scenario makes

training GANs a non-trivial task. One of the most concerning issues is that

the loss function may not converge due to oscillations of the network parame-

ters, i.e., the generator and discriminator may adapt to each other repeatedly

without showing any long-term improvement. Furthermore, the discriminator

might learn faster than the generator, thus classifying almost every sample

produced by the generator as fake. Therefore, the generator cannot learn to

generate samples fooling the discriminator, resulting in a training cul-de-sac.

The most recurrent GANs training problem is mode collapse, i.e., the genera-

tor achieves to deceive the discriminator systematically with a limited variety

of samples.

After discussing the model and the common problem derived from its com-

plex training setup, the following section describes how GANs can be used to

generate collectives.

50



3.2.1 Generating Collectives

The proposed general approach for collective formation employs a machine

learning component in order to produce a set of promising collectives of high

value. Thus, the role of the GAN is to train a generator to sample such collec-

tives. To this end, the set of real samples, which the GAN learns to imitate,

needs to be composed of high-quality collectives. In order to generate a dataset

of collectives of high value, one has two options: i) generate collectives employ-

ing another expert algorithm producing acceptable solutions, or ii) generate

collectives randomly and select those with a characteristic function value over

a certain threshold. The first option is better if one has access to an expert

algorithm, but it also caps the collective values produced by the generator.

The second option is preferable if no acceptable algorithm is available or if

bounding the solutions to those of an external algorithm is not desired. This

thesis aims to propose a general approach that does not rely on any exter-

nal algorithm to generate high-value collectives; hence the second option is

preferred.

When considering the formation of collectives, the structure of the neural

network differs in some aspects from the GAN proposed by Goodfellow et al.

(2014). Since the generated collectives are conditioned on the agents present in

one collective formation instance, the generator should receive them as an input

in addition to the latent vector. Furthermore, because agents and collectives

are variable-size structures, the generator must accept variable-size inputs and

outputs. Although GANs were originally proposed as Multi-Layer Perceptron

networks, some variants admit sequential data of variable size, e.g., a generator

employing Recurrent Neural Networks (Mogren, 2016), and an attention-based

GAN (Xu et al., 2018). Still, this thesis considers a Multi-Layer Perceptron

GAN to be the most direct approach for collective formation. Consequently,

the problem of variable-size inputs and outputs is addressed by encoding these
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in a domain-specific size-invariant representation.

In conclusion, one can include variable-size structures with the appropriate

GAN architecture. However, despite not employing a traditional supervised

learning training setup, GANs present similar data generation challenges to

those discussed in Kotary, Fioretto, and Van Hentenryck (2021) for supervised

approaches. In practice, bounding the approach to the solutions provided by

an expert is not desired for a general approach. Alternatively, generating a

sufficient number of training instances through random sampling and filtering

out the undesirable ones is not practical and results in low-quality solutions.

Therefore, the following sections present pointer networks and attention-based

models, two sequence-to-sequence approaches with prominent applications to

combinatorial optimization. Both approaches allow for a reinforcement learn-

ing training setup that does not require examples from which to learn.

3.3 Pointer Networks

Vinyals, Fortunato, and Jaitly (2015) proposed Pointer Networks, a sequence-

to-sequence approach for learning the conditional probability of an output

sequence whose elements are discrete tokens corresponding to positions in a

variable-size input sequence. The model consists of two recurrent neural net-

works performing as an encoder and a decoder. The encoder network processes

an input sequence S of size n, one element at a time, and produces a sequence

of hidden memory states {enci}ni=1, where enci ∈ Rd, being d the dimensional-

ity of the hidden states. At each decoding step, the decoder produces a hidden

memory state decj, which is combined with the encoder hidden memory states

{enci}ni=0 to compute the probability of selecting the input si in the output
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position j via an attention operation (Bahdanau, Cho, and Bengio, 2014):

uj
i = vT tanh (Wencenci +Wdecdecj), (3.3a)

pji = softmax(C tanh (uj
i )), (3.3b)

where C tanh (uj
i ) clips the values of uj

i ∈ R in the range [−C,C], to control

the entropy of the probabilities pji . The Wenc,Wdec ∈ Rd×d and vT ∈ Rd

are learnable model parameters. Notice how {enci}ni=0 includes an additional

token enc0 = ⟨eos⟩ that can be selected at decoding time to complete the

process. In addition, a mask is applied to avoid sampling an input element

twice, i.e., uj
i = 0 if input element si has been selected at j′ < j. Figure

Figure 3.3: Pointer Network decoding example. White boxes represent the encoder inputs,
RNN cells and hidden states. Grey boxes represent the decoder inputs, RNN cells and
hidden states. The arrows at the top of the figure represent the output of the attention
operation.

3.3 exemplifies the Pointer Network decoding process. The encoder (white)

processes a sequence with four input elements producing the same number of

hidden states. The decoder (grey) receives the last encoder hidden state and

a start-of-sequence ⟨sos⟩ token, producing a decoder hidden state used along

an attention operation to select input element s3. Then, s3 and the current

hidden state are the inputs of the next decoding iteration, selecting s1. In the

third decoding iteration, the attention operation selects the end-of-sequence
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⟨eos⟩ token, finishing the decoding process.

The following section describes how the Pointer Networks architecture is

used for generating collectives.

3.3.1 Generating Collectives

Because the Pointer Network is a sequence-to-sequence model, it is ideal for

processing variable-size structures such as collective formation instances. In

this regard, the encoder processes the agents one by one, storing each agent

representation in the encoder memory states. The decoder then produces a

collective by sampling one agent at a time from the probabilities computed by

the attention operation, which takes into account the hidden memory states

of the encoder and decoder. Despite admitting variable-size inputs, the model

is sensitive to the order in which input elements are presented. Precisely,

different input permutations may provide different output probabilities because

of the recurrent nature of the model, which causes the encoder hidden memory

states to be devoid of information about the subsequent ones. As a result,

the attention operation computes output probabilities with more informative

encodings of the later processed input elements, making different decisions

based on which input agent is missing information.

Regarding the training methodology, Pointer Networks can be trained us-

ing either a supervised or a reinforcement learning approach. In supervised

learning, the model learns to execute decisions that lead to satisfactory solu-

tions by approximating expert decisions. The optimal model parameters θ∗,

i.e. the ones constituting a model indiscernible from the expert, are found

maximizing of a cross-entropy loss

θ∗ = argmax
θ

∑
S,y

∑
i,j

yji log(p
j
i (S; θ)), (3.4)
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where the training pair is composed of a collective formation instance S and an

example solution y provided by the expert, with yji = 1 if the solution contains

agent si at position j and 0 otherwise.

In contrast, reinforcement learning employs Pointer Networks as a policy

inside a decision-making process. Unlike supervised learning, decisions in re-

inforcement learning are learned through experience via pure exploration of

the space of solutions rather than mimicking the ones of an expert. Although

Pointer Networks can be trained under a reinforcement learning approach, it

still suffers from being sensitive to the ordering of the input sequence. For this

reason, attention-based models are presented in the next section as a solution

to such problems.

3.4 Attention-based Models

Attention-based models emerged as a solution to the problem of the long-

term dependency of words in Natural Language Processing (Bahdanau, Cho,

and Bengio, 2014). Specifically, traditional encoder-decoder Recurrent Neural

Networks have problems capturing the correlations among words in long se-

quences. To solve this problem, the attention operation explicitly learns the

correlations between elements in sequences and assists the decoder by empha-

sizing the input elements that contribute the most to the current decoding

decision.

