
Hindawi Publishing Corporation
Applied Computational Intelligence and Soft Computing
Volume 2011, Article ID 980216, 19 pages
doi:10.1155/2011/980216

Research Article

A Probability Collectives Approach with a Feasibility-Based
Rule for Constrained Optimization

Anand J. Kulkarni and K. Tai

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798

Correspondence should be addressed to K. Tai, mktai@ntu.edu.sg

Received 6 May 2011; Accepted 6 September 2011

Academic Editor: R. Saravanan

Copyright © 2011 A. J. Kulkarni and K. Tai. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper demonstrates an attempt to incorporate a simple and generic constraint handling technique to the Probability
Collectives (PC) approach for solving constrained optimization problems. The approach of PC optimizes any complex system
by decomposing it into smaller subsystems and further treats them in a distributed and decentralized way. These subsystems can
be viewed as a Multi-Agent System with rational and self-interested agents optimizing their local goals. However, as there is no
inherent constraint handling capability in the PC approach, a real challenge is to take into account constraints and at the same
time make the agents work collectively avoiding the tragedy of commons to optimize the global/system objective. At the core
of the PC optimization methodology are the concepts of Deterministic Annealing in Statistical Physics, Game Theory and Nash
Equilibrium. Moreover, a rule-based procedure is incorporated to handle solutions based on the number of constraints violated
and drive the convergence towards feasibility. Two specially developed cases of the Circle Packing Problem with known solutions
are solved and the true optimum results are obtained at reasonable computational costs. The proposed algorithm is shown to be
sufficiently robust, and strengths and weaknesses of the methodology are also discussed.

1. Introduction

The growing complexity and uncertainty of the problem
domain motivated some researchers to resort to a distributed
and decentralized optimization approach [1–5]. Such an ap-
proach decomposes an entire system into smaller subsystems
for individual optimization to reach the system level opti-
mum. These subsystems together can be viewed as a collec-
tive, which in other words is a group of learning agents or a
multiagent system (MAS). In a distributed MAS, the rational
and self-interested behavior of the agents is very important
to achieve the best possible local goal/reward/payoff, but it is
not trivial to make such agents work collectively to achieve
the best possible global or system objective. Moreover, in the
context of distributed MAS, the concept of “tragedy of com-
mons” certainly becomes important and requires special at-
tention. It refers to the situation in which the rational and
self-interested independent individuals deplete the shared
limited resource in a greedy way, even if it is well understood

that it may not be beneficial for long-term interest collective-
ly for all; that is, an individual may receive a benefit but on
the other hand the loss will be shared among all [6]. In a dis-
tributed MAS, if every rational and self-interested agent tries
to achieve the individual goal in a greedy way, it may lead to
poor system performance [7]. On the other hand, in order to
achieve the true global optimum, not every individual agent
can receive the best it could have. To achieve the best system
objective in a distributed MAS, the tragedy of commons
should be avoided. In addition, similar to conventional (cen-
tralized) optimization approaches, the problem becomes
harder when constraints are involved and thus constraint
handling remains a key issue to be addressed [8–10].

An emerging artificial intelligence tool in the framework
of collective intelligence (COIN) for modeling and control-
ling distributed MAS referred to as probability collectives
(PC) was first proposed by Dr. David Wolpert in 1999 in a
technical report presented to NASA [11]. It is inspired from
a sociophysics viewpoint with deep connections to game

2 Applied Computational Intelligence and Soft Computing

theory, statistical physics, and optimization [2, 12]. From
another viewpoint, the method of PC theory is an effi-
cient way of sampling the joint probability space, converting
the problem into the convex space of probability distribu-
tion. PC considers the variables in the system as individual
agents/players in a game being played iteratively [3, 13, 14].
Unlike stochastic approaches such as genetic algorithm (GA),
swarm optimization or simulated annealing (SA), rather
than deciding on the agent’s moves/set of actions, PC allo-
cates the probability values for selecting each of the agent’s
moves. At each iteration, every agent independently updates
its own probability distribution over a strategy set which is
the set of moves/actions affecting its local goal which in turn
also affects the global or system objective [2]. The process
continues and reaches equilibrium when no further increase
in reward is possible for the individual agent by changing
its actions further. This equilibrium concept is referred to
as Nash equilibrium [15]. The concept is successfully for-
malized and implemented through the PC methodology. The
approach works on probability distributions, directly incor-
porating uncertainty, and is based on the prior knowledge
of actions/strategies of all the other agents. The approach of
PC has been implemented for solving both unconstrained
[4, 5, 7, 16–24] as well as constrained [1, 13, 14, 25–28]
optimization problems. The associated literature is discussed
in the following few paragraphs.

It was demonstrated in [29] optimizing Schaffer’s func-
tion that the search process in PC is more robust/reproduc-
ible as compared to GA. In addition, PC also outperformed
GA in the rate of descent, trapping in false minima and long-
term optimization when tested and compared for the multi-
modality, nonlinearity, and nonseparability in solving other
benchmark problems such as Schaffer’s function, Rosen-
brock function Ackley Path function, and Michalewicz epi-
static function. Some of the fundamental differences between
GA and PC were also discussed in [16]. At the core of the GA
optimization algorithm is the population of solutions. In
every iteration, each individual solution from the population
is tested for its fitness to the problem at hand [16] and the
population is updated accordingly. GA plots the best-so-far
curve showing the fitness of the best individual in the last
preset generations. In PC, on the other hand, the probability
distribution of the possible solutions is updated iteratively.
After a predefined number of iterations, the probability dis-
tribution of the available strategies across the variable space is
plotted in PC optimizing an associated homotopy function.
It also directly incorporates uncertainty due to both imper-
fect sampling and the stochastic independence of agents’
actions [16]. The above comparison with GA indicated that
PC can potentially be applied to wide application areas.

The superiority of the decentralized PC architecture over
a centralized one was underlined in [7] solving the 8-queens
problem. Both approaches differ from each other because of
the distributed sample generation and updating of the proba-
bilities in the former approach. In addition, PC was also com-
pared with the backtracking algorithm referred to as asyn-
chronous distributed optimization (ADOPT) [30]. Although
the ADOPT algorithm is a distributed approach, the commu-
nication and computational load was not equally distributed

among the agents. It was also demonstrated that although
ADOPT was guaranteed to find the solution in each run,
communication and computations required were more than
for the same problem solved using PC.

The approach of PC was successfully applied solving the
complex combinatorial optimization problem of airplane
fleet assignment having the goal of minimization of the num-
ber of flights with 129 variables and 184 constraints. Apply-
ing a centralized approach to this problem may increase the
communication and computational load. Furthermore, it
may add latency in the system and result in the growing pos-
sibility of conflict in schedules and continuity. Using PC, the
goal was collectively achieved exploiting the advantages of
a distributed and decentralized approach by the airplanes
selecting their own schedules depending upon the individual
payoffs for the possible routes [13]. The approach of PC was
also successfully applied solving combinatorial optimization
problems such as the joint optimization of the routing and
resource allocation in wireless networks [17–23].

Two different PC approaches were proposed in [25]
avoiding airplanes collision. In the first approach, every air-
plane was assumed to be an autonomous agent. These agents
selected their individual paths and avoided collision with
other airplanes traveling in the neighborhood. In order to
implement this approach, a complex negotiation mechanism
was required for the airplanes to communicate and cooperate
with one another. In the semicentralized approach, every
airplane was given a chance to become a host airplane which
computed and distributed the solution to all other airplanes.
It is important to mention that the host airplane computed
the solution based on the independent solution shared by
previous host airplane. This process continued in a sequence
until all the airplanes selected their individual paths. Both
approaches were validated solving an interesting airplane
conflict problem in which the airplanes were equidistantly
arranged on the periphery of a circle. The targets of the indi-
vidual airplanes were set as the opposite points on the pe-
riphery of the circle setting the center point of the circle as a
point of conflict. In both approaches, the collision avoidance
constraints were incorporated using a penalty function ap-
proach.

A variation of the original PC approach in [3, 12–14]
referred to as sequentially updated PC (SPC) was proposed
in [24]. The variation was achieved by changing the sampling
criterion and the method for estimating the sampling space
in every iteration. The SPC was tested by optimizing the
unconstrained Hartman’s functions and the vehicle target
assignment type of game. The SPC performed better with
higher dimension Hartman’s functions only but failed to
converge in the target assignment game.

The sampling method as well as associated sampling
space updating scheme of the original PC approach was
modified by the authors of this paper. The modified PC ap-
proach was validated by successfully optimizing the Rosen-
brock function [5]. It was also applied for solving two test
cases of the NP-hard combinatorial problem of Multidepot
multiple travelling salesmen problem (MDMTSP) [1] as well
as the cases of single-depot MTSP (SDMTSP) [26]. In solving
the MDMTSP and SDMTSP, in order to handle constraints,

Applied Computational Intelligence and Soft Computing 3

several heuristic techniques were successfully incorporated.
In addition, a constrained PC approach using penalty func-
tion method successfully solving three test problems was pro-
posed in [27].

The potential of PC in mechanical design was demon-
strated for optimizing the cross-sections of individual bars
and segments of a 10 bar truss [14] and a segmented beam
[4], respectively. The 10 bar truss problem in [14] was solved
as a discrete constrained problem while the segmented beam
problem in [4] was solved as a continuous unconstrained
problem. In [14], the solution was feasible but was worse
than those obtained by other methods [31–33]. The ap-
proach of PC [13, 14] was also tested on the discrete con-
strained problem of university course scheduling [28], but
the implementation failed to generate any feasible solution.

The above discussion shows that PC is versatile and appli-
cable to variegated areas including constrained optimization
problems such as fleet assignment [13], ten bar truss prob-
lem [14], MDMTSP [1], SDMTSP [26], university course
scheduling [28], and so forth. It is important to note that
in [13, 14, 28] the approach of incorporating constraints into
PC algorithms was not explicitly mentioned and demonstrat-
ed. Furthermore, in [1, 26], a repair approach pushing the
solution into the feasible region was implemented. Such an
approach may not be usable for handling generic constraints.
If complexity of the problem and related constraints increase,
the repair work may become more tedious and may add
further computational load, limiting the use of the repair
approach to smaller-size problems with fewer constraints. In
addition, although a constrained PC approach was imple-
mented in [25] as well as by the authors of this paper in [27]
using penalty function method, it was noticed that the ap-
proach was sensitive to the choice of penalty parameter and
its updating scheme, which required several associated pre-
liminary trials.

