
 
 
 
 
 
 
 
 
 
 
 

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets 
de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials 
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual 
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En 
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la 
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació 
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc 
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant als continguts de la tesi com als seus resums i índexs. 
 
 
ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los 
derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en 
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto 
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización 
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá 
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se 
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación 
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una 
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como 
a sus resúmenes e índices. 
 
 
WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It 
can be used for reference or private study, as well as research and learning activities or materials in the 
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and 
previous authorization of the author is required for any other uses. In any case, when using its content, full 
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit 
use or public communication from outside TDX service is not allowed. Presentation of its content in a window 
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis 
and its abstracts and indexes. 



A Middleware Framework for Self-Adaptive
Large Scale Distributed Services

Dissertation submitted for the degree of

Doctor of Philosophy

by
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Abstract

Modern service-oriented applications demand the ability to adapt to changing conditions and unexpected situ-

ations while maintaining a required QoS. Existing self-adaptation approaches seem inadequate to address this

challenge because many of their assumptions are not met on the large-scale, highly dynamic infrastructures

where these applications are generally deployed on.

The main motivation of our research is to devise principles that guide the construction of large scale self-

adaptive distributed services. We aim to provide sound modeling abstractions based on a clear conceptual

background, and their realization as a middleware framework that supports the development of such services.

Taking the inspiration from the concepts of decentralized markets in economics, we propose a solution based

on three principles: emergent self-organization, utility driven behavior and model-less adaptation. Based on

these principles, we designed Collectives, a middleware framework which provides a comprehensive solution for

the diverse adaptation concerns that rise in the development of distributed systems. We tested the soundness

and comprehensiveness of the Collectives framework by implementing eUDON, a middleware for self-adaptive

web services, which we then evaluated extensively by means of a simulation model to analyze its adaptation

capabilities in diverse settings.

We found that eUDON exhibits the intended properties: it adapts to diverse conditions like peaks in the

workload and massive failures, maintaining its QoS and using efficiently the available resources; it is highly

scalable and robust; can be implemented on existing services in a non-intrusive way; and do not require any

performance model of the services, their workload or the resources they use.

We can conclude that our work proposes a solution for the requirements of self-adaptation in demanding

usage scenarios without introducing additional complexity. In that sense, we believe we make a significant

contribution towards the development of future generation service-oriented applications.
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Chapter 1

Introduction

Over the last 5 years there has been a developer led revolt

against complexity in the middleware.

Paul Maritz, CEO VMware

Modern distributed applications are evolving towards a Service-Oriented Architecture (SOA), dividing their

functionality in a set of independent services that offer well defined capabilities [206]. Many large web service

providers have leveraged SOA and adopted a ”Software as a Service” (SaaS) paradigm, offering application

services to third parties that compose them in mashups to create new value added services [185]. Under this

paradigm, services are reused and combined, new services are introduced frequently, and usage patterns vary

continuously. Additionally, different user segments emerge with different QoS requirements in terms of attributes

such as response time, execution cost and security [159]. For example, users can be segmented into service classes

(e.g. gold, bronze) with different QoS requirements to separate paid and free access to a service.

The relevance and potential economic impact of this paradigm for Europe is evidenced by the emergence

of multiple initiatives around the concept of Internet of Services, like NESSI 1 and Future Internet Assembly2,

which have the specific goals of fostering the research on new technologies and engineering approaches, and

promoting its adoption in enterprises as a competitive differentiator.

With the rising popularity and sophistication of this new type of services, providers are required to build

infrastructures capable of delivering high volumes of uninterrupted service to their customers. Additionally,

those large-scale service-oriented applications frequently address unexpected situations that demand a rapid

adaptation of the allocated resources, like flash crowds –that require a quick allocation of additional resources–

or massive hardware failures –that require the re-allocation of failed resources.

To facilitate the adaptation of services to these situations, it has become a common practice to deploy them

over large-scale non-dedicated infrastructures – e.g. shared clusters – on which servers are dynamically provi-

sioned/decommissioned to services in response to workload variations. This infrastructure can span different

administrative domains when servers are located on different clusters or when some of the servers come from a

local infrastructure and some others from an external cloud.

1http://www.nessi-europe.com
2http://www.future-internet.eu/

1
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However, as these infrastructures become larger, more distributed and more heterogeneous, and their usage

scenarios more demanding, their manual management and operation become unattainable tasks; moreover, sys-

tem designers cannot anticipate the adaptation needs at design or even deployment time, as handling unexpected

situations may require changing algorithms or even the organization of the system.