Vaswani et al. (2017) noted that recurrent operations were no longer nec-

essary for machine translation and proposed the transformer, an architecture

based solely on the attention operation. Their approach consists of an en-

coder mapping an input sequence of symbol representations (x1, x2, . . . , xn) to

a set of continuous representations h = (h1, h2, . . . , hn) from which a decoder

generates an output of symbols (y1, y2, . . . , yn).
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The main processing unit of the transformer, i.e., the multi-head atten-

tion operation, is a mechanism adopted from search engines functioning as

a mapping from queries qi and keys kj to attention weights aij. The inputs

(queries and keys) are represented by a set of dq and dk dimensional vectors.

The outputs (attention weights) are scalar values representing the normalized

compatibility of the query qi with the key kj. The first step in obtaining the

attention weights is to compute the raw compatibilities

uij =
(qiW

q)(kjW
k)T√

dk
, (3.5)

where W q and W k are two learnable linear transformations and the output

is scaled by a factor of 1√
dk

. Next, the attention weights are obtained by

normalizing the compatibilities with a softmax function, i.e.,

aij =
euij∑
j′ e

uij′
. (3.6)

The transformer is composed of B attention blocks, through which hidden

representations hb
i (b ∈ 1, 2, . . . , B) of different symbols i flow sequentially.

Inside each block, attention weights are used to update the corresponding

hidden representation hb
i with contextual information, i.e., information about

other hidden representations hc
j. To this end, attention weights are computed

by considering qi = hb
i and kj = hc

j, and a new hidden representation hb+1
i

is obtained by computing an attention weighted sum of contextual hidden

representations hc
i ,

hb+1
i =

∑
j

aij(h
c
jW

v), (3.7)

where W v is another learnable linear transformation.

Improving the approach presented above, multi-head attention distributes

the computation of the attention weights over M different heads. To this end,
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the keys are split into M chunks and processed in parallel by different attention

operations. The hidden representations obtained from each head are summed

together:

hl+1
i =

∑
m

W o
mh

l+1
im , (3.8)

where W o is another learnable linear transformation. In practice, multi-head

attention is often combined with other operations; traditionally, skip-connections,

normalizing layers and fully-connected perceptron layers. Next, an attention-

based approach conformed by the attention operation, and some additional

operations will be presented for the purpose of generating collectives.

3.4.1 Generating Collectives

The generation of collectives with an attention-based model is formalized as a

decision-making process where collectives are built incrementally by deciding

which agents A are added to the collective S. More formally, the attention-

based model receives the agents A represented by a list of da dimensional

feature vectors, where da is the number of features. It is worth noting that, as

is common in machine learning, the approach assumes that an agent can be

represented as a vector of features, e.g., as the origin and destination locations

in the ridesharing scenario or the personality traits and competence levels of

students in the team formation scenario (see section 3.5 for more details). The

model also receives a binary encoding of a collective S = {b1,S, b2,S, . . . , bn,S},

where bi,S are binary values determining whether the respective agents ai are

in the collective S or not. Therefore, the state of the problem at each step is

represented by the tuple s = (A, S).

Given a state s, the proposed attention-based is based on the encoder-

decoder approach proposed by Kool, Van Hoof, and Welling (2018) for the

VRP. The model performs as a stochastic policy πθ(s) parameterized by θ,
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determining the probability for each agent in A to be included in the collective

S. The encoder produces an embedding for each agent, i.e., a continuous

representation of the input. Then, as illustrated in Figure 3.4, the decoder

receives the embedding and the collective at each decoding step to compute

the probabilities.

Figure 3.4: Encoder-decoder schema. The encoder produces a hidden embedding of the
agents A and collective S. Then, given the embedding, the decoder computes the probability
πθ for each agent in A to be added to the collective S. The size of the vector representation
is specified for the input, output and intermediate hidden embeddings.

Encoder

The encoder is inspired by Vaswani et al. (2017)’s one, but unlike theirs, posi-

tional encoding is not required because the inputs in collective formation are

order-invariant. Instead, an input feed-forward layer is employed to encode

agents A from its dA dimensional feature representation to a dh dimensional

embedding before the main attention blocks. In order to obtain the encoded
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representation of the agents hA, the input embeddings are updated using N

attention blocks1, as depicted in Figure 3.5. Each block consists of two sub-

layers: a multi-head attention layer and a feed-forward layer. Each sub-layer

adds a residual connection (He et al., 2016) and performs layer normalization

(Ba, Kiros, and Hinton, 2016) on its outputs, i.e., LayerNorm(x+sub-layer(x)).

To facilitate residual connections, all sub-layers in the encoder use the same

dimensionality dh.

Figure 3.5: Encoder schema. The arrows represent the flow of data. The encoding process
inside the white box is repeated N times.

Decoder

In order to compute the probabilities πθ(s), the decoder calculates the atten-

tion weights between the hidden representation of the agents hA = {h1,h2, . . . ,hn}
1In line with the notation from equation 3.7, hA = hN

A .
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and a hidden representation of the collective hS. The hidden representation

consists of a single dimension in order to obtain a scalar probability value for

each agent. The following reduction is applied to the hidden representations

of the agents hA so as to produce a one-dimensional hidden representation of

the collective hS:

hS =

∑
i bi,S · hi∑

i bi,S
. (3.9)

At the initial state, the collective is empty, meaning that
∑

i bi,S = 0. In that

case, a dh dimensional zero vector is used as a placeholder, hS = 0.

With the required hidden representations, hA and hS, the decoder performs

two last attention steps to obtain the probabilities πθ(s). Employing equation

3.7, the first attention step updates hA = hN
A with contextual information

about the collective previously encoded in hS. The second attention step

computes the compatibilities uij between hS and hN+1
A with

ui =
(hSW

q)(hN+1
i W k)T

dh
. (3.10)

Then, the compatibilities are normalized by applying a softmax to obtain the

probability of each agent being added to a collective S,

πθ,i(s) =
eγ tanhui∑
j e

γ tanhuj
, (3.11)

where γ tanhui controls the exploration of the model by shrinking the com-

patibilities to the range [−γ, γ].

Learning with Maximum-Entropy Policy Gradient

Previously, an attention-based machine learning model has been presented as

policy πθ(s) for the formation of collectives. This section presents maximum-

entropy policy gradient as a training setup to optimize the model parameters
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θ for this task.

In order to optimize the model for collective formation, it is essential to

recall the ultimate goal: forming a set of collectives R(A) from which a good-

quality solution to the collective formation problem can be obtained by formu-

lating an ILP. So as for the approach to be practical, it has to be guaranteed

i) that R(A) contains collectives associated with high utility values by the cost

function of the domain f , but also that ii) such a set contains a sufficient num-

ber of diverse candidate collectives. Such diversity is fundamental because,

due to the non-overlapping constraint in (2.8), the optimal solution is likely to

contain not only collectives with the highest possible value but also collectives

of lower value. Henceforth, providing a sufficient number of alternatives to the

ILP solver is crucial to achieving a final solution of good quality. To this end,

the model is trained to optimize

L(θ|s) = Eπθ(S|s) [f(S)]︸ ︷︷ ︸
Quality

+ τ · H(πθ(s))︸ ︷︷ ︸
Diversity

, (3.12)

where H(πθ(s)) is the entropy of the model at state s, and τ weights the

contribution of the entropy to the loss function. Optimizing the first term in

(3.12) produces a policy that builds high utility collectives. In addition, the

second term is introduced into the loss function to foster diversity.