This paper demonstrates an attempt to develop a generic
constraint handling technique for PC in order to make it an
even more versatile optimization algorithm. A variation of
the feasibility-based rule originally proposed in [34] and fur-
ther implemented in [35–40] was employed solving two cases
of the circle packing problem (CPP). Furthermore, similar to
[34–40] where additional techniques were implemented to
avoid premature convergence, a perturbation approach was
incorporated. In addition, attaining the true optimum solu-
tion to CPP using PC clearly demonstrated its ability to avoid
the tragedy of commons.

The remainder of this paper is organized as follows.
Section 2 discusses various prominent characteristics of the
PC method highlighting its competence over other algo-
rithms optimizing collectives. The framework and detailed
formulation of the constrained PC method is presented in
Section 3. It includes the formulation of homotopy function,
constraint handling technique using the feasibility-based
rule, and the concept of Nash equilibrium. In Section 4, the
validation of the constrained PC approach is shown by solv-
ing two test cases of the CPP. It also includes the associated
problem specific heuristic technique. The evident features,
advantages, and some limitations of the constrained PC ap-
proach are discussed in Section 5. Finally, the concluding

remarks along with the future directions are presented in
Section 6. The Broyden-Fletcher-Goldfarb-Shanno (BFGS)
scheme minimizing the homotopy function is discussed in
the appendix provided at the end of the paper.

2. Characteristics of PC

The PC approach has the following key characteristics that
make it a competitive choice over other algorithms for opti-
mizing collectives.

(1) PC is a distributed solution approach in which each
agent independently updates its probability distribu-
tion at any time instance and can be applied to con-
tinuous, discrete, or mixed variables, and so forth,
[2, 11, 13]. Since the probability distribution of
the strategy set is always a vector of real numbers
regardless of the type of variable under consider-
ation, conventional techniques of optimization for
Euclidean vectors, such as gradient descent, can be
exploited.

(2) It is robust in the sense that the cost function (global/
system objective) can be irregular or noisy; that is, it
can accommodate noisy and poorly modeled prob-
lems [2, 7].

(3) The failed agent can just be considered as one that
does not update its probability distribution, without
affecting the other agents. On the other hand, it may
severely hamper the performance of other techniques
[7].

(4) It provides the sensitivity information about the
problem in the sense that a variable with a peaky dis-
tribution (having highest probability value) is more
important in the solution than a variable with a broad
distribution; that is, peaky distribution provides the
best choice of action that can optimize the global goal
[2].

(5) The formation of the homotopy function for each
agent (variable) helps the algorithm to jump out of
the possible local minima and further reach the glob-
al minima [13, 26].

(6) It can successfully avoid the tragedy of commons,
skipping the local minima and further reach the true
global minima [7].

(7) The computational and communication load is mar-
ginally less and equally distributed among all the
agents [7].

(8) It can efficiently handle problems with a large num-
ber of variables [13].

With PC solving optimization problems as a MAS, it is
worth discussing some of its characteristics to compare the
similarities and differences with multiagent reinforcement
learning (MARL) methods. Most MARL methods such as
fully cooperative, fully competitive, and mixed (neither co-
oper-ative nor competitive) are based on game theory, opti-
mization and evolutionary computation [41]. According to

4 Applied Computational Intelligence and Soft Computing

[41], most of these types of methods possess less scalability
and are sensitive to imperfect observations. Any uncertainty
or incomplete information may lead to unexpected behavior
of the agents. However, the scalability of the fully coopera-
tive methods such as coordination-free methods can be en-
hanced by explicitly using the communication and/or un-
certainty techniques [41–44]. On the other hand, PC is
scalable and can handle uncertainty in terms of probability.
Moreover, the random strategies selected by any agent can be
coordinated or negotiated with the other agents based on the
social conventions, right to communication, and so forth.
This social aspect makes PC a cooperative approach. Fur-
thermore, indirect coordination-based methods work on the
concept of biasing the selection towards the likelihood of the
good strategies. This concept is similar to the one used in
the PC algorithm presented here, in which agents choose the
strategy sets only in the neighborhood of the best strategy
identified in the previous iteration. In the case of mixed
MARL algorithms, the agents have no constraints imposed
on their rewards. It is similar to the PC algorithm in which
the agents respond or select the strategies and exhibit self-
interested behavior. However, the mixed MARL algorithms
may encounter multiple Nash equilibria while in PC a unique
Nash equilibrium can be achieved.

3. Conceptual Framework of Constrained PC

PC treats the variables in an optimization problem as indi-
vidual self-interested learning agents/players of a game being
played iteratively [13]. While working in some definite direc-
tion, these agents select actions over a particular interval and
receive some local rewards on the basis of the system objec-
tive achieved because of those actions. In other words, these
agents optimize their local rewards or payoffs, which also
optimize the system level performance. The process iterates
and reaches equilibrium (referred to as Nash equilibrium)
when no further increase in the reward is possible for the
individual agent through changing its actions further. More-
over, the method of PC theory is an efficient way of sampling
the joint probability space, converting the problem into
the convex space of probability distribution. PC allocates
probability values to each agent’s moves and hence directly
incorporates uncertainty. This is based on prior knowledge
of the recent action or behavior selected by all other agents.
In short, the agents in the PC framework need to have knowl-
edge of the environment along with every other agent’s recent
action or behavior.

In every iteration, each agent randomly samples from
within its own strategy set as well as from within other agents’
strategy sets and computes the corresponding system objec-
tives. The other agents’ strategy sets are modeled by each
agent based on their recent actions or behavior only, that is,
based on partial knowledge. By minimizing the collection of
system objectives, every agent identifies the possible strategy
which contributes the most towards the minimization of the
collection of system objectives. Such a collection of func-
tions is computationally expensive to minimize and also may

lead to local minima [3]. In order to avoid this difficulty,
the collection of system objectives is deformed into another
topological space forming the homotopy function parame-
terized by computational temperature T [45–48]. Due to its
analogy to Helmholtz free energy [12, 45–49], the approach
of deterministic annealing (DA) converting the discrete var-
iable space into continuous variable space of probability dis-
tribution is applied in minimizing the homotopy function.
At every successive temperature drop, the minimization of
the homotopy function is carried out using a second-order
optimization scheme such as the Nearest Newton Descent
Scheme [2–5, 7, 11–14, 16–29] or BFGS Scheme, and so
forth.

At the end of every iteration, each agent i converges to
a probability distribution clearly distinguishing the contri-
bution of its every corresponding strategy value. For every
agent, the strategy value with the maximum probability value
is referred to as the favorable strategy and is used to compute
the system objective and corresponding constraint functions.
This system objective and corresponding strategy values are
accepted based on a variation of the feasibility-based rule
defined in [34] and further successfully implemented in [35–
40]. This rule allows the objective function and the constraint
information to be considered separately. The rule can be de-
scribed as follows:

(a) any feasible solution is preferred over any infeasible
solution;

(b) between two feasible solutions, the one with better
objective is preferred;

(c) between two infeasible solutions, the one with fewer
constraint violations is preferred.

In addition to the above, a perturbation approach is also
incorporated to avoid premature convergence. It perturbs the
individual agent’s favorable strategy set based on its recip-
rocal and associated predefined interval. The solution is
accepted if the feasibility is maintained. In this way, the algo-
rithm continues until convergence by selecting the samples
from the neighborhood of the recent favorable strategies.
The neighborhood space is reduced or expanded according
to the improvement in the system objective for a predefined
number of iterations.

In some of the applications, the agents are also needed to
provide the knowledge of the interagent relationship. It is one
of the information/strategy sets which every other entitled
agent is supposed to know. There is also global information
that every agent is supposed to know. This allows agents to
know the right to model other agents’ actions or behavior.
All of the decisions are taken autonomously by each agent
considering the available information in order to optimize
the local goals and hence to achieve the optimum global
goal or system objective. The following section discusses the
constrained PC procedure in detail.

Applied Computational Intelligence and Soft Computing 5

3.1. Constrained PC Algorithm. Consider a general con-
strained problem (in the minimization sense) as follows:

Minimize G

Subject to gj ≤ 0, j = 1, 2, . . . , s

hj = 0, j = 1, 2, . . . ,w.

(1)

According to [8–10], the equality constraint hj = 0 can
be transformed into a pair of inequality constraints using a
tolerance value δ as follows:

hj = 0 =⇒
⎧
⎨

⎩

gs+ j = hj − δ ≤ 0 j = 1, 2, . . . ,w,

gs+w+ j = −δ − hj ≤ 0.
(2)

Thus, w equality constraints are replaced by 2w inequal-
ity constraints with the total number of constraints given by
t = s+2w. Then, a generalized representation of the problem
in (1) can be stated as follows:

Minimize G

Subject to gj ≤ 0, j = 1, 2, . . . , t.
(3)

In the context of PC, the variables of the problem are con-
sidered as computational agents/players of a social game be-
ing played iteratively [3, 11]. Each agent i is given a prede-
fined sampling interval referred to as Ψi ∈ [Ψlower

i ,Ψ
upper
i].

As a general case, the interval can also be referred to as the
sampling space. The lower limit Ψlower

i and upper limit Ψ
upper
i

of the interval Ψi may be updated iteratively as the algorithm
progresses.

Each agent i randomly samples X [r]
i , r = 1, 2, . . . ,mi

strategies from within the corresponding sampling interval
Ψi forming a strategy set Xi represented as

Xi =
{

X [1]
i ,X [2]

i ,X [3]
i , . . . ,X [mi]

i

}

, i = 1, 2, . . . ,N. (4)

Every agent is assumed to have an equal number of strate-
gies; that is, m1 = m2 = · · · = mi = · · · = mN−1 = mN . The
procedure of modified PC theory is explained below in detail
with the algorithm flowchart in Figure 1.