This challenging situation and the growing importance of large scale distributed services call for a new

approach of system management.

1.1 Scenario Description

The focus of this thesis in on cluster-based locally-distributed web services [43] using non dedicated infrastruc-

tures, on which web services are deployed over a set of servers housed together in a single location, interconnected

through a high-speed network, presenting a single system image to the outside. However, the approach can

also be applied to cloud-based web services, as cloud provider use a similar architecture for their infrastructures

[155].

The management of such shared infrastructures must consider two fundamental complexity dimensions:

The Environment Complexity given by its scale, the dynamics of its configuration, and its openness to new

services and usage patterns; and the Allocation Complexity as a product of the diversity of users and their

requirements, the intricacy of allocation decisions based on multiple parameters, and the existence of different

and potentially conflicting QoS objectives for the various services. Figure 1.1 shows how this type of applications

– which we term here a Large Scale Distributed Service (LSDS) – compares to other application models with

respect this two complexity dimensions.

Figure 1.1: LSDS’s compared with other common distributed applications classes with respect of their manage-
ment complexity.

LSDS’s share the environment complexity of P2P systems due to their large scale and the changing nature

of their infrastructure as instances are activated and deactivated or fail, but the heterogeneity of nodes (servers)

is lower and the churn is not that high. This environment complexity is however much higher than the rather

static setups of most grid systems. On the other dimension, LSDS’s share the management complexity of grid

systems with respect of the need of offering multi-attribute QoS, while P2P systems are mostly best-effort and

generally have requirements that map to a limited set of attributes like high download bandwidth.
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1.2 Problem Statement

In a traditional enterprise infrastructure, adapting to changes in the demand and other unexpected situations

would take a long time and require manual intervention, making it impractical. As a consequence, over-

provisioning services to handle such situations is the common practice. Unfortunately, over-provisioning is not

cost-effective as some services may have high peak-to-mean-to ratios – mostly in the case of exceptional events

– and therefore a large portion of the allocated capacity would remain unused for long periods.

Chandra et al. [53] demonstrated that fine-grained multiplexing at short time-scales – in the order of

seconds to a few minutes – combined with fractional server allocation leads to substantial performance gains

over coarse-grained reallocations and static partitioning. To accomplish this fine grained multiplexing, it is

necessary to count with mechanisms to allocate/deallocate servers efficiently, manage configuration changes in

a very dynamic environment with a high turn-over of servers, and still allocate requests to service instances

maintaining the QoS and using efficiently the allocated resources.

Self-adaptive systems [184] emerge as a promising alternative t handle this management complexity: com-

puting systems capable of modifying their own behavior in response to changes in the operation conditions.

However, despite their many potential advantages, the development of self-managed systems is not exempted

of challenges.

As noted in [168] traditional closed loop self-adaptation approaches are of limited applicability in the scenar-

ios described above, as they made a set of restrictive assumptions: a) the entire state of the application and all

the resources are known/visible to the management component, b) the adaptation ordered by the management

component is carried out in full and in a synchronized way, and c) the management component gets full feedback

of the results of changes made on the entire system. In contrast, in a large-scale wide-area system getting a

global system knowledge is infeasible and coordinating adaptation actions is costly. Additionally, servers may

belong to different management domains – different sites in an organization, external providers – with different

management objectives.

Moreover, when applying such approaches in non-dedicated infrastructures one additional problem arises.

The QoS offered by an instance depends not only on the workload it receives but also on the effect of any other

load in the same physical host – for example other service instances – which may not be under the control of

the same adaptation process, making the objective of adaptation a moving target. The utilization of a resource

isolation mechanism to prevent this interference with the adaptation process would limit its applicability to

scenarios where such isolation is not feasible or results impractical. For example, multiple services deployed

over the same service container 3.

Additionally, the implementation of some self-adaptation approaches may require the explicit representation

and processing of knowledge about the system (components, architecture) and the desired adaptation proper-

ties (policies, rules) rising the complexity of the self-adaptation mechanisms and bringing issues of knowledge

interoperability among applications and platforms. The complexity of eliciting a model to predict the effect of

the adaptation decisions on the QoS may prevent the quick introduction of new services or the adaptation of

existing services to sudden changes in the usage patterns or underlaying implementation, two common situations

in modern service-oriented applications.