Similar to Kool, Van Hoof, and Welling (2018), the model is optimized by

gradient descent employing the well-known REINFORCE algorithm (Williams,

1992). However, in contrast to their work, the gradient considers the additional

entropy term:

∇θL = Eπθ(S|s) [(f(S)− b(s))∇θ log πθ(S|s)] + τ∇θH(πθ(s)), (3.13)

where b(s) is a baseline to reduce the variance of f(S). One popular choice to
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get the baseline is using an exponential moving average of the observed char-

acteristic function values. Another option is training a separate model, known

as a critic, to predict the value of the characteristic function given a state s.

While the first option does not provide a baseline for a particular state s, the

second involves a complex training setup with two networks being optimized

simultaneously, similar to GANs. Therefore, similar to Kool, Van Hoof, and

Welling (2018), the characteristic function value is estimated employing a roll-

out baseline. Given a state s, a rollout uses the best policy obtained so far to

generate a collective and reports its value.

Algorithm 1 REINFORCE with Rollout Baseline
Input: number of epochs E, number of iterations per epoch I, batch size B,
significance α
Output: trained model parameters θ

1: Init θ
2: for epoch = 1, . . . , E do
3: for iter = 1, . . . , I do
4: si ← randomState() ∀i ∈ {1, . . . , B}
5: Si ← rollout(si,θ) ∀i ∈ {1, . . . , B}
6: SBL

i ← rollout(si,θBL) ∀i ∈ {1, . . . , B}
7: ∇L ←

∑B
i=1

(
f(Si)− f(SBL

i )
)
∇θ log πθ(Si|si)

8: ∇LH ← τ
∑B

i=1∇θH(πθ(si))
9: θ ← Adam(θ,∇L+∇LH)

10: end for
11: if OneSidedPairedTTest(πθ, πθBL

) ≤ α then
12: θBL ← θ
13: end if
14: end for
15: return θ

After computing the gradients, the model parameters θ are updated using

an Adam optimizer (Kingma and Ba, 2014). After completing one training

epoch, the model is evaluated against the baseline by comparing their gen-

erated collectives with a paired t-test. If the current model outperforms the

baseline, the baseline is updated with the model parameters. The entire train-
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ing procedure is detailed in Algorithm 1.

Soft Baseline Update

Another popular method to update the baseline parameters, adopted by several

reinforcement learning approaches (Lillicrap et al., 2015; Haarnoja et al., 2018),

is to compute a moving average towards the model parameters after each

iteration

θBL ← λ · θ + (1− λ) · θBL, (3.14)

where λ is the step size in the direction of the model parameters. This method

softly updates the baseline parameters compared to the paired t-test approach,

which updates the baseline only when the model outperforms it. The soft up-

date produces a more robust training setup, usually leading to better perfor-

mance of the trained models.

This update is integrated into algorithm 1 at the end of the inner for loop,

replacing the t-test performed in line 11, which is omitted. The next chap-

ter presents an empirical analysis conducted on the attention-based model,

including a comparison of the different baseline updates. In addition, some ex-

perimental results concerning GANs and Pointer Networks will be presented to

support the claim that they are inefficient approaches for collective formation.

3.5 Experimental Evaluation

This section provides an empirical examination of the general approach to

collective formation introduced in the previous sections. The first section

introduces the application domains and their corresponding state-of-the-art

approaches, which serve as a baseline to confront the proposed approaches.

Then, the empirical methodology is presented in detail. Finally, the last part
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of this section provides empirical results on the solution quality achieved with

the previously introduced approaches for the generation of collectives, i.e.,

GANs, Pointer Networks and attention-based models. A runtime analysis is

not directly performed since the solution quality is evaluated on suboptimal

approaches with the same time budget. The empirical results also include a

detailed study of the attention-based model in terms of its ability to generate

diverse collectives by quantifying the impact of the entropy term.

3.5.1 Application Domains

The primary goal of the experimental evaluation is to assess the performance

of the general approach for collective formation in two structurally different

real-world scenarios. On the one hand, the ridesharing scenario examined by

Bistaffa et al. (2019) is considered, where the authors demonstrate that an

algorithm strongly characterized by a greedy nature can produce solutions

close to the optimal for hundreds of agents within one minute. On the other

hand, the team formation scenario presented by Andrejczuk et al. (2019) is

considered, which does not admit a greedy solution approach due to domain-

specific constraints. Both of these domains are discussed in more detail in the

following sections.

Ridesharing

The ridesharing scenario described in Bistaffa et al. (2019) takes place in a

map of zones Z = {z1, z2, . . . , zm}. An instance of this problem involves a

pool of agents A = {a1, a2, . . . , an}, where each agent wants to travel from an

origin to a destination, formally ai ∈ Z × Z. This thesis considers collectives

with cardinality 1 ≤ |S| ≤ 5 to reflect the standard capacity of cars. Each
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collective is assigned a value by a utility function f(S):

f(S) = k · E(S) + (1− k) ·Q(S), (3.15)

where E(S) quantifies the environmental benefits of forming the collective S,

Q(S) quantifies the quality of service incurred by the members of S, and

k ∈ [0, 1] controls the importance of each of the above-mentioned components.

In the experimental evaluation, k = 0.5 is chosen to assess equal importance to

environmental benefits and quality of service. The reader is referred to Bistaffa

et al. (2019) for more details about each term in the utility function.

Team Formation

The team formation problem discussed in Andrejczuk et al. (2019) consists of a

set of students A = {a1, a2, . . . , an}, which aim at solving a task cooperatively

in teams of equivalent performance. Andrejczuk et al. (2019) study four differ-

ent tasks: Body rhythm, entrepreneur, art design and English. To simplify the

experimental evaluation, this thesis focuses on the “English” task. Each student

is represented by a tuple (g,p, l), where g is a binary value indicating the gen-

der, p is a personality vector with four dimensions: sensing-intuition, thinking-

feeling, extroversion-introversion, perception-judgement, each one evaluated in

the range [−1, 1]. l is a vector measuring seven competence levels in the range

[0, 1]: linguistic, logic-mathematics, visual-spatial, bodily-kinesthetic, musical,

intrapersonal and interpersonal. For each task, at least one student in the

team needs to cover different competencies. A utility function f(S), proposed

by Andrejczuk et al. (2019), assigns a value to each team based on how well

it matches the requirements to carry out a specific task:

f(S) = λ · uprof (S, τ) + (1− λ) · ucon(S), (3.16)
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where uprof (S, τ) measures the proficiency of a team S on a task τ , ucon(S)

measures the congeniality of a team, and λ ∈ [0, 1] controls the relative im-

portance between this two terms. For more details on how each term is com-

puted, the reader is referred to Andrejczuk et al. (2019). Because the goal of

the team formation scenario proposed in Andrejczuk et al. (2019) is to obtain

a balanced set of teams in order to foster cooperation and inclusiveness, the

authors originally defined the corresponding collective formation problem as

the maximization of a Nash product. Thus, to obtain a linear optimization

problem, the problem is formulated as the sum of the logarithms of the teams’

utility values. Here, the same linearized formalization is adopted.

3.5.2 Baselines

To assess the performance of the proposed approach in each of the domains, the

state-of-the-art approaches proposed by Bistaffa et al. (2019) and Andrejczuk

et al. (2019), respectively denoted as PG2 and SynTeam, are employed. For

both approaches, the parameters specified by the authors are used. Notice

that, as mentioned in Section 2.2.3, these approaches already achieve near-

optimal performance in their respective domains; hence the goal of this thesis

is not to claim an improvement over these domain-specific solutions. Also,

neither PG2 nor SynTeam can be used outside of the domain in which they

were originally designed. Thus, the goal is to demonstrate that the proposed

general approach can achieve comparable performance to these approaches

without being restricted to any specific application domain.