The procedure begins with the initialization of the
sampling interval Ψi for each agent i, temperature T � 0 or
T = Tinitial orT → ∞ (simply high enough), the temperature
step size αT (0 < αT ≤ 1), convergence parameter ε = 0.0001,
algorithm iteration counter n = 1, and number of test
iterations ntest. The value of αT and ntest are chosen based
on preliminary trials of the algorithm. Furthermore, the
constraint violation tolerance μ is initialized to the number
of constraints |C|; that is, μ = |C|, where |C| refers to the
cardinality of the constraint vector C = [g1, g2, . . . , gt].

Step 1. Agent i selects its first strategy X [1]
i and samples ran-

domly from other agents’ strategies as well. This is a random
guess by agent i about which strategies have been chosen by

the other agents. This forms a “combined strategy set” Y[1]
i

given by

Y[1]
i =

{

X [?]
1 ,X [?]

2 , . . . ,X [1]
i , . . . ,X [?]

N−1,X [?]
N

}

. (5)

The superscript [?] indicates that it is a “random guess”
and not known in advance. In addition, agent i forms one
combined strategy set for every strategy r of its strategy set
Xi, as shown below:

Y[2]
i =

{

X [?]
1 ,X [?]

2 , . . . ,X [2]
i , . . . ,X [?]

N−1,X [?]
N

}

,

Y[3]
i =

{

X [?]
1 ,X [?]

2 , . . . ,X [3]
i , . . . ,X [?]

N−1,X [?]
N

}

,

...

Y[r]
i =

{

X [?]
1 ,X [?]

2 , . . . ,X [r]
i , . . . ,X [?]

N−1,X [?]
N

}

,

...

Y[mi]
i =

{

X [?]
1 ,X [?]

2 , . . . ,X [mi]
i , . . . ,X [?]

N−1,X [?]
N

}

.

(6)

Similarly, all the remaining agents form their combined strat-
egy sets.

Furthermore, every agent i computes mi associated ob-
jective function values as follows:

[

G
(

Y[1]
i

)

,G
(

Y[2]
i

)

, . . . ,G
(

Y[r]
i

)

, . . . ,G
(

Y[mi]
i

)]

. (7)

The ultimate goal of every agent i is to identify its strategy
value which contributes the most towards the minimiza-
tion of the sum of these system objective values; that is,
∑mi

r=1G(Y[r]
i), hereafter referred to as the collection of system

objectives.

Step 2. The minimum of the function
∑mi

r=1G(Y[r]
i) is very

hard to achieve as the function may have many possible local
minima. Moreover, directly minimizing this function is quite
cumbersome as it may need excessive computational effort
[3]. One of the ways to deal with this difficulty is to deform
the function into another topological space by constructing
a related and “easier” function f (Xi). Such a method is re-
ferred to as the homotopy method [45–48]. The function
f (Xi) can be referred to as “easier” because it is easy to com-
pute; the (global) minimum of such a function is known and
easy to locate [45–47]. The deformed function can also be re-
ferred to as homotopy function J parameterized by compu-
tational temperature T represented as follows:

Ji(Xi,T) =
mi∑

r=1

G
(

Y[r]
i

)

+ T f (Xi), T ∈ [0,∞). (8)

For further simplicity and understanding the above homo-
topy function, Ji(Xi,T) can be rewritten as

Ji(Xi,T) =
mi∑

r=1

G
(

Y[r]
i

)

− T f ′(Xi), T ∈ [0,∞). (9)

The approach of deterministic annealing (DA) is applied to
minimize the homotopy function in (9). The motivation
behind this is its analogy to the Helmholtz free energy
[26, 27]. It suggests the conversion of discrete variables into

6 Applied Computational Intelligence and Soft Computing

Start

Form m combined strategy sets associated with every agent

Accept current
objective function

and related strategies

Discard current and
retain previous

objective function with
related strategies

Stop

Accept the system
objective as final solution

along with agents’
associated strategies

Compute the system objective function and associated constraints

Is the solution
feasible?

Compute m objective functions and associated expected local objectives for each agent

Accept current
objective function

and related strategies

Discard current and
retain previous

objective function with
related strategies

Solution remains
unchanged for successive

ntest iterations?

Expand the sampling
interval

Shrink the sampling
interval

Apply self-adaptive
perturbation

Convergence?n = n + 1,
T = T − αTT

Solution is feasible and
remains unchanged for

successive ntest iterations?

n ≥ ntest

Form the homotopy function for each agent

Current feasible system
objective ≤ previous

feasible system
objective?

Number of constraints
satisfed ≥ previous

solution constraints?

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

NoNo

No

No

No

For every agent, set up a strategy set with m strategies, assign uniform probabilities to
every agent’s strategies, and initialize n, T , ntest

For each agent, minimize the Homotopy function using BFGS method and obtain the
probability distribution for every agent identifying its favorable strategy

Figure 1: Constrained PC algorithm flowchart.

Applied Computational Intelligence and Soft Computing 7

random real valued variables such as probabilities. This con-
verts the original collection of system objectives

∑mi
r=1G(Y[r]

i)
into the “expected collection of system objectives”
∑mi

r=1E(G(Y[r]
i)). Furthermore, a suitable function for f (Xi)

is chosen. The general choice is to use the entropy function

Si = −∑mi
r=1q(X [r]

i)log2q(X [r]
i) [44–46]. The following steps

of DA are formulated based on the analogy of the homo-
topy function to the Helmholtz free energy discussed in
[12, 26, 27].

(a) Agent i assigns uniform probabilities to its strategies.
This is because, at the beginning, the least infor-
mation is available (the largest uncertainty and high-
est entropy) about which strategy is favorable for
the minimization of the collection of system objec-

tives
∑mi

r=1G(Y[r]
i). Therefore, at the beginning of the

“game,” each agent’s every strategy has probability
1/mi of being most favorable. Therefore, probability
of strategy r of agent i is

q
(

X [r]
i

)

= 1
mi

, r = 1, 2, . . . ,mi. (10)

Each agent i, from its every combined strategy set

Y[r]
i and corresponding system objective G(Y[r]

i) com-
puted previously, further computesmi corresponding

expected system objective values E(G(Y[r]
i)) as fol-

lows [2, 3, 11–14]:

E
(

G
(

Y[r]
i

))

= G
(

Y[r]
i

)

q
(

X [r]
i

)∏

(i)

q
(

X [?]
(i)

)

, (11)

where (i) represents every agent other than i. Every
agent i then computes the expected collection of sys-

tem objectives denoted by
∑mi

r=1E(G(Y[r]
i)). This also

means that the PC approach can convert any discrete
variables into continuous variable values in the form
of probabilities corresponding to these discrete vari-
ables. As mentioned earlier, the problem now be-
comes continuous but still not easier to solve.

(b) Thus, the homotopy function to be minimized by
each agent i in (9) is modified as follows:

Ji
(
q(Xi),T

) =
mi∑

r=1

E
(

G
(

Y[r]
i

))

− TSi

=
mi∑

r=1

⎛

⎝G
(

Y[r]
i

)

q
(

X [r]
i

)∏

(i)

q
(

X [?]
(i)

)
⎞

⎠

− T

⎛

⎝−
mi∑

r=1

q
(

X [r]
i

)

log2q
(

X [r]
i

)
⎞

⎠

= G
(

Y[1]
i

)

q
(

X [1]
i

)∏

(i)

q
(

X [?]
(i)

)

+ G
(

Y [2]
i

)

q
(

X [2]
i

)∏

(i)

q
(

X [?]
(i)

)

+ · · · + G
(

Y[mi−1]
i

)

q
(

X [mi−1]
i

)∏

(i)

q
(

X [?]
(i)

)

+ G
(

Y [mi]
i

)

q
(

X [mi]
i

)∏

(i)

q
(

X [?]
(i)

)

− T

⎛

⎝−
mi∑

r=1

q
(

X [r]
i

)

log2q
(

X [r]
i

)
⎞

⎠,

(12)

where T ∈ [0,∞). When the temperature T is high
enough, the entropy term dominates the expected
collection of system objectives and the problem be-
comes very easy to be solved.

Step 3. In the author’s previous work [1, 4, 5, 26], Nearest
Newton Descent Scheme [3] was implemented for mini-
mizing the homotopy function Ji(q(Xi),T). Motivated from
this scheme [3], the minimization of the homotopy function
Ji(q(Xi),T) given in (12) is carried out using a suitable
second-order optimization technique such as the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) scheme [50, 51]. It is im-
portant to mention that, similar to the Nearest Newton De-
scent Scheme, the BFGS scheme approximates positive defi-
nite Hessian. The BFGS scheme minimizing (12) is discussed
in the appendix.

Step 4. For each agent i, the optimization process converges
to a probability variable vector q(Xi) which can be seen as
the individual agent’s probability distribution distinguishing
every strategy’s contribution towards the minimization of the

expected collection of system objectives
∑mi

r=1E(G(Y[r]
i)). In

other words, for every agent i, if strategy r contributes the
most towards the minimization of the objective compared
to other strategies, its corresponding probability certainly in-
creases by some amount more than those for the other strate-
gies’ probability values, and so strategy r is distinguished
from the other strategies. Such a strategy is referred to as

a favorable strategy X [fav]
i . As an illustration, the converged

probability distribution for agent i may look like that shown
in Figure 2 for a case where there are 10 strategies, that is,
mi = 10.

Compute the corresponding system objective G(Y[fav])
and constraint vector C(Y[fav]) where Y[fav] is given by

Y[fav] =
{

X [fav]
1 ,X [fav]

2 , . . . ,X [fav]
N−1,X [fav]

N

}

. (13)

Step 5. Accept the system objectiveG(Y[fav]) and correspond-
ing Y[fav] as current solution if the number of constraints
violated Cviolated ≤ μ. Update the constraint violation
tolerance μ = Cviolated and continue to Step 6.

If Cviolated > μ, then discard current system objective
G(Y[fav]) and corresponding Y[fav], and retain the previous
iteration solution and continue to Step 6.