3As discussed in chapter 4, even when such performance isolation mechanisms exists, they have some practical limitations.
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Finally, the implementation of self-adaptation may result intrusive, imposing programming models, tools

or practices to application developers, like the adoption of a component-based development model [76] or the

usage of annotations in the source code [132].

Therefore, to meet the challenges of self-adaptive large-scale distributed services, new approaches are needed

to address the following fundamental aspects [173] [133] [135] [160]:

• Conceptual models defining appropriate abstractions and models for specifying, understanding, con-

trolling, and implementing self-adaptive behaviors;

• Architectures to guide the specification and implementation of self-adaptive behaviors of components

and their interactions;

• Middleware infrastructures that provide the core services required to realize adaptive behaviors in a

robust, reliable and scalable manner, in spite of the dynamism and uncertainty of the system;

• Programming models and frameworks that support the development of adaptive systems with a

clear separation of the adaptation concerns from the application logic.

Additionally, we must consider that:

”Managing complexity is a key goal of self-adaptive software. If a program must match the com-

plexity of the environment in its own structure it will be very complex indeed! Somehow we need

to be able to write software that is less complex than the environment in which it is operating yet

operate robustly.” [142], emphasis added.

The main objective of this thesis is to address these diverse challenges under a comprehensive

approach without introducing additional complexity in the systems.

1.3 Requirements

To be effective in the target scenarios and provide the intended benefits, a self-adaptation solution should exhibit

the following desirable properties:

R.1 Adaptiveness: Support varying workloads and infrastructure changes

R.2 Application independence: Offer a generic infrastructure that supports multiple services

R.3 Comprehensiveness: Support a broad range of QoS needs

R.4 Efficiency: Achieve good resource utilization

R.5 Endurance: Degrade gracefully under overload

R.6 Flexibility: Accommodate different resource management policies at the node level

R.7 Manageability: Ease of maintain and operate

R.8 Non-intrusiveness: Require a minimal infrastructure modifications
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R.9 Reliability: Assign requests despite the unpredictability of the environment

R.10 Resilience: Handle continuous activation/deactivation and failures of instances

R.11 Robustness: Work with incomplete, stale or inconsistent information

R.12 Scalability: Scale to a very large the number of service instances

1.4 Solution Approach

Our approach has been influenced mainly by concepts from decentralized markets. Markets are in essence

coordination mechanism available for whatever purposes agents pursue [111]. In particular, they can be used

to facilitate agents to maximize utility functions [78] which reflect the goals of the system. Also, from the

field of complexity economics, it is known that market mechanisms, when used by adaptive agents, can lead

to self-organization in terms of the emergence of stable interaction patterns [17] [197] [136] [205]. More over,

bounded-rational agents [192] [18] has been shown to exhibit successful behaviors with highly sophisticated

adaptation capabilities using simple, generic models and limited information about the environment [208]. We

discuss in more detail these concepts in chapter 2.

Base on that conceptual framework, we have postulated the following key design principles for the self-

adaptation of large scale distributed services:

Emergent Self-Organization. Our approach is to use a decentralized, self-organized mechanism in which

adaptation decisions are taken independently on each instance, based on local information. This approach has

number of advantages. First, the complexity of the adaptation process depends on the size of each instance’s

neighborhood, instead of the total number of instances, making the system more scalable. Second, it is more

robust, as there is no single point of failure. Third, it facilitates the rapid reaction to local situations, like

failures or flash crowds. Finally, it allows each instance to manage its own adaptation and thus accommodates

the case of multiple administrative domains with different management policies.

Utility Driven. A utility function maps a set of attributes that capture the state of the system and its

environment to a single scalar value – conventionally in the [0, 1] range – that measures the relative satisfaction

derived from this state. Utility is generally an aggregated function of the benefits, costs and risks associated with

a situation (for example, the outcome of an action). In the case of services, utility may consider attributes like

the performance (e.g. response time), available resources (e.g. bandwidth), the characteristics of the physical

node on which a service runs (e.g. located on a trusted environment or not), execution cost (e.g. energy

consumption), and any other relevant attributes.

Utility functions offer a principle basis for rational decision making [78] in the adaptation process. Unlike

other approaches that use complex rules over a combination of performance metrics, facilitate comparing con-

figuration alternatives with respect of their fitness to the service’s goals [134], making the adaptation process

extensible to different definitions of utility.
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Model-less. Adaptation does not require either a performance model of the service or a characterization of its

workload. This approach offers two advantages which are of particular importance in our scenarios of interest:

the effectiveness of the adaptation does not rely of the predictive power of a model, which may be limited by

the volatility of the environment; neither does it require eliciting and adjusting modeling parameters to handle

new services or workloads, facilitating the provision of a generic infrastructure on which new services can be

easily introduced.