A comparison to state-of-the-art complete coalition structure generation

approaches discussed in Section 2.2.1 is not contemplated since they cannot

handle the number of agents considered in the following experiments.

Additionally, the proposed approach is confronted with the MCTS algo-

rithm presented in Wu and Ramchurn (2020), which is the most recent general
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approach for the formation of collectives. According to Wu and Ramchurn

(2020), their approach employs a greedy rollout policy based on selecting col-

lectives with the best value increment at each step. As previously mentioned,

such a greedy policy can not be directly applied in the team formation domain,

preventing the approach in Wu and Ramchurn (2020) from finding any feasible

solution in this case.

For this reason, the experiments contemplate a second version of MCTS

employing a heuristic preventing the choice of actions leading to a poten-

tially unfeasible collective during rollout. This heuristic uses symmetries in

the search space to avoid branches of the tree which lead to a permutation

of a previously explored collective. In order to provide a complete set of ex-

periments, these also contemplate a standard version of MCTS employing a

random rollout, i.e., one selecting actions from a uniform distribution. These

three MCTS approaches are referred to as G-MCTS (greedy), A-MCTS (i.e.,

adapted) and R-MCTS (i.e., random), respectively.

3.5.3 Generative Adversarial Networks

This section presents the results of the experimental evaluation conducted to

assess the performance of GANs as a model to generate candidate collectives

for the general approach.

Empirical Methodology

To assess the capacity of GANs to generate a set of good candidate collectives,

a comparison of the candidates generated by GANs and PG2 has been directly

conducted in the ridesharing domain. For the comparison, each model receives

an instance and employs a time budget of 40 seconds to generate as many

collectives. Then, the process is repeated for 20 ridesharing instances, and the
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values of the generated collectives are aggregated in the form of histograms to

be able to be compared in shape and size.

Training - Training times may vary depending on the size of the training

instances, but in general, it takes between 12 and 24 hours on the employed

machine (2.20 GHz CPU, 128 GB RAM and NVIDIA RTX 2080 Ti GPU).

Hyperparameters - The GAN is implemented in PyTorch. The model pa-

rameters are initialized with Uniform(−1/
√
d, 1/

√
d), where d is the input

size. The generator is composed of 4 feedforward hidden layers, including batch

normalization and a ReLU activation function. An output feedforward layer

with only a sigmoid activation is employed. The input sizes of each layer are

32 (latent vector size), 128, 256, 512 and 1024, respectively. The output size

of the last layer is set to the size of the ridesharing solutions, which is fixed at

20. The discriminator is composed of 3 feedforward hidden layers, including

a ReLU activation function. An output feedforward layer with no activation

function is employed. The input sizes of each layer are 20 (solution size), 512,

256 and 128, respectively. As is usual for the GAN discriminator, the output

size of the last layer is 1 since it outputs a single scalar value. The model is

trained during 100 epochs consisting of 400 batches with 256 instances each.

Concerning the optimization of the model parameters, a learning rate of 10−4

is employed.

Solution Quality

GANs, similar to supervised approaches, require thousands of examples used

during training to show the model what structure high-value solutions to the

collective formation share. Thus, the model is trained on a dataset obtained

by sampling random collectives and selecting the ones over a specific thresh-

old. Increasing the threshold might improve solution quality but also increase

the time required to generate a sufficient amount of collectives to train the
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model. For the experiments, a threshold of f(S) ≥ 1 has been employed in

the ridesharing domain as it is fast to obtain collectives of decent performance.

The choice of the threshold depends on the characteristic function of the do-

main. As a result, the threshold must be tuned based on prior knowledge of

the distribution of values, which represents a limitation since previous domain

knowledge is not available in general. Figure 3.6 shows the distribution of

values of collectives in the dataset obtained for the ridesharing domain, which

needs to be learned by the GAN.

Figure 3.6: Distribution of values of the collectives in the training set of the ridesharing
domain.

Although the GAN learns to generate collectives better than sampling them

randomly, 3.7 shows that very few values satisfy f(S) ≥ 1, while most of them

are under this threshold. Therefore, the GAN does not correctly replicate the

distribution of values present in the dataset. In addition, comparing it to the

greedy approach by Bistaffa et al. (2019), the quality of the collectives is far

from being useful for the proposed general approach.
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(a) GAN (b) PG2

Figure 3.7: Comparison of the distribution of values of collectives generated for ridesharing
by the GAN and the PG2.

In order to improve the performance, one could choose to increase the

threshold, so the GAN learns from higher quality collectives. This poten-

tially presents two problems. First, the dataset generation procedure could

be costly in terms of computation time. Second, increasing the threshold

too much could remove some collectives, which, despite being of lower value,

they form close-to-optimal solutions because they synergize with other high-

value collectives. In any case, because the GAN does not manage to capture

the dataset distribution adequately, other promising approaches (pointer net-

works and attention-based models) better encoding collectives as variable-size

sequences are considered in the following experiments.

3.5.4 Pointer Networks

This section presents the results of the experimental evaluation conducted to

assess the performance of pointer networks as a model to generate candidate

collectives for the general approach.
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Empirical Methodology

To assess the capacity of pointer networks to generate a set of good candi-

date collectives, a comparison of the performance of the general approach is

evaluated when employing pointer networks and PG2 for generating collectives

in the ridesharing domain. A total of 50 problem instances are considered for

ridesharing. For each instance, 40 seconds are employed to generate collectives

and 20 to solve the ILP with the generated collectives. Then, the optimal-

ity ratio is computed for each solution, i.e., the ratio between the average of

the obtained solution values and the value of the optimal solution, which is

obtained by solving (2.8) to optimality.

Training - Training times may vary depending on the size of the training

instances, but in general, it takes between 12 and 24 hours on the employed

machine (2.20 GHz CPU, 128 GB RAM and NVIDIA RTX 2080 Ti GPU).

Hyperparameters - The pointer network is implemented in PyTorch. The

model parameters are initialized with Uniform(−1/
√
d, 1/

√
d), where d is the

input size. The encoder is composed of an embedding feedforward layer and

a recurrent neural network, both with a hidden size of 512. The decoder is

composed of the attention operation previously described, with a single head

and a hidden size of 512. The model is trained during 100 epochs consisting

of 200 batches with 256 instances each. Concerning the optimization of the

model parameters, a learning rate of 10−4 is employed.

Solution Quality

Despite generating a large dataset of high-value collectives by random sam-

pling ensuring following a domain agnostic data generation procedure, it is

impractical for the purpose of the empirical analysis. Therefore, since an

approach generating high-value collectives faster exists (PG2), the pointer net-
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work model is trained under a supervised approach employing the example

solutions provided by PG2, which follows the value distribution in figure 3.7

(b).

The evaluation is conducted on different enhancements introduced to the

standard pointer network originally proposed by Vinyals, Fortunato, and Jaitly

(2015). The first introduces bidirectional RNNs to address the issue that a

token in the input sequence is only informed with previous tokens (Schuster

and Paliwal, 1997). The second one employs teacher forcing (Williams and

Zipser, 1989), a technique used to avoid accumulating errors during training

by using the ground truth as input in the decoding step. Table 3.1 shows the

average optimality ratio obtained with the different pointer network variants

and the baseline for ridesharing PG2.