If the current system objective G(Y[fav]) is feasible, that is,
μ = Cviolated = 0 and is not worse than the previous feasible
solution, accept the current system objective G(Y[fav]) and
corresponding Y[fav] as current solution and continue to
Step 6; else discard current feasible system objective G(Y[fav])
and corresponding Y[fav], and retain the previous iteration
feasible solution and continue to Step 6.

8 Applied Computational Intelligence and Soft Computing

5 15 21 10 3 20 12 33300

8

0.5

1

1 2 3 4 5 6 7 9 10

Agent i

Favorable strategy

P
ro

ba
bi

lit
y

Strategy

Figure 2: Probability Distribution of agent i.

Step 6. On the completion of prespecified ntest iterations, the
following conditions are checked for every further iteration.

(a) IfG(Y[fav],n)≤G(Y[fav],n−ntest), then every agent shrinks
its sampling interval as follows:

Ψi ∈
[(

X [fav]
i −

∥
∥
∥Ψ

upper
i −Ψlower

i

∥
∥
∥ · λdown

)

,

(

X [fav]
i +

∥
∥
∥Ψ

upper
i −Ψlower

i

∥
∥
∥ · λdown

)]

,

0 < λdown ≤ 1,

(14)

where λdown is referred to as the interval factor corre-
sponding to the shrinking of sample space.

(b) If G(Y[fav],n) and G(Y[fav],n−ntest) are feasible and
‖G(Y[fav],n) − G(Y[fav],n−ntest)‖ ≤ ε, then the system
objective G(Y[fav],n) can be referred to as a stable so-
lution G(Y[fav], s) or possible local minimum. In order
to jump out of this possible local minimum, a per-
turbation approach is incorporated. It is described
below.

Every agent i perturbs its current favorable strategy X [fav]
i

by a perturbation factor facti corresponding to the reciprocal

of its favorable strategy X [fav]
i as follows:

X [fav]
i = X [fav]

i ±
(

X [fav]
i × facti

)

, (15)

where

facti =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

random value ∈
(

σ lower
1 , σ

upper
1

)

if
1

X [fav]
i

≤ γ,

random value ∈
(

σ lower
2 , σ

upper
2

)

if
1

X [fav]
i

> γ

(16)

and σ lower
1 , σ

upper
1 , σ lower

2 , σ
upper
2 are randomly generated values

between 0 and 1; that is, 0 < σ lower
1 , σ

upper
1 , σ lower

2 , σ
upper
2 < 1,

and σ lower
1 < σ

upper
1 ≤ σ lower

2 < σ
upper
2 . The value of γ as well

as “+” or “−” sign in (15) is chosen based on the preliminary
trials of the algorithm.

It gives a chance to every agent i to jump out of the
local minima and further may help to search for a better
solution. The perturbed solution is accepted if and only if the

feasibility is maintained. Furthermore, every agent expands
its sampling interval as follows:

Ψi ∈
[(

Ψlower
i −

∥
∥
∥Ψ

upper
i −Ψlower

i

∥
∥
∥ · λup

)

,

(

Ψ
upper
i +

∥
∥
∥Ψ

upper
i −Ψlower

i

∥
∥
∥ · λup

)]

,

0 < λup ≤ 1,

(17)

where λup is referred to as the interval factor corresponding
to the expansion of sample space.

Step 7. If either of the two criteria listed below is valid,
accept the current stable system objective G(Y[fav], s) and
corresponding Y[fav], s as the final solution referred to as

G(Y[fav], final) and Y[fav], final = {X [fav], final
1 ,X [fav], final

2 , . . . ,
X [fav], final
N−1 ,X [fav], final

N }, respectively and stop; else continue to
Step 8.

(a) If temperature T = Tfinal or T → 0.

(b) If there is no significant change in the successive sta-
ble system objectives (i.e., ‖G(Y[fav], s)−G(Y[fav], s−1)‖≤
ε) for two successive implementations of the pertur-
bation approach.

Step 8. Each agent i then samples mi strategies from within
the updated sampling interval Ψi and forms the correspond-
ing updated strategy set Xi represented as follows:

Xi =
{

X [1]
i ,X [2]

i ,X [3]
i , . . . ,X [mi]

i

}

, i = 1, 2, . . . ,N.

(18)

Reduce the temperature T = T − αTT , update the iteration
counter n = n + 1, and return to Step 1.

3.2. Nash Equilibrium. To achieve a Nash equilibrium, every
agent in a MAS should have the properties of rationality and
convergence [41–44]. Rationality refers to the property by
which every agent selects (or converges to) the best possible
strategy given the strategies of the other agents. The con-
vergence property refers to the stability condition, that is, a
policy using which every agent selects (or converges to) the
best possible strategy when all the other agents use their poli-
cies from a predefined class (preferably same class). The Nash
equilibrium is naturally achieved when all the agents in a
MAS are convergent and rational. Moreover, a Nash equi-
librium is guaranteed when all the agents use stationary
policies, that is, those policies that do not change over time.
It is worth to mention here that all the agents in the MAS
proposed using PC algorithm exhibit the above-mentioned
properties. It is elaborated in the detailed PC algorithm dis-
cussed in the previous few paragraphs.

In any game, there may be a large but finite number of
Nash equilibria present, depending on the number of strat-
egies per agent as well as the number of agents. It is essential
to choose the best possible combination of the individual
strategies selected by each agent. It is quite hard to go through
every possible combination of the individual agent strategies
and choose the best out of it that can produce a best possible
Nash equilibrium and hence the system objective.

Applied Computational Intelligence and Soft Computing 9

As discussed in the detailed PC algorithm, in each itera-
tion n, every agent i selects the best possible strategy referred

to as the favorable strategy X [fav],n
i by guessing the possible

strategies of the other agents. This information about its fa-

vorable strategy X [fav],n
i is made known to all the other agents

as well. In addition, the corresponding global knowledge

such as system objective valueG(Y[fav],n)=G(X [fav],n
1 ,X [fav],n

2 ,

X [fav],n
3 , . . . ,X [fav],n

N−1 ,X [fav],n
N) is also available to each agent

which clearly helps all the agents take the best possible in-
formed decision in every further iteration. This makes the
entire system ignore a considerably large number of Nash
equilibria but select the best possible one in each iteration
and accept the corresponding system objective G(Y[fav],n).
Mathematically, the Nash equilibrium solution in any iter-
ation can be represented as follows:

G
(

X [fav],n
1 ,X [fav],n

2 ,X [fav],n
3 , . . . ,X [fav],n

N−1 ,X [fav],n
N

)

≤ G
(

X [fav],n
1 ,X [fav],n

2 ,X [fav],n
3 , . . . ,X [fav],n

N−1 ,X [fav],n
N

)

,

G
(

X [fav],n
1 ,X [fav],n

2 ,X [fav],n
3 , . . . ,X [fav],n

N−1 ,X [fav],n
N

)

≤ G
(

X [fav],n
1 ,X [fav],n

2 ,X [fav],n
3 , . . . ,X [fav],n

N−1 ,X [fav],n
N

)

,

...

G
(

X [fav],n
1 ,X [fav],n

2 ,X [fav],n
3 , . . . ,X [fav],n

N−1 ,X [fav],n
N

)

≤ G
(

X [fav],n
1 ,X [fav],n

2 ,X [fav],n
3 , . . . ,X [fav],n

N−1 ,X [fav],n
N

)

,

(19)

whereX [fav],n
i represents any strategy other than the favorable

strategy X [fav],n
i from the same sample space Ψn

i .
Furthermore, from this current Nash equilibrium point

with system objective G(Y[fav],n), the algorithm progresses to
the next Nash equilibrium point with better system objective
G(Y[fav],n+1), that is, G(Y[fav],n) ≥ G(Y[fav],n+1). As the algo-
rithm progresses, those ignored Nash equilibria as well as the
best Nash equilibria selected at previous iterations would be
noticed as inferior solutions.

This process continues until there is no change in the
current solution G(Y[fav],n), that is, no new Nash equilibrium
has been identified that proves the current Nash equilibrium
to be inferior. Hence, the system exhibits stage-wise conver-
gence to a unique Nash equilibrium and the corresponding
system objective is accepted as the final solution G(Y[fav], final).
As a general case, this progress can be represented as
G(Y[fav], 1) ≥ G(Y[fav], 2)≥· · · ≥ G(Y[fav],n) ≥ G(Y[fav],n+1) ≥
· · · ≥ G(Y[fav], final).

4. The Circle Packing Problem (CPP)
A generalized packing problem consists of determining how
best to pack z objects into a predefined bounded space that
yields best utilization of space with no overlap of object
boundaries [52, 53]. The bounded space can also be referred
to as a container. The packing objects and container can be
circular, rectangular, or irregular. Although the problem ap-
pears rather simple and in spite of its practical applications

in production and packing for the textile, apparel, naval,
automobile, aerospace, food industries, and so forth [54], the
CPP received considerable attention in the “pure” mathe-
matics literature but only limited attention in the operations
research literature [55]. As it is proven to be a NP-hard prob-
lem [53, 56–58] and cannot be effectively solved by purely
analytical approaches [59–69], a number of heuristic tech-
niques were proposed solving the CPP [52, 53, 70–82]. Most
of these approaches address the CPP in limited ways, such
as close packing of fixed and uniform sized circles inside a
square or circle container [53, 59–70], close packing of fixed
and different-sized circles inside a square or circle container
[52, 54, 75–82], simultaneous increase in the size of the
circles covering the maximum possible area inside a square
[71–74], and so forth.

As per knowledge of the authors of this paper, the CPP
was never solved in a distributed way. In this paper, as a dis-
tributed MAS, every individual circle changes its size and
position autonomously. This allows for addressing the im-
portant issue of the avoidance of the tragedy of commons
which was also never addressed before in the context of the
CPP. The next few sections describe the mathematical for-
mulation and the solution to two cases of the CPP.