It is important to notice that utility functions are not performance models, as they cannot be used to

predict future system states, but can only be used to valuate a given state with respect of certain objectives

and preferences.

Table 1.1 summarizes how these principles contribute to confront the various challenges we have identified.

Requirement E
m
er
ge
nc
e

U
ti
lit
y
D
ri
ve
n

M
od
el
-l
es
s

Adaptiveness X
Application independence X X
Comprehensiveness X X
Efficiency X
Endurance X
Flexibility X
Manageability X X
Non-intrusiveness X
Reliability X
Resilience X
Robustness X
Scalability X

Table 1.1: Requirements addressed by the principles that sustain the proposed solution approach.

1.5 Research Questions and Hypotheses

The work presented in this thesis is the result of pursuing the following research questions which have guided

our approximation to the different aspects of the problem:

Q.1 Can the economic concepts behind the decentralized markets be generalized as self-adaptation principles

for distributed systems without recurring to the market metaphor?

Q.2 What kind of abstractions and programming model are needed to implemented these concepts at the

middleware level?

Q.3 To what extent can an approach based on these simple principles offer an efficient solution to demanding

requirements? Could it adapt to diverse conditions without requiring domain-specific knowledge?

Based on the solution principles described above, we have formulated the following hypotheses to respond

to these research questions:
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H.1 The principles from economic adaptation can be applied to application level self-adaptation in the form

of a model-less adaptation processes driven by utility functions, acting on local information

H.2 Overlays – and epidemic overlays in particular – can be used as a generic self-adaptation middleware

which embodies the self-organizing nature of economic systems.

1.6 Methodology

This thesis follows the research methodology presented in figure 1.2. The validation of our hypotheses is done by

realizing the principles they propose into a framework, using it to implement a proof of concept application, and

studying the resulting properties in diverse scenarios. More concretely, we implemented a middleware to provide

self-adaptation capabilities to web services, and evaluated its behavior on a simulated large scale non-dedicated

cluster. Even when the proof is limited to this single case, the scenario is complex and demanding enough to

serve as an indicative that the approach can be applied to other scenarios that share some key characteristic

we have identified and discuss along the thesis.

Figure 1.2: Research methodology followed in the thesis to prove the hypotheses.

1.7 Contributions

The major objective of this thesis is to contribute to the understanding on how to build large scale self-adaptive

services. In that regard, we are interested in devising architectures more than proposing concrete algorithms.

A system’s architecture captures its structural characteristics and constraints, from which significant properties

can be derived [95]; An architectural approach to the self-adaptation provides an appropriate level of abstraction

and generality of concepts and principles developed [139].

This thesis makes the following concrete contributions:
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• Collectives: a framework for the development of adaptive distributed applications. The main objective of

Collectives is to provide both the abstractions needed to encapsulate all the relevant adaptation concerns

and the architecture to realize them

• eUDON: a middleware, based on Collectives, that provides utility driven self-adaptation for service-

oriented applications deployed over a large-scale, non-dedicated infrastructures, addressing the need for

elasticity and the maintenance of a target QoS in the presence of fluctuations in the load or the available

resources.

Both the Collectives and eUDON middleare frameworks exist as prototypes. Their evaluation was conducted

by simulating the infrastructure – the network and the service instances – while the rest of the core mechanisms

and adaptation logic was implemented as code that can be deployed on top of an real infrastructure.

In addition, our research has a number of other contributions that can be applied outside the context of this

thesis:

• An exploration of the applicability and limitations of the concepts of decentralized markets in the self-

adaptive allocation of resources in distributed services and its realization in a reference architecture (the

Grid Market Middleware)

• A characterization of the different aspects involved in the development of adaptive web services and the

techniques that can be applied, with emphasis on large scale locally distributed deployments

• The study of alternative epidemic overlays to facilitate the location of service instances deployed over a

large scale infrastructure when the QoS of each instance can vary due to fluctuations in the load

• The study of alternative heuristics for load balancing and resource discovery over large scale overlays,

when the QoS of nodes have continuous fluctuations.

1.8 The Thesis in Context

Figure 1.3 summarizes this thesis. We address the challenges of self-adaptation in large scale distributed

services. Our research follows a multi-disciplinary approach, taking mainly from the complexity economics

and self-adaptive systems background. We propose a comprehensive solution in the form of two middleware

frameworks, whose design was guided by a set of clear principles derived from the research questions and

hypotheses we have proposed.