Model Ratio
PG2 0.98

Pointer Network 0.48
+ Bidirectional 0.47

+ Teacher Forcing 0.69

Table 3.1: Pointer Network results.

The best performing pointer network variant is the one incorporating teacher

forcing, suggesting that the error introduced by inaccuracies carried during se-

quential decisions has a significant negative impact on the training process.

Nevertheless, the pointer network is far from producing collectives with an op-

timality ratio similar to the one achieved by the ad-hoc approach PG2. Adding

to this the fact that pointer networks are not order-invariant, attention-based

models are evaluated as an improved approach to overcoming this limita-

tion. Moreover, different from previous approaches, attention-based models

are trained under a reinforcement learning setup to avoid being tied to a pre-

existing solution for generating high-quality collectives.
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3.5.5 Attention-based Model

This section presents the results of the experimental evaluation conducted to

assess the performance of attention-based model to generate candidate collec-

tives for the general approach.

Empirical Methodology

For each case study, the algorithms mentioned above are evaluated using real-

world datasets considered by Bistaffa et al. (2019) and Andrejczuk et al. (2019).

A total of 50 problem instances are considered for ridesharing, and 20 problem

instances are considered for team formation. For each instance, each algorithm

finds a solution using 50 different seeds (i.e., 0, . . . , 49). Then, the optimality

ratio is computed for each solution, i.e., the ratio between the average of the

obtained solution values and the value of the optimal solution, which is ob-

tained by solving (2.8) to optimality. Finally, the average over all instances of

such optimality ratios is confronted between the different approaches. Stan-

dard deviations are not reported since, in all experiments, they are less than

0.02.

Training & Evaluation - The runtime and the hardware employed for train-

ing and evaluation are the following:

• Training times may vary depending on the size of the training instances,

but in general, it takes between 12 and 24 hours on the employed machine

(2.20 GHz CPU, 128 GB RAM and NVIDIA RTX 2080 Ti GPU).

• For evaluation, a total time budget of 60 seconds is considered. The

portion of the time budget devoted to each part of the proposed approach

is determined using IRACE (López-Ibáñez et al., 2016), a widely used

software for tuning algorithmic parameters. The optimal portion of the

time budget devoted to the generation of promising candidates is 50
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seconds, during which the attention-based model can generate tens of

thousands of collectives.

The attention-based model is implemented in PyTorch and the ILP solver

employed is CPLEX 20.1.0.0.

Hyperparameters -The model parameters are initialized with Uniform(−1/
√
d,

1/
√
d), where d is the input size. The attention operation consists of 8 heads

and a hidden layer size of d = 256, whereas the feed-forward layers use d = 512.

The encoder is composed of 3 attention blocks. The models are trained during

100 epochs consisting of 400 batches with 256 instances each. Regarding eval-

uation, 100 batches of data are considered with the same number of instances

each. Concerning the optimization of the model parameters, a learning rate of

10−4 is employed, and a significance of α = 0.05 for the one-sided paired t-test

is considered.

Solution Quality

This section compares the proposed approach employing the attention-based

model for the generation of collectives and the baselines discussed in Section

4.2.1 on the two considered collective formation domains. Table 3.2 reports

the results of the experiments on the ridesharing domain. The best-performing

attention-based model is comparable with PG2 for n = 50, but PG2 still out-

performs this model for larger sizes. This result is not surprising since PG2

has been specifically designed for this domain.

Results also show that the optimality ratio obtained with the attention-

based model is superior compared to the MCTS approaches (including R-

MCTS, the only MCTS approach in the comparison that does not incorporate

any domain-specific subroutine), which cannot compute a solution of accept-

able quality. Moreover, in any experiments for n = 200, the G-MCTS approach
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n AM (t-test) AM (soft) G-MCTS A-MCTS R-MCTS PG2

50 0.89 0.96 0.92 0.09 0.00 0.98
100 0.76 0.90 0.88 0.04 0.04 0.98
200* 0.65 0.87 − 0.01 0.02 1.00

Table 3.2: Optimality ratio for the attention-based model (AM) and for baseline approaches
in the ridesharing domain. For all experiments, a time budget of 60 seconds was used.
Missing values (“−”) indicate that the approach did not compute any solution better than
the initial one within the time budget. *For n = 200, the ratio with respect to the PG2

solution value is measured since computing the optimal in a manageable amount of time is
not possible.

by Wu and Ramchurn (2020) could not compute a solution better than the

initial one (i.e., all singletons with a total utility of 0) in the considered time

budget. A possible explanation could be that the utility function considered

involves more computation than the ones studied in (Wu and Ramchurn, 2020),

where utilities are directly obtained by sampling from a uniform distribution.

These results could suggest that complex utility functions might hinder the

performance of MCTS in large-scale scenarios.

As for the update rule on the baseline, the approach implementing the soft

update outperforms the one implementing the t-test update.

Table 3.3 reports the results of the experiments on the team formation

domain. As for ridesharing, the optimality ratio obtained in that case is sig-

nificantly better than the one obtained by other MCTS approaches, even the

one adapted explicitly for this domain (i.e., A-MCTS ). Moreover, compared to

SynTeam, it can be observed that the gap between the proposed approach and

the domain-specific approach for team formation is smaller than for rideshar-

ing, especially for the larger problem instances.

In contrast to the ridesharing domain, there is no evident difference between

the t-test update and the soft update for the baseline for team formation. The

most reasonable explanation is that the optimality ratio is already quite good

compared to the one in the ridesharing domain; hence the impact of soft-update
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n AM (t-test) AM (soft) G-MCTS A-MCTS R-MCTS ST

50 0.97 0.97 − 0.84 − 0.99
60 0.95 0.93 − 0.78 − 0.99
100* 0.92 0.91 − − − 1.00

Table 3.3: Optimality ratio for the attention-based model (AM) and for baseline approaches
in the team formation domain. ST indicates the results for the SynTeam approach. For all
experiments, a time budget of 60 seconds was used. Missing values (“−”) indicate that the
approach did not compute any solution better than the initial one within the time budget.
*For n = 100, the ratio with respect to the solution computed by SynTeam is reported since
computing the optimal in a manageable amount of time is not possible.

in team formation is less pronounced.

Impact of Entropy

One of the most important components of the attention-based model is the

entropy term in Equation 3.13, which allows the model to generate a wider

variety of candidates, hence providing more options to the ILP solver and

resulting in a better overall performance of the approach. In this section, the

impact of entropy is evaluated concerning the variety of candidates generated

for the ridesharing and team formation domains. To this end, a second set of

experiments is conducted, comparing the distribution over the values of the

collectives generated by the model with and without entropy (τ = 0.05 and

τ = 0.00, respectively)2 to the distribution over the values of the collectives

in the optimal solution. All these distributions are obtained by performing

a Gaussian Kernel Density Estimation (Silverman, 2018) over thousands of

collectives generated by the models, given a problem instance.

Figures 3.8 and 3.9 report the distribution over the values for six different

example instances of the ridesharing and team formation domains. By looking

at the distribution of the values, it can be observed that the model with higher
2Increasing the τ parameter over 0.05 affected the convergence of the model negatively

during training.
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entropy covers a broader range of values than the one with lower entropy. In

this respect, it can be observed that the model with higher entropy produces

distributions closer to the optimal ones when compared with the distribution

produced by the model with lower entropy. Indeed, a model will perform better

when it generates a distribution of values similar to the ones in the optimal

solution.