4.1. Formulation of the CPP. The objective of the CPP solved
here was to cover the maximum possible area within a square
by z number of circles without overlapping one another or
exceeding the boundaries of the square. In order to achieve
this objective, all the circles were allowed to increase their
sizes as well as change their locations. The problem is formu-
lated as follows:

Minimize f = L2 −
z∑

i=1

πr2
i (20)

Subject to

√
(

xi − xj
)2

+
(

yi − yj
)2 ≥ ri + r j , (21)

xl ≤ xi − ri, (22)

xu ≥ xi + ri, (23)

yl ≤ yi − ri, (24)

yu ≥ yi + ri, (25)

0.001 ≤ ri ≤ L

2
, (26)

i, j = 1, 2, . . . , z, i /= j, (27)

where L is length of the side of the square, ri is radius of circle
i, xi, yi are x and y coordinates of the center of circle i, xl, yl
are x and y coordinates of the lower left corner of the square,
xu, yu are x and y coordinates of the upper right corner of
the square.

In solving the proposed CPP using constrained PC ap-
proach, the circles were considered as autonomous agents.
These circles were assigned the strategy sets of X-coordinates
and Y-coordinates of the center and the radius. Two cases of
the CPP were solved. These cases differ from each other based

10 Applied Computational Intelligence and Soft Computing

4 5 6 7 8 9 10 11

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

2

5

4

1

3

X-coordinates

Y
-c

oo
rd

in
at

es

(a) Randomly generated initial solution

4 5 6 7 8 9 10 11

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

1
2

3

4

5

X-coordinates

Y
-c

oo
rd

in
at

es

(b) Solution at iteration 401

4 5 6 7 8 9 10 11

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

12

3 5

4

X-coordinates

Y
-c

oo
rd

in
at

es

(c) Solution at iteration 901

4 5 6 7 8 9 10 11

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

12

4

53

X-coordinates

Y
-c

oo
rd

in
at

es

(d) Solution at iteration 1001

4 5 6 7 8 9 10 11

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

1

3

2

4

5

X-coordinates

Y
-c
oo

rd
in
at
es

(e) Stable solution at iteration 1055

Figure 3: Stepwise solution for Case 1.

Applied Computational Intelligence and Soft Computing 11

0 200 400 600 800 1000 1200 1400 1600
−5

0

5

10

15

20

25

Iterations

Sy
st

em
ob

je
ct

iv
e

Converged/stable
solution

Figure 4: Convergence of the objective function for Case 1.

on the initial configuration (location) of the circles as well as
the constraint handling method(s) applied solving each case.
In Case 1, the circles were randomly initialized inside the
square and were not allowed to cross the square boundaries.
The constraints in (21) were satisfied using the feasibility-
based approach described in Section 3. And the constraints
in (22) to (25) were satisfied in every iteration of the algo-
rithm using a repair approach. The repair approach refers
to pushing the circles inside the square if they crossed the
boundaries of it. It is similar to the one implemented by
the authors of this paper in their previous work [1, 26]. In
Case 2, the circles were randomly located in and around the
square and all the constraints from (21) to (25) were satisfied
using the feasibility-based approach described in Section 3.
The initial configuration of Case 1 and Case 2 is shown in
Figures 3(a) and 6(a), respectively.

The constrained PC algorithm solving both cases was
coded in MATLAB 7.8.0 (R2009A), and the simulations were
run on a Windows platform using an Intel Core 2 Duo,
3 GHz processor speed and 3.25GB memory capacity. Fur-
thermore, for both cases, the set of parameters chosen was as
follows: (a) individual agent sample size mi = 5, (b) number
of test iterations ntest = 20, (c) the shrinking interval factor
λdown = 0.05, (d) the expansion interval factor λup = 0.1, (e)
perturbation parameters σ lower

1 = 0.001, σ
upper
1 = 0.01,

σ lower
2 = 0.5, σ

upper
2 = 0.7, γ = 0.99, and the sign in (15) was

chosen to be “−”. In addition to it, a voting heuristic was also
incorporated in the constrained PC algorithm. It is described
in the Section 4.4.

4.2. Case 1: CPP with Circles Randomly Initialized Inside the
Square. In this case of the CPP, five circles (z = 5) were ini-
tialized randomly inside the square without exceeding the
boundary edges of the square. The length of the side of the
square was five units (i.e., L = 5). More than 30 runs of
the constrained PC algorithm described in Section 3 were
conducted solving Case 1 of the CPP with different initial
configurations of the circles inside the square. The true opti-
mum solution was achieved in every run with the average
CPU time of 14.05 minutes, and average number of function
evaluations is 17515.

The randomly generated initial solution, the interme-
diate iteration solutions, and the converged true optimum
solution from one of the instances are presented in Figure 3.
The corresponding convergence plot of the system objective
is presented in Figure 4. The convergence of the associated
variables such as radius of the circles, X-coordinates, and Y-
coordinates of the center of the circles is presented in Figures
5(a), 5(b) and 5(c), respectively. The solution was converged
at iteration 1035 with 26910 function evaluations. The true
optimum value of the objective function (f) achieved was
3.0807 units.

As mentioned before, the algorithm was assumed to have
converged when successive implementations of the perturba-
tion approach stabilize to equal objective function value. It is
evident from Figures 3, 4, and 5 that the solution was con-
verged to true optimum at iteration 1055 as the successive
implementations of the perturbation approach produced
stable and equal objective function values. Furthermore, it is
also evident from Figures 4 and 5 that the solution was per-
turbed at iteration 778, 901, 1136, and 1300. It is clear that
the implementation of the perturbation approach at iteration
901 helped the solution to jump out of the local minima and
further achieve the true optimum solution at iteration 1106.

4.3. Case 2: CPP with Circles Randomly Initialized. In this
case of the CPP, five circles (z = 5) were initialized randomly
in the space with no restriction as in Case 1 where circles were
randomly placed inside the square. The length of the side
of the square was five units (i.e., L = 5). Similar to Case 1,
more than 30 runs of the constrained PC algorithm described
in Section 3 with different initial configuration of the circles
were conducted solving Case 2. The true optimum solution
was achieved in every run with the average CPU time of
14.05 minutes, and average number of function evaluations
is 68406.

The randomly generated initial solution, the interme-
diate iteration solutions, and the converged true optimum
solution from one of the instances of Case 2 are presented in
Figure 6. The corresponding convergence plot of the system
objective is presented in Figure 7. The convergence of the
associated variables is presented in Figures 8(a), 8(b), and
8(c), respectively. The solution was converged at iteration 955
with 24830 function evaluations. The true optimum value of
the objective function (f) achieved was 3.0807 units.

In the instance of Case 2 represented here, the solution
was perturbed at iteration 788, 988, 1170, and 1355. It is
clear that the implementation of the perturbation approach
at iteration 788 helped the solution to jump out of the local
minima and further achieve the true optimum solution at
iteration 955. It is important to mention that the instance
illustrated here did not require the voting heuristic to be
applied.

4.4. Voting Heuristic. In a few instances of the CPP cases
solved here, in order to jump out of the local minimum, a
voting heuristic was required. It was implemented in con-
junction with the perturbation approach. Once the solution
was perturbed, every circle voted 1 to each quadrant which
it does not belong to at all and voted 0 otherwise. The circle

12 Applied Computational Intelligence and Soft Computing

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

2.5

Iterations

R
ad

iu
s

Circle 1
Circle 2
Circle 3

Circle 4
Circle 5

(a) Convergence of the radius

0 200 400 600 800 1000 1200 1400 1600
5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

Iterations

Circle 1
Circle 2
Circle 3

Circle 4
Circle 5

X
-c

oo
rd

in
at

es

(b) Convergence of the X-coordinates of the center

0 200 400 600 800 1000 1200 1400 1600
5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

Iterations

Circle 1
Circle 2
Circle 3

Circle 4
Circle 5

Y
-c

oo
rd

in
at

es

(c) Convergence of the Y-coordinates of the center

Figure 5: Convergence of the strategies of circle 1.

with the smallest size shifted itself to the extreme corner of
the quadrant with the highest number of votes, that is, the
winner quadrant. The new position of the smallest size circle
was confirmed only when the solution remained feasible and
the algorithm continues. If all the quadrants acquire equal
number of votes, then no circle moves its position and the
algorithm continues. The voting heuristic is demonstrated in
Figure 9.

A voting grid corresponding to every quadrant of the
square in Figure 9(a) is represented in Figure 9(b). The solid
circles represent the solution before perturbation while cor-
responding perturbed ones are represented in dotted lines.
The votes given by the perturbed circles (dotted circles) to
the quadrants are presented in the grid. As the maximum
number of votes are given to quadrant 1 (i.e., Q 1), the circle
with smallest size (circle 3) shifts to the extreme corner of the
quadrant Q 1 and confirms the new position as the solution
remains feasible. Based on the trials conducted so far, it was
noticed that the voting heuristic was not necessary to be
implemented in every run of the constrained PC algorithm

solving the CPP. Moreover, in those of the few cases in which
the voting heuristic was required, it was required to be imple-
mented only once in the entire execution of the algorithm. A
variant of the voting heuristic was also implemented in con-
junction with energy landscape paving algorithm [54, 76,
77]. The smallest circle was picked and placed randomly at
the vacant place producing new configuration. It was claimed
that this heuristic helped the algorithm jump out of the local
minima. Furthermore, this heuristic was required to be im-
plemented in every iteration of the algorithm.

5. Discussion

The above solutions using constrained PC indicated that it
could successfully be used to solve constrained optimization
problems such as the CPP. It is evident from the results that
the approach was sufficiently robust and produced true op-
timum results in every run of both cases. It implies that
the rational behavior of the agents could be successfully for-
mulated and demonstrated. It is important to highlight that

Applied Computational Intelligence and Soft Computing 13

3 4 5 6 7 8 9 10 11 12
3

4

5

6

7

8

9

10

11

12
5

1

3

2

4

X-coordinates

Y
-c

oo
rd

in
at

es

(a) Randomly generated initial solution

4 5 6 7 8 9 10 11

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

1

4

3
2

5

X-coordinates

Y
-c

oo
rd

in
at

es
(b) Solution at iteration 301

4 5 6 7 8 9 10 11

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

2
3

4

1
5

X-coordinates

Y
-c

oo
rd

in
at

es

(c) Solution at iteration 401

4 5 6 7 8 9 10 11

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

1

2
3

4

5

X-coordinates

Y
-c

oo
rd

in
at

es

(d) Solution at iteration 601

4 5 6 7 8 9 10 11

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

1

3

4

5

2

X-coordinates

Y
-c

oo
rd

in
at

es

(e) Solution at iteration 801

4 5 6 7 8 9 10 11

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

1

23

4

5

X-coordinates

Y
-c

oo
rd

in
at

es

(f) Stable solution at iteration 955

Figure 6: Stepwise solution for Case 2.