1.9 Thesis Road Map

This thesis is organized as follows. Chapter 2 introduces the conceptual framework on which this thesis is founded

and that support the solution approach we propose. We explore the general concepts of self-adaptation and

present the contributions of economic theory to the understanding of the self-adaptation in large scale systems.

Chapter 3 presents Collectives, a middleware framework for developing self-adaptive applications based on the

concepts of epidemic style emergent self-organization. Collectives addresses the various adaptation concerns
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Figure 1.3: The problems addressed, the theoretical background and the contributions.

that are found in the design and implementation of large scale distributed systems. Chapter 4 introduces

the problem of self-adaptation in distributed service-oriented applications and presents a logical architecture

to understand the diverse aspects that must be considered. Chapter 5 presents eUDON a middleware build

upon the concepts of Collectives that provides self-adaptation capabilities to large scale distributed services,

which address various of the adaptation concerns discussed in chapter 4. Chapter 6 presents the experimental

evaluation of eUDON, detailing the experimental model and discussing the results under diverse scenarios.

Chapter 7 puts the contributions of this thesis in the context of similar works, making a comparison of how

our approach differs and improves over other alternatives. We conclude in chapter 8 with a summary of the

contributions, a discussion of their relevance in different contexts and a exploration of ideas for future research.





Chapter 2

Background

In this chapter, we provide an overview of the conceptual foundations of this thesis. We start by reviewing

the general concept of self-adaptive systems, their objectives, characteristics, challenges and approaches. We

then present how economic theory contributes to the understanding of self-adaptation in large scale distributed

systems by providing a rich set of concepts and insights on how economic systems can adapt to internal and

external changes, and the role that social networks – as a means of self-organization – and rationality play in

this process.

2.1 Self-adaptive Systems

Managing large computational infrastructures is a complex endeavor that involves many aspects: a) defining

QoS policies for services; b) mapping QoS to resource requirements; c) discovering resources that guarantee an

adequate QoS; d) allocating resources according to usage policies; e) monitoring the state of the service; and f)

reacting to violations of QoS due to failures or performance degradation, triggering again the resource mapping,

discovery and allocation steps.

However, as these infrastructures become larger, more distributed and more heterogeneous, and their usage

scenarios more demanding, their manual management and operation become unattainable tasks; moreover, sys-

tem designers cannot anticipate the adaptation needs at design or even deployment time, as handling unexpected

situations may require changing algorithms or even the organization of the system.

Self-adaptive systems has emerged as an alternative to build computing systems capable of modifying their

own behavior in response to changes in their operational conditions.

2.1.1 Characterization of Self-Adaptation

Being self-adaptive entails deciding on its own what must be done to keep the behavior of the system stable

and within acceptable performance limits, selecting appropriated solutions based on current context and the

policies in place [142]. For a system to exhibit self-adaptive behavior, it must possess some attributes which we

summarize as follows [152] [193]:

• Aware: able to monitor (sense) its operational context as well as its internal state.

11
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• Adaptive: able to change its operation (i.e., its configuration, state and functions) to cope with temporal

and spatial changes in its operational context.

• Automatic: able to self-control its internal functions and operations without any manual intervention or

external help.

Self-adaptation manifests in different forms, such as self-optimization, self-configuration, self-healing and

self-protecting [152]. Self Configuration is the ability to configure and reconfigure itself under varying and

unpredictable conditions. Self Optimization is the ability to detect suboptimal behaviors and optimize itself to

improve its execution. Self-Healing is the ability to detect and recover from potential problems and to continue

functioning smoothly. Self-Protection is the ability to defend from malicious or accidental attacks and maintain

its integrity.

Building self-adaptation capabilities into a system involves diverse considerations [170] [67]. Adaptation can

be a fully autonomous process, which is capable to define (and evolve over time) its own goals, or be just a

mean to automate the achievement of user defined goals. Adaptation can be limited to a certain predefined

application behaviors, or open to new application behaviors introduced at run time. The adaptation can be

executed as a continuous optimization process, in an opportunistic way, or on a as-needed basis. The adaptation

process can use diverse sources and qualities of information, from purely local to global, from recent to sampled

or historical. Self-adaptation can be deemed as a macroscopic property, measured at the global level, or a

microscopic property, if it is an attribute of a single entity in the system and its immediate vicinity.

2.1.2 Approaches

To achieve the objectives