In order to measure such a similarity, the Kullback-Leibler divergence is

measured between the distribution produced by the models (standard and

entropy-enhanced) and the distribution of values in the optimal solution. The

distribution of values obtained employing the entropy-enhanced model is closer

to the optimal one in 157 instance over a total of 200 in the ridesharing domain.

Moreover, the average divergence over these samples is lower for the model

with higher entropy, and the p-value is 3 · 10−6. The analysis in the team

formation domain further confirms these results. In this case, the entropy-

enhanced model produces a distribution closer to the optimal one for all test

instances.

Overall, these results confirm that adding entropy in the process of gener-

ating collectives is beneficial for collective formation problems since the model

associated with a higher entropy can generate collectives with lower values

that, when combined with higher-valued ones, lead to better solutions com-

puted by the ILP.
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(a) First instance (b) Second instance (c) Third instance

(d) Fourth instance (e) Fifth instance (f) Sixth instance

Figure 3.8: Probability density of the values of collectives generated by the attention-based
model employing τ = 0.00 and τ = 0.05 for different ridesharing instances.

(a) First instance (b) Second instance (c) Third instance

(d) Fourth instance (e) Fifth instance (f) Sixth instance

Figure 3.9: Probability density of the values of collectives generated by the attention-based
model employing τ = 0.00 and τ = 0.05 for different team formation instances.
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Chapter 4

Capacitated Multi-Agent Pick-up

and Delivery

The previous chapter presented a general approach that, by incorporating into

a classical approach a machine learning component learning the domain struc-

ture, achieves to provide solutions of high quality to a variety of collective

formation problems. However, the formation of collectives is sometimes en-

tangled with other optimization goals. For instance, this chapter studies the

capacitated MAPD problem, which combines the assignment of pickup and de-

livery tasks (formulated as a collective formation problem) with the planning

of the paths and resolution of the derived conflicts. Thus, the task assignment

component needs to account for the paths and conflicts in order to produce an

assignment leading to optimal paths.

The following sections present the approach for capacitated MAPD, in-

troducing minor changes to the attention-based model in order to be used

for the assignment of pickup and delivery tasks to the agents. The resulting

approach combines the attention-based model, which performs the task as-

signment, with CBS, which implements a conflict resolution strategy to plan

conflict-free paths. An empirical evaluation is conducted to assess the per-
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formance of the proposed approach by comparing it to various approaches,

including some state-of-the-art. Finally, a discussion on how to overcome the

limitations of the attention-based model for the capacitated MAPD problem

is provided at the end of the chapter.

4.1 Solution Approach

This section proposes a solution approach for capacitated MAPD introducing

an attention-based model to assign tasks to agents. Following the approach by

Chen et al. (2021), the task assignment and path planning are integrated, such

that the task assignment component can decide based on the increment of path

cost derived from conflicts occurring during the planning of paths of specific

agents. Their approach prioritizes assigning tasks to agents by considering the

total travel distance experienced by an agent incorporating a specific task into

its route. Despite working well in practice, the decisions performed by their

approach are intrinsically greedy, affecting the final solution cost. Instead, the

attention-based task assignment proposed in this thesis learns by observing the

total travel cost of the final assignment, going beyond greedy decisions.

On a high level, the attention-based task assignment and the approach

by Chen et al. (2021) construct an assignment incrementally, following the

instructions provided in algorithm 2. Initially, the algorithm receives the set

of agents A and the set of tasks T of a particular problem instance. Then,

the approach, starting with an empty assignment Si for each agent ai, keeps

adding tasks to the assignments Si based on a priority heap H until all tasks

are assigned. The priority heap H consists of elements Hij ∈ R indicating the

priority of assigning task j to agent i. The difference between both approaches

resides in how they compute the priority heap, i.e. how they model function

h(S, A, T ). In Chen et al. (2021), the authors propose to use a minimum
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cost assignment based on the total travel delay. Instead, this thesis proposes

to learn the priority heap leading to the best expected final total travel cost

with an attention-based model. Another important difference between the

two approaches is how they perform path-planning. The computation of the

paths in Chen et al. (2021) is implicit inside function h. Because it integrates

path planning, the assignment can decide by considering the paths. However,

its decisions only account for the agents which already have planned their

path, thus leading to potentially suboptimal assignments. In contrast, the

attention-based task assignment, performing as h, does not consider the paths

of the agents. Instead, the paths are planned optimally when the assignment

of tasks has finished. Still, a disadvantage derived from not integrating path-

planning is that the attention-based model is not provided with the exact paths

but only with the pickup and delivery locations.

Algorithm 2 Integrated approach for task assignment
Input: A set of agents A, a set of tasks T

1: S ← {S1, S2, . . . , S|A|} where Si ← ∅ ∀ai ∈ A
2: while T ̸= ∅ do
3: H ← h(S, A, T )
4: i′, j′ ← argmin(H)
5: Si′ ← Si′ ∪ tj′
6: T = T − tj′
7: end while
8: return S

The attention-based model employed here to compute the priority heap H

is very similar to the one used for general collective formation problems in

the previous chapter. Nevertheless, in this case, a collective of tasks must be

formed based on the initial position of agents A. The next section presents the

structure of the attention-based model designed to consider this new problem

dimension.
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4.1.1 Attention-based Task Assignment

In order to perform the task assignment, the attention-based model needs to

compute the priority heap values Hij, corresponding to the priority of assign-

ing task j to agent i. To this end, the agents A (represented by a vector

with the agents starting position) and tasks T (represented by a vector with

the pickup and delivery locations for each task) are encoded to obtain their re-

spective hidden representations hA and hT by two independent encoders, both

adopting the same architecture as the one presented in figure 3.5. The hidden

representation of the collective hS is obtained by computing the average of

the hidden representation of tasks present in the collective, as in equation 3.9.

Then, because a collective of tasks needs to incorporate also the agent that is

executing them, the hidden representation of the collective hS is updated by

concatenating the hidden dimensions of hA and hS, and passing the output

through a feed-forward (FF ) layer to obtain a hidden representation of the

same size:

hS = FF (concat(hS,hA)). (4.1)

Then, once hS has been updated, the compatibilities (equation 3.10) between

hS and hT are computed to calculate the output probabilities with equation

3.11.

Apart from requiring an encoding for agents and tasks, the attention-based

model for the task assignment is significantly different from the model for col-

lective formation in that the tasks and collectives encodings are performed for

each agent in order to obtain a vector indicating the probability of assigning

the tasks to each agent. As a result, the encoder-decoder attention-based model

for task assignment (figure 4.1) adds a new dimension to the variables it con-

siders, in contrast to the encoder-decoder attention-based model for collective

formation (figure 3.4). In the attention-based model for task assignment, there
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is one output probability vector for each agent i indicating the probability of

selecting each task j, which values define the probability heap, i.e., Hij = πθij.

Figure 4.1: Encoder-decoder schema. The encoder produces a hidden embedding of the
tasks T , agents A and collective S. Then, the decoder computes the probabilities πθ for
each task in T to be added to the collective S corresponding to agent A. The size of the
vector representation is specified for the input, output and intermediate hidden embeddings.

Learning Optimal Assignments with Policy Gradient

The previous section describes how to adapt the attention-based model for col-

lective formation to perform the assignment of tasks to agents in a capacitated

MAPD problem. This section presents the training setup to learn optimal

assignments for this problem.