14 Applied Computational Intelligence and Soft Computing

0 200 400 600 800 1000 1200 1400
−5

0

5

10

15

20

Iterations

Sy
st

em
s

ob
je

ct
iv

e

Converged/stable
solution

Figure 7: Solution convergence plot for Case 2.

the distributed nature of the PC approach allowed the total
number of function evaluations to be equally divided among
the agents of the system. This can be made practically evident
by implementing the PC approach on a real distributed plat-
form assigning separate workstations carrying out the com-
putations independently. These advantages along with the
directly incorporated uncertainty using the real-valued prob-
abilities treated as variables suggest that PC can potentially be
applied to real world complex problems.

It is worth to mention some of the key differences of the
PC methodology presented here and the original PC ap-
proach [2, 3, 13, 14]. In the present approach, fewer numbers
of samples were drawn from the uniform distribution of the
individual agent’s sampling interval. On the contrary, the
original PC approach used a Monte Carlo sampling method
which was computationally expensive and slow as the num-
ber of samples needed was in the thousands or even millions.
Most significantly, the sampling in further stages of the PC
algorithm presented here was narrowed down in every itera-
tion by selecting the sampling interval in the neighborhood
of the most favorable value in the particular iteration. This
ensures faster convergence and an improvement in efficiency
over the original PC approach in which regression was neces-
sary to sample the strategy values in the close neighborhood
of the favorable value. Moreover, the coordination among the
agents representing the variables in the system was achieved
based on the partial small bit of information. In other words,
in order to optimize the global/system objective, every agent
selects its best possible strategy by guessing the model of
every other agent based merely on their recent favorable stra-
tegies communicated. This gives the advantage to the agents
and the entire system to quickly search the better solution
and reach the Nash equilibrium and avoid the tragedy of
commons.

In addition, the feasibility-based rule in [34–40] suffered
from maintaining the diversity and further required addi-
tional techniques such as niching [34], SA [35], modified
mutation approach [38, 39], and several associated trials in
[36–39], and so forth. It may require further computations
and memory usage. On the other hand, a simple pertur-
bation approach assisting the feasibility-based rule imple-
mented here was computationally cheaper and requires no
additional memory usage.

In agreement with the no-free-lunch theorem [83], some
limitations were also identified. The rate of convergence and
the quality of the solution were dependent on the parameters
such as the number of strategies mi in every agent’s strategy
set Xi, the interval factor λ, number of test iterations ntest, the
shrinking interval factor λdown, the expansion interval factor
λup, and also the perturbation parameters such as σ lower

1 ,
σ

upper
1 , σ lower

2 , σ
upper
2 , and γ. It necessitated some preliminary

trials for fine-tuning these parameters. Additionally, in order
to confirm the convergence, the algorithm was required to
be run beyond the convergence for a considerable number of
iterations.

6. Concluding Remarks and Future Work

This paper proposes a generalized constrained PC approach
using a variation of the feasibility-based rule originally pro-
posed in [34]. Similar to [27], the constraint violation tol-
erance was iteratively tightened in order to obtain the fitter
solution. In addition, in order to jump out of the possible
local minima, the perturbation approach was successfully in-
corporated into the constrained PC algorithm. The concept
of Nash equilibrium was also successfully formalized and
demonstrated. Furthermore, the authors believe that the PC
algorithm is made simpler and faster by improving the sam-
pling method, the convergence criterion, and most impor-
tantly the neighboring approach narrowing the sampling op-
tions.

The constrained PC approach was successfully demon-
strated solving two cases of the CPP. In both cases, the ap-
proach could find the true optimal solution in reasonable
computational efforts. It is important to mention that the
concept of the avoidance of tragedy of commons was also
successfully demonstrated solving two cases of the CPP. Al-
though only inequality constraints were handled in both
cases of the CPP solved here, the approach of transformation
of the equality constraints into the inequality constraints [8–
10] can be implemented.

In the future, to make the approach more generalized and
to improve the diversification of sampling, the rate of con-
vergence, the quality of results, and so forth, a self-adaptive
scheme can be developed for the parameters such as the
number of strategies mi and interval factor λ. Furthermore,
the constraint handling technique may be further improved/
developed using a multicriteria optimization approach [8–
10, 84]. The constrained PC approach can be used for solving
more realistic problems such as machine shop scheduling
and urban traffic, and so forth. The authors also see some
potential in the field of healthcare systems management [85].

Appendix

Broyden-Fletcher-Goldfarb-Shanno (BFGS)
Method Minimizing the Homotopy Function

The minimization of the Homotopy function given in (12)
was carried out using a suitable second-order optimiza-
tion technique such as Broyden-Fletcher-Goldfarb-Shanno

Applied Computational Intelligence and Soft Computing 15

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

Iterations

R
ad

iu
s

Circle 1
Circle 2
Circle 3

Circle 4
Circle 5

(a) Convergence of the radius

0 200 400 600 800 1000 1200
5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

Iterations

Circle 1
Circle 2
Circle 3

Circle 4
Circle 5

X
-c

oo
rd

in
at

es

(b) Convergence of the X-coordinates of the center

0 200 400 600 800 1000 1200
5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

Iterations

Circle 1
Circle 2
Circle 3

Circle 4
Circle 5

Y
-c

oo
rd

in
at

es

(c) Convergence of the Y-coordinates of the center

Figure 8: Convergence of the strategies of circle 2.

(BFGS) method [47, 48]. The approximated Hessian in this
method is positive definite. Moreover, the updating of the
Hessian also preserves the positive definiteness. The BFGS
method minimizing the Homotopy function in (12) is dis-
cussed below.

(1) Set BFGS iteration counter k = 1, BFGS maximum
number of iterations ν, and step size αstep (0 < αstep ≤
1). The value of αstep is held constant throughout the
optimization and chosen based on the preliminary
trials of the algorithm.

(a) Initialize the convergence criterion q(Xi)
k −

q(Xi)
k−1 ≤ ε2. The convergence parameter ε2 =

0.0001 is equal for all the N agents.

(b) Initialize the Hessian Hk
i to a positive definite

matrix, preferably identity matrix I of size mi ×
mi.

(c) Initialize the probability variables as follows:

q(Xi)
k =

{(

q
(

X[1]
i

)k = 1
mi

)

,

(

q
(

X [2]
i

)k = 1
mi

)

, . . . ,

(

q
(

X [mi]
i

)k = 1
mi

)}

.

(A.1)

That is, assign uniform probabilities to the
strategies of agent i. This is because, at the be-
ginning, least information is available (largest
uncertainty and highest entropy) about which
strategy is favorable for the minimization of the

collection of system objectives
∑mi

r=1G(Y[r]
i).

(d) Compute the gradient of the Homotopy func-
tion in (12) as follows

16 Applied Computational Intelligence and Soft Computing

5 6 7 8 9 10

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

3

2

1

4

5

(a) A case for voting heuristic

1 2 3 4 5

1 1 1 0 0

Total votes = 3

1 2 3 4 5

1 1 1 0 1

Total votes = 4

1 2 3 4 5

1 0 0 0 1

Total votes = 2

1 2 3 4 5

0 1 1 0 1

Total votes = 3

Q2 Q1

Q3 Q4

(b) Voting grids

Figure 9: Voting heuristic.

Ck =
⎡

⎣
∂Ji
(
q(Xi),T

)k

∂q
(

X [1]
i

)k

∂Ji
(
q(Xi),T

)k

∂q
(

X [2]
i

)k · · · ∂Ji
(
q(Xi),T

)k

∂q
(

X [mi]
i

)k

⎤

⎦ =
[

G
(

Y[1]
i

)

·
∏

q
(

X [?]
(i)

)

+
T

ln(2)

[

1 + ln
(

q
(

X [1]
i

)k
)]

G
(

Y[1]
i

)

·
∏

q
(

X [?]
(i)

)

+
T

ln(2)

[

1 + ln
(

q
(

X [2]
i

)k
)]

· · ·G
(

Y[mi]
i

)

·
∏

q
(

X [?]
(i)

)

+
T

ln(2)

[

1 + ln
(

q
(

X [mi]
i

)k
)]]

.

(A.2)

(2) Compute the search direction as dk
i = −Ck

i · (Hk
i)
−1

.

(3) Compute Ji((q(Xi) + αstep · dk
i),T).

(4) Update the probability vector q(Xi)
k+1 = q(Xi)

k +
αstep · dk

i

(5) Update the Hessian Hk+1
i = Hk

i + Dk
i + Ek

i , where

Dk
i =

yk
i .
(

yk
i

)T

yk
i · ski

, Ek
i =

Ck
i ·

(

Ck
i

)T

Ck
i · dk

i

,

ski = αstep · dk
i , yk

i = Ck+1
i − Ck

i ,

(A.3)

Ck+1 =
⎡

⎣
∂Ji
(
q(Xi),T

)k+1

∂q
(

X [1]
i

)k+1

∂Ji
(
q(Xi),T

)k+1

∂q
(

X [2]
i

)k+1 · · · ∂Ji
(
q(Xi),T

)k+1

∂q
(

X [mi]
i

)k+1

⎤

⎦ =
[

G
(

Y[1]
i

)

·
∏

q
(

X [?]
(i)

)

+
T

ln(2)

[

1 + ln
(

q
(

X [1]
i

)k+1
)]

G
(

Y[1]
i

)

·
∏

q
(

X [?]
(i)

)

+
T

ln(2)

[

1 + ln
(

q
(

X [2]
i

)k+1
)]

· · ·G
(

Y[mi]
i

)

·
∏

q
(

X [?]
(i)

)

+
T

ln(2)

[

1 + ln
(

q
(

X [mi]
i

)k+1
)]]

.

(A.4)

(6) Accept the current probability distribution q(Xi)
k if

k ≥ ν or the condition q(Xi)
k − q(Xi)

k−1 ≤ ε2 is true
for successive considerable number of iterations, then
stop; else update k = k + 1 and go to (2).

References
[1] A. J. Kulkarni and K. Tai, “Probability Collectives: a mul-

ti-agent approach for solving combinatorial optimization
problems,” Applied Soft Computing Journal, vol. 10, no. 3, pp.
759–771, 2010.

Applied Computational Intelligence and Soft Computing 17

[2] D. H. Wolpert, “Information theory—the bridge connecting
bounded rational game theory and statistical physics,” in Com-
plex Engineered Systems, D. Braha, A. A. Minai, and Y. Bar-
Yam, Eds., pp. 262–290, Springer, 2006.

[3] S. R. Bieniawski, Distributed optimization and flight control
using collectives, PhD dissertation, Stanford University, Stan-
ford, Calif, USA, 2005.

[4] A. J. Kulkarni and K. Tai, “Probability collectives for decen-
tralized, distributed optimization: a collective intelligence ap-
proach,” in Proceedings of the IEEE International Conference
on Systems, Man and Cybernetics (SMC ’08), pp. 1271–1275,
October 2008.

[5] A. J. Kulkarni and K. Tai, “Probability collectives: a decentral-
ized, distributed optimization for multi-agent systems,” in Ap-
plications of Soft Computing, Mehnen, J. Mehnen, M. Koeppen,
A. Saad, and A. Tiwari, Eds., pp. 441–450, Springer, 2009.

[6] G. Hardin, “The tragedy of the commons,” Science, vol. 162,
no. 3859, pp. 1243–1248, 1968.

[7] M. Vasirani and S. Ossowski, “Collective-based multiagent co-
ordination: a case study,” in Engineering Societies in the Agents
World VIII, vol. 4995 of Lecture Notes in Computer Science, pp.
240–253, 2008.

[8] T. Ray, K. Tai, and K. C. Seow, “An evolutionary algorithm for
constrained optimization,” in Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 771–777, 2000.

[9] T. Ray, K. Tai, and K. C. Seow, “Multiobjective design coordi-
nation by an evolutionary algorithm,” Engineering Optimiza-
tion, vol. 33, no. 4, pp. 399–424, 2001.

[10] K. Tai and J. Prasad, “Target-matching test problem for mul-
tiobjective topology optimization using genetic algorithms,”
Structural and Multidisciplinary Optimization, vol. 34, no. 4,
pp. 333–345, 2007.

[11] D. H. Wolpert and K. Tumer, “An introduction to collective
intelligence,” Tech. Rep. NASA ARC-IC-99-63, NASA Ames
Research Center, 1999.

[12] D. H. Wolpert, C. E. M. Strauss, and D. Rajnarayan, “Advances
in distributed optimization using probability collectives,” Ad-
vances in Complex Systems, vol. 9, no. 4, pp. 383–436, 2006.

[13] D. H. Wolpert, N. E. Antoine, S. R. Bieniawski, and I. R. Kroo,
“Fleet assignment using collective intelligence,” in Proceedings
of the 42nd AIAA Aerospace Science Meeting Exhibit, 2004.

[14] S. R. Bieniawski, I. M. Kroo, and D. H. Wolpert, “Discrete,
continuous, and constrained optimization using collectives,”
in Proceedings of the 10th AIAA/ISSMO Multidisciplinary Anal-
ysis and Optimization Conference, vol. 5, pp. 3079–3087, Sep-
tember 2004.

[15] T. Basar and G. J. Olsder, Dynamic Non-Cooperative Game
Theory, Academic Press, New York, NY, USA, 1995.

[16] C. F. Huang, D. H. Wolpert, S. Bieniawski, and C. E. M.
Strauss, “A comparative study of probability collectives based
multi-agent systems and genetic algorithms,” in Proceedings
of the Genetic and Evolutionary Computation Conference
(GECCO ’05), pp. 751–752, June 2005.

[17] S. Bhadra, S. Shakkottai, and P. Gupta, “Min-cost selfish mul-
ticast with network coding,” IEEE Transactions on Information
Theory, vol. 52, no. 11, pp. 5077–5087, 2006.

[18] Y. Xi and E. M. Yeh, “Distributed algorithms for minimum
cost multicast with network coding in wireless networks,” in
Proceedings of 4th International Symposium on Modeling and
Optimization in Mobile, Ad Hoc and Wireless Networks, 2006.

[19] J. Yuan, Z. Li, W. Yu, and B. Li, “A cross-layer optimization
framework for multicast in multi-hop wireless networks,” in
Proceedings of the 1st International Conference on Wireless Inter-
net (WICON ’05), pp. 47–54, July 2005.

[20] M. Chatterjee, S. K. Das, and D. Turgut, “On-demand weight-
ed clustering algorithm (WCA) for ad hoc networks,” in Pro-
ceedings of 43rd IEEE Global Telecommunication Conference
(GLOBECOM ’00), pp. 1697–1701, 2000.

[21] M. H. Amerimehr, B. K. Khalaj, and P. M. Crespo, “A dis-
tributed cross-layer optimization method for multicast in in-
terference-limited multihop wireless networks,” Journal on
Wireless Communications and Networking, vol. 2008, Article ID
702036, 13 pages, 2008.

[22] M. H. A. Mehr and B. H. Khalaj, “A distributed probability
collectives optimization method for multicast in CDMA wire-
less data networks,” in Proceedings of the 4th IEEE International
Symposium on Wireless Communication Systems (ISWCS ’07),
pp. 617–621, October 2007.

[23] G. S. Ryder and K. G. Ross, “A probability collectives approach
to weighted clustering algorithms for ad hoc networks,” in
Proceedings of the 3rd IASTED International Conference on
Communications and Computer Networks (CCN ’05), pp. 94–
99, October 2005.

[24] M. Smyrnakis and D. S. Leslie, “Sequentially updated proba-
bility collectives,” in Proceedings of the 48th IEEE Conference
on Decision and Control, pp. 5774–5779, Shanghai, China,
December 2009.

[25] D. Sislak, P. Volf, M. Pechoucek, and N. Suri, “Automated Con-
flict Resolution Utilizing Probability Collectives Optimizer,”
IEEE Transactions on Systems, Man and Cybernetics C, vol. 41,
no. 3, pp. 365–375, 2011.

[26] A. J. Kulkarni and K. Tai, “Probability collectives: a distributed
optimization approach for constrained problems,” in Proceed-
ings of IEEE World Congress on Computational Intelligence, pp.
3844–3851, 2010.

[27] A. J. Kulkarni and K. Tai, “Solving constrained optimization
problems using probability collectives and a penalty function
approach,” International Journal of Computational Intelligence
and Applications. In press.

[28] B. Autry, University course timetabling with probability collec-
tives, M.S. thesis, Naval Postgraduate School, Montery, Calif,
USA, 2008.

[29] C. F. Huang and B. R. Chang, “Probability collectives multi-
agent systems: a study of robustness in search,” in Proceedings
of the 2nd International Conference on Computational Collective
Intelligence—Technology and Applications (ICCCI ’10), vol.
6422 of Lecture Notes in Artificial Intelligence, pp. 334–343,
2010.

[30] P. J. Modi, W. M. Shen, M. Tambe, and M. Yokoo, “Adopt:
asynchronous distributed constraint optimization with qual-
ity guarantees,” Artificial Intelligence, vol. 161, no. 1-2, pp.
149–180, 2005.

[31] D. E. Goldberg and M. P. Samtani, “Engineering optimization
via genetic algorithm,” in Proceedings of the 9th Conference on
Electronic Computation, pp. 471–484, 1986.

[32] M. R. Ghasemi, E. Hinton, and R. D. Wood, “Optimization of
trusses using genetic algorithms for discrete and continuous
variables,” Engineering Computations, vol. 16, no. 3, pp. 272–
301, 1999.

[33] J. S. Moh and D. Y. Chiang, “Improved simulated annealing
search for structural optimization,” AIAA journal, vol. 38, no.
10, pp. 1965–1973, 2000.

[34] K. Deb, “An efficient constraint handling method for genetic
algorithms,” Computer Methods in Applied Mechanics and En-
gineering, vol. 186, no. 2-4, pp. 311–338, 2000.

[35] Q. He and L. Wang, “A hybrid particle swarm optimization
with a feasibility-based rule for constrained optimization,”

18 Applied Computational Intelligence and Soft Computing

Applied Mathematics and Computation, vol. 186, no. 2, pp.
1407–1422, 2007.

[36] V. P. Sakthivel, R. Bhuvaneswari, and S. Subramanian, “Design
optimization of three-phase energy efficient induction motor
using adaptive bacterial foraging algorithm,” The International
Journal for Computation and Mathematics in Electrical and
Electronic Engineering, vol. 29, no. 3, pp. 699–726, 2010.

[37] A. Kaveh and S. Talatahari, “An amproved ant colony optimi-
zation for constrained engineering design problems,” Com-
puter Aided Engineering and Software, vol. 27, no. 1, pp. 155–
182, 2010.

[38] S. Bansal, A. Mani, and C. Patvardhan, “Is stochastic ranking
really better than feasibility rules for constraint handling in
evolutionary algorithms?” in Proceedings of the World Congress
on Nature and Biologically Inspired Computing (NABIC ’09),
pp. 1564–1567, December 2009.

[39] J. Gao, H. Li, and Y. C. Jiao, “Modified differential evolution
for the integer programming problems,” in Proceedings of In-
ternational Conference on Artificial Intelligence (AICI ’09), pp.
213–219, November 2009.

[40] P. Wang and X. Tian, “A hybrid DE-SQP algorithm with
switching procedure for dynamic optimization,” in Proceed-
ings of Joint 48th IEEE Conference on Decision and Control and
28th Chinese Control Conference, pp. 2254–2259, December
2009.