In order to obtain an optimal assignment, the model needs to learn the as-

signment producing the minimum total travel distance travelled by the agents

while carrying the assigned tasks. To this end, the model, defining a parametrized

policy πθ(S|s), is trained to optimize

L(θ|s) = Eπθ(S|s) [f(S)] , (4.2)
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where f(S) is the total travel distance of the assignment S.

As in the previous chapter, the model is optimized by gradient descent with

the REINFORCE algorithm, described in algorithm 1. However, the entropy

term is not included in equation 4.2 because diversity is no longer a requirement

as there is no need to aggregate single agent assignments by means of an ILP.

Concerning the baseline update rule, the soft baseline update is employed as

it is superior to the t-test update, as demonstrated in the previous chapter.

The next section presents the experimental evaluation comparing the per-

formance of the attention-based model to other existing assignment approaches,

including the integrated RMCA approach, when employed for assigning pickup

and delivery tasks for the capacitated MAPD problem.

4.2 Experimental Evaluation

In this section, the attention-based model is evaluated as a task assignment

approach for the capacitated MAPD problem. The following parts of this sec-

tion describe the baselines confronted with the attention-based model and the

methodology employed to train and evaluate the model. Finally, the solution

quality is presented in terms of the total travel distance of the agents and the

number of conflicts derived from an assignment.

4.2.1 Baselines

Three baseline approaches are considered to assess the performance of the

attention-based model for the task assignment in the capacitated MAPD prob-

lem. The first one, denoted as Hungarian, employs the Hungarian method to

recursively assign tasks to agents based on the total travel distance computed

without considering conflicts. Thus, this approach has two sources of error;

first, its decisions are guided by a greedy component since they only account
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for the immediate impact on the total travel distance instead of considering

the effect of possible future decisions, and second, it is agnostic about conflicts.

The second considered approach, denoted as TSP, consists in formulating the

assignment problem as a TSP and solving it employing the OR-Tools soft-

ware (Perron and Furnon, 2022). Although the greedy component is no longer

present in this approach, the path planning component is still agnostic about

conflicts since it only views the pickup and delivery locations given as a distance

matrix whose values correspond to the total travel distance, not considering

the conflicts. The third and last approach is the one by Chen et al. (2021)

integrating task assignment and path planning, which incorporates conflicts

into the assignment. Still, the assignment is performed recursively, similar to

the Hungarian approach, thus also suffering from greedy decisions.

4.2.2 Empirical Methodology

To assess the capacity of the attention-based model to produce task assign-

ments leading to an optimal total travel distance, the model has been com-

pared to the Hungarian, the TSP and the RMCA approaches. First, each

approach (except RMCA) is employed to perform a task assignment over 50

instances, each consisting of 20 agents with a fixed capacity of 3 and 50 tasks.

Then, the resulting assignments are passed to PBS (Ma et al., 2019), a variant

of the CBS algorithm with prioritized conflict resolution, and the total travel

distance and the number of conflicts at the root of PBS are reported. The

RMCA approach employs the same instances and, by performing task assign-

ment and conflict resolution simultaneously, reports the total travel distance.

The number of root conflicts produced by the RMCA approach is computed

by aggregating the conflicts encountered during execution but only once for

each agent in order to make a fair comparison with other approaches which

compute the number of root conflicts and do not consider conflicts in the rest
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of the branch. All the approaches use a total time budget of 600 seconds for

the whole process, despite computation times varying a lot from ∼ 10 seconds

to ∼ 300 seconds between different instances. Only a few instances exceeded

the time budget, in which case they were removed from the analysis.

Environment - The experiments are performed on a 21 × 35 4-neighbour

grid, representing the structure of a warehouse, depicted in figure 4.2. This

grid structure, proposed by Ma et al., 2017, guarantees that a solution to a

problem instance exists as long as the agents and task pickup and delivery

locations are initialized in the so-called task endpoints (dark green cells in

figure 4.2).

Figure 4.2: 21× 35 4-neighbour grid representing the structure of the warehouse where the
empirical analysis of the capacitated MAPD problem has been conducted. Dark cells are
blocked. Dark green cells are task endpoints. Squares, circles and triangles are agents,
pickup and delivery locations respectively.

Training - Training times may vary depending on the size of the training

instances, but in general, it takes between 12 and 24 hours on the employed

machine (2.20 GHz CPU, 128 GB RAM and NVIDIA RTX 2080 Ti GPU).

Hyperparameters - The attention-based is implemented in PyTorch. The

model parameters are initialized with Uniform(−1/
√
d, 1/

√
d), where d is

the input size. The attention operation consists of 8 heads and a hidden layer

size of d = 256, whereas the feed-forward layers use d = 512. The encoder

is composed of 3 attention blocks. The models are trained during 100 epochs
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consisting of 400 batches with 256 instances each. Regarding evaluation, 100

batches of data are considered with the same number of instances each. Con-

cerning the optimization of the model parameters, a learning rate of 10−4 is

employed, and a significance of α = 0.05 for the one-sided paired t-test is

considered.

4.2.3 Experimental Results

The results of the experimental evaluation are presented in figure 4.3. In

that figure, the solution cost shows the total travel distance distribution over

the evaluated instances for the four studied approaches. The number of root

conflicts is presented in the same figure with the purpose of obtaining an

indicator of how well each approach takes into account the possible conflicts

derived from the task assignment.

On smaller instances (10 agents and 20 tasks), TSP is the best-performing

approach. The explanation is that TSP produces an optimal solution in the

absence of conflicts, and small instances tend to have fewer conflicts. In the

second place, the attention-based model and RMCA show similar performance.

Moreover, all the approaches show a similar amount of conflicts at the root

of CBS, confirming that the number of conflicts in small instances does not

impact the solution quality.

On larger instances (20 agents and 50 tasks), while the integrated RMCA

approach is superior in all aspects, the attention model is significantly bet-

ter than the Hungarian approach and shows similar performance as the TSP

approach. However, by looking at the number of root conflicts in CBS, the

attention-based model seems unable to reduce them. Thus, it is likely that the

attention-based model decides on the assignment only guided by the locations

of pickup and delivery points, not by the potential conflicts. Nonetheless, con-

sidering both aspects is essential for achieving solutions closer to the optimal
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(a) Solution cost for 10 agents and 20 tasks. (b) Solution cost for 20 agents and 50 tasks.

(c) Root conflicts for 10 agents and 20 tasks. (d) Root conflicts for 20 agents and 50 tasks.

Figure 4.3: Comparison of the solution cost and the number of conflicts at the root of CBS
between four task assignment approaches: Hungarian method, TSP formulation, attention-
based model and the integrated RMCA approach.

one. Therefore, the following section discusses possible solutions to overcome

this limitation.

4.3 Limitations of the Attention-based Task As-

signment

In the previous sections, the attention-based model has been compared with

other task assignment approaches for the capacitated MAPD problem. Results

showed the attention-based model is not able to capture the knowledge related

to the conflicts and cannot take decisions by considering these. Although

one could argue that, in practice, the attention-based model could potentially
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learn to infer a mapping from the pickup and delivery locations assigned to

an agent to its path in order to provide an assignment minimizing the total

travel distance, the experimental results show that this exceeds the learning

capabilities of the model, as the number of conflicts does not seem to be

reduced. Therefore, this section discusses two different directions in order to

make the approach knowledgeable about the impact of conflicts in the paths

of the agents.

The first direction focuses on enhancing the machine learning component,

i.e., the attention-based model, with knowledge about the paths. More pre-

cisely, by encoding a representation of the paths P into a hidden representation

hP , and combining it into the representation of a collective as in equation 4.1.

The representation of the paths is obtained by a path-planning approach and

can incorporate different levels of knowledge:

1. Optimal ordered sequence of pickup and delivery locations minimizing

the travel distance without considering conflicts (obtained solving the

TSP formulation).

2. Optimal paths at the root of CSB without considering conflicts.

3. Optimal paths considering conflicts, obtained by fully solving the path-

planning and conflict resolution with CBS.

These different representations are ordered from the one which requires less

computation but also introduces less knowledge to the one requiring more

computation but also introduces more knowledge about the paths. In all these

alternatives, the paths are represented by an ordered sequence. Thus, the

encoder must recognize the order in the input sequence. An interesting solution

to this challenge is incorporating the positional encoding employed in Vaswani

et al. (2017).
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The second direction accepts that the machine learning component lacks

the required abilities to reason about possible constraints derived from the

paths and proposes an anytime improvement strategy that starts with the as-

signment provided by the attention-based model and, by computing the travel

distance of each assignment by means of CBS, it replaces the assignments

with the highest travel distance with other assignments also proposed by the

attention-based model. With this solution, the attention-based model would

need to be trained considering the entropy term to generate a diverse of pos-

sible assignments.
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Chapter 5

Conclusions and Future Work

This thesis has focused on collective formation, a challenging problem present

in many real-world applications connected to Sustainable Development Goals.

Existing solution approaches for the formation of collectives rely on domain-

specific instructions introduced by an expert with prior knowledge about the

structure of the application domain. The lack of generality is the main issue

of existing approaches, which are devised for specific applications. This thesis

proposes a novel approach introducing machine learning techniques for prob-

lems involving the formation of collectives. The proposed approach consists

of a combination of a machine learning component and an ILP solver. The

machine learning model is trained to generate high-quality candidate collec-

tives by learning the structure of a particular application domain. The ILP

solver computes a solution to the collective formation problem by finding the

optimal set of non-overlapping collectives over the set of high-quality candi-

date collectives produced by the machine learning component. The proposed

approach is able to compete with the state-of-the-art approaches for collec-

tive formation in terms of solution quality while not requiring specific ad-hoc

instructions introduced to enhance the performance of the approaches on the

specific domains. Therefore, the proposed approach can be used for poten-
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tially new collective formation problems without requiring ad-hoc algorithmic

development. In particular, this thesis showed that:

1. The quality of the solutions provided by the proposed approach can com-

pete with the quality of the solutions provided by the PG2 and SynTeam

approaches on the ridesharing and team formation domains. The pro-

posed approach also outperforms the most general collective formation

approach based on MCTS on both domains.

2. Unlike PG2 and SynTeam, the machine learning model can learn the

structure of high-quality collectives in the ridesharing and team forma-

tion domains without the need for further algorithm design.

3. Among the different machine learning models evaluated (i.e., GANs,

pointer networks and the attention-based model), the attention-based

model better adapts to the collective formation task because it allows

variable-size inputs and outputs, also guaranteeing order invariance. This

is confirmed by the experimental evaluation, which shows that the attention-

based model outperforms GANs and Pointer networks.

4. Concerning the training methodology, since reinforcement learning does

not require examples to learn from, it is a better framework for building

general approaches than supervised learning.

5. A fundamental aspect that contributes to improving the quality of the

solutions produced by the proposed approach has been the introduction

of the entropy term in the objective function in order to enhance diversity

in the set of promising collectives generated by the attention-based model.

Diversity is critical to provide the ILP solver with more varied candidates

from which to construct better solutions.
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6. Extending the use of the attention-based model to other approaches in-

volving the formation of collectives requires significant changes in the

architecture. Although the task assignment problem only requires an

additional encoder, when combined with conflict resolution and path

planning in the capacitated MAPD problem, the assignment generated

by the attention-based model does not account for the derived conflicts.

Overall, this thesis offers a general-purpose approach that, without special-

ized domain knowledge, can be used to solve a variety of real-world collective

formation problems involving hundreds of agents. The analysis and discussion

conducted in this thesis of the various methodologies set the stage towards

the application of the approach in other combinatorial optimization problems

involving the formation of collectives.

Despite the above-mentioned contribution to the state-of-the-art, the work

presented in this thesis can be improved and extended according to several in-

teresting future research lines. First, a promising direction is the study of the

proposed general approach to other collective formation problems, e.g. in the

coordination of robots in emergency scenarios (Ramchurn et al., 2010) or in col-

lective energy purchasing (Vinyals et al., 2012). Second, the study of method-

ologies to incorporate external constraints into the proposed approach also

represent an interesting future research line. For instance, the attention-based

approach is not able to produce collectives which satisfy requirements such as

the student’s preferences in team formation or car availability in ridesharing.

Last, and probably the most challenging direction, is extending the use of the

attention-based model to problems which combine collective formation with

other combinatorial problems. For instance, with the study of the capacitated

MAPD problem, this thesis aims to reveal the limitations of the current model

in such scenarios and what improvements can contribute to extending the use

of the model to more complex domains.
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Sommario

Questa tesi considera il problema della formazione di collettivi di agenti per

domini di applicazione che permettono di raggiungere gli Obiettivi di Sviluppo

Sostenibile (ad esempio, mobilità condivisa e apprendimento cooperativo). Tali

problemi richiedono approcci performancti che possano produrre soluzioni di

alta qualità per centinaia di agenti. Con questo obiettivo in mente, le soluzioni

esistenti per la formazione di collettivi si concentrano sullo sfruttare le carat-

teristiche specifiche del dominio di applicazione considerato. Tuttavia, gli ap-

procci risultanti non sono trasferibili ad altri problemi di formazione di col-

lettivi. Pertanto, è necessario studiare approcci generali che non richiedano

conoscenza preliminare del dominio, tali da essere applicati a domini differ-

enti.

Su questa linea, questa tesi propone un approccio generale per la formazione

di collettivi basato su una innovativa combinazione tra machine learning e un

integer linear program. Più precisamente, un componente di machine learning

viene addestrato per generare un insieme di collettivi candidati che hanno la

possibilità di fare parte di una soluzione. Quindi, tali collettivi e i loro valori

di utilità corrispondenti vengono introdotti in un integer linear program che

trova una soluzione al problema. In questo modo, la componente di machine

learning apprende la struttura che caratterizza i collettivi più promettenti in

un particolare dominio, rendendo l’intero approccio valido per diverse appli-

cazioni.



Inoltre, l’analisi empirica condotta su due domini di applicazione realistici

(mobilità condivisa e apprendimento cooperativo) dimostra che l’approccio

proposto fornisce soluzioni di qualità paragonabile agli approcci allo stato

dell’arte per ciascun dominio.

Infine, questa tesi mostra anche che l’approccio proposto può essere esteso a

problemi che combinano la formazione di collettivi con altri obiettivi di ottimiz-

zazione. Più precisamente, questa tesi propone un’estensione dell’approccio di

formazione di collettivi per l’assegnazione di posizioni di ritiro e consegna agli

robot in un magazzino. La valutazione sperimentale mostra che, sebbene sia

possibile utilizzare l’approccio di formazione di collettivi per questo scopo, sono

necessari diversi miglioramenti per competere con gli approcci più avanzati.

Nel complesso, questa tesi si pone l’obiettivo di dimostrare che il machine

learning può essere combinato con successo con gli approcci classici di ot-

timizzazione per la formazione di collettivi, apprendendo la struttura di un

dominio, riducendo la necessità di algoritmi concepiti ad-hoc per un dominio

di applicazione specifico.
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