[41] Y. Shoham, R. Powers, and T. Grenager, “Multi-agent rein-
forcement learning: a critical survey,” Tech. Rep., Department
of Computer Science, Stanford University, Stanford, Calif,
USA, 2003.

[42] L. Buşoniu, R. Babuška, and B. De Schutter, “A comprehensive
survey of multiagent reinforcement learning,” IEEE Transac-
tions on Systems, Man and Cybernetics C, vol. 38, no. 2, pp.
156–172, 2008.

[43] M. Bowling and M. Veloso, “Multiagent learning using a var-
iable learning rate,” Artificial Intelligence, vol. 136, no. 2, pp.
215–250, 2002.

[44] M. Bowling and M. Veloso, “Rational and convergent learning
in stochastic games,” in Proceedings of 17th International Con-
ference on Artificial Intelligence, pp. 1021–1026, 2001.

[45] V. Sindhwani, S. S. Keerthi, and O. Chapelle, “Deterministic
annealing for semi-supervised kernel machines,” in Proceed-
ings of the 23rd International Conference on Machine Learning
(ICML ’06), pp. 841–848, June 2006.

[46] A. V. Rao, D. J. Miller, K. Rose, and A. Gersho, “A deterministic
annealing approach for parsimonious design of piecewise
regression models,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 21, no. 2, pp. 159–173, 1999.

[47] A. V. Rao, D. Miller, K. Rose, and A. Gersho, “Mixture of ex-
perts regression modeling by deterministic annealing,” IEEE
Transactions on Signal Processing, vol. 45, no. 11, pp. 2811–
2820, 1997.

[48] R. Czabanski, “Deterministic annealing integrated with inten-
sive learning in neuro-fuzzy systems,” in Proceedings of the
8th International Conference on Artificial Intelligence and Soft
Computing, vol. 4029 of Lecture Notes in Artificial Intelligence,
pp. 220–229, 2006.

[49] http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/helm-
holtz.html, 2010.

[50] J. S. Arora, Introduction to Optimum Design, Elsevier Academic
Press, 2004.

[51] G. N. Vanderplaat, Numerical Optimization Techniques for En-
gineering Design, Mcgraw-Hill, 1984.

[52] D. F. Zhang and A. S. Deng, “An effective hybrid algorithm for
the problem of packing circles into a larger containing circle,”

Computers and Operations Research, vol. 32, no. 8, pp. 1941–
1951, 2005.

[53] V. E. Theodoracatos and J. L. Grimsley, “The optimal packing
of arbitrarily-shaped polygons using simulated annealing and
polynomial-time cooling schedules,” Computer Methods in
Applied Mechanics and Engineering, vol. 125, no. 1–4, pp. 53–
70, 1995.

[54] J. Liu, S. Xue, Z. Liu, and D. Xu, “An improved energy land-
scape paving algorithm for the problem of packing circles into
a larger containing circle,” Computers and Industrial Engineer-
ing, vol. 57, no. 3, pp. 1144–1149, 2009.

[55] I. Castillo, F. J. Kampas, and J. D. Pintér, “Solving circle pack-
ing problems by global optimization: numerical results and
industrial applications,” European Journal of Operational Re-
search, vol. 191, no. 3, pp. 786–802, 2008.

[56] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W. H. Freeman, 1979.

[57] D. S. Hochbaum and W. Maass, “Approximation schemes for
covering and packing problems in image processing and
VLSI,” Journal of the Association for Computing Machinery, vol.
1, no. 32, pp. 130–136, 1985.

[58] H. Wang, W. Huang, Q. Zhang, and D. Xu, “An improved
algorithm for the packing of unequal circles within a larger
containing circle,” European Journal of Operational Research,
vol. 141, no. 2, pp. 440–453, 2002.

[59] P. G. Szabo, M. C. Markot, and T. Csendes, “Global optimiza-
tion in geometry—circle packing into the square,” in Essays
and Surveys in Global Optimization, P. Audet, P. Hansen, and
G. Savard, Eds., pp. 233–265, Kluwer, 2005.

[60] K. J. Nurmela and P. R. J. Östergård, “Packing up to 50 equal
circles in a square,” Discrete and Computational Geometry, vol.
18, no. 1, pp. 111–120, 1997.

[61] K. J. Nurmela and P. R. J. Östergård, “More optimal packings
of equal circles in a square,” Discrete and Computational
Geometry, vol. 22, no. 3, pp. 439–457, 1999.

[62] R. L. Graham and B. D. Lubachevsky, “Repeated patterns of
dense packings of equal disks in a square,” Electronic Journal of
Combinatorics, vol. 3, no. 1, article R16, pp. 1–17, 1996.

[63] P. G. Szabo, T. Csendes, L. G. Casado, and I. Garcia, “Equal
circles packing in a square I—problem setting and bounds
for optimal solutions,” in Optimization Theory: Recent Devel-
opments from Matrahaza, F. Giannessi, P. Pardalos, and T.
Rapcsak, Eds., pp. 191–206, Kluwer, 2001.

[64] C. de Groot, R. Peikert, and D. Wurtz, “The optimal packing of
ten equal circles in a square,” PS Research Report 90-12, ETH,
Zurich, Switzerland, 1990.

[65] M. Goldberg, “The packing of equal circles in a square,” Math-
ematics Magazine, vol. 43, pp. 24–30, 1970.

[66] M. Mollard and C. Payan, “Some progress in the packing of
equal circles in a square,” Discrete Mathematics, vol. 84, no. 3,
pp. 303–307, 1990.

[67] J. Schaer, “On the packing of ten equal circles in a square,”
Mathematics Magazine, vol. 44, pp. 139–140, 1971.

[68] K. Schluter, “Kreispackung in quadraten,” Elemente der Math-
ematics, vol. 34, pp. 12–14, 1979.

[69] G. Valette, “A better packing of ten equal circles in a square,”
Discrete Mathematics, vol. 76, no. 1, pp. 57–59, 1989.

[70] D. W. Boll, J. Donovan, R. L. Graham, and B. D. Lubachevsky,
“Improving dense packings of equal disks in a square,” Elec-
tronic Journal of Combinatorics, vol. 7, no. 1, article R46, pp.
1–9, 2000.

[71] B. D. Lubachevsky and R. L. Graham, “Curved hexagonal
packings of equal disks in a circle,” Discrete and Computational
Geometry, vol. 18, no. 2, pp. 179–194, 1997.

Applied Computational Intelligence and Soft Computing 19

[72] P. G. Szabo and E. Specht, “Packing up to 200 equal circles in a
square,” in Models and Algorithms for Global Optimization, A.
Torn and J. Zilinskas, Eds., pp. 141–156, 2007.

[73] N. Mladenovic, F. Plastria, and D. Urosevi, “Formulation space
search for circle packing problems,” in Proceedings of the Soci-
ety of Legal Scholars Annual Conference, Lecture Notes in Com-
puter Science, pp. 212–216, September 2007.

[74] N. Mladenović, F. Plastria, and D. Urošević, “Reformulation
descent applied to circle packing problems,” Computers and
Operations Research, vol. 32, no. 9, pp. 2419–2434, 2005.

[75] W. Huang and M. Chen, “Note on: an improved algorithm
for the packing of unequal circles within a larger containing
circle,” Computers and Industrial Engineering, vol. 50, no. 3,
pp. 338–344, 2006.

[76] J. Liu, D. Xu, Y. Yao, and Y. Zheng, “Energy landscape paving
algorithm for solving circles packing problem,” in Proceedings
of the International Conference on Computational Intelligence
and Natural Computing (CINC ’09), pp. 107–110, June 2009.

[77] J. Liu, Y. Yao, Y. Zheng, H. Geng, and G. Zhou, “An effect-
ive hybrid algorithm for the circles and spheres packing prob-
lems,” in Proceedings of the 3rd Annual International Conference
on Combinatorial Optimization and Applications (COCOA ’09,
vol. 5573 of Lecture Notes in Computer Science, pp. 135–144,
June 2009.

[78] Y. G. Stoyan and G. N. Yaskov, “Mathematical model and
solution method of optimization problem of placement of
rectangles and circles taking into account special constraints,”
International Transactions in Operational Research, vol. 5, pp.
45–57, 1998.

[79] Y. G. Stoyan and G. Yas’kov, “A mathematical model and a so-
lution method for the problem of placing various-sized circles
into a strip,” European Journal of Operational Research, vol.
156, no. 3, pp. 590–600, 2004.

[80] J. A. George, “Multiple container packing: a case study of pipe
packing,” Journal of the Operational Research Society, vol. 47,
no. 9, pp. 1098–1109, 1996.

[81] J. A. George, J. M. George, and B. W. Lamar, “Packing dif-
ferent-sized circles into a rectangular container,” European
Journal of Operational Research, vol. 84, no. 3, pp. 693–712,
1995.

[82] M. Hifi and R. M’Hallah, “Approximate algorithms for con-
strained circular cutting problems,” Computers and Operations
Research, vol. 31, no. 5, pp. 675–694, 2004.

[83] D. H. Wolpert and W. G. Macready, “No free lunch theorems
for optimization,” IEEE Transactions on Evolutionary Compu-
tation, vol. 1, no. 1, pp. 67–82, 1997.

[84] N. F. Wang and K. Tai, “Target matching problems and an
adaptive constraint strategy for multiobjective design opti-
mization using genetic algorithms,” Computers and Structures,
vol. 88, no. 19-20, pp. 1064–1076, 2010.

[85] E. Y. K. Ng, K. Tai, W. K. Ng, and R. U. Acharya, “Opti-
mization of the pharmacokinetic simulation models for the
nanoparticles-in-nanoshapes hybrid drug delivery system us-
ing heat diffusion analogy,” in Distributed Diagnosis and Home
Healthcare, U. Rajendra Acharya, T. Tamura, E. Y. K. Ng, C.
M. Lim, and J. S. Suri, Eds., pp. 211–230, American Scientific
Publishers, 2010.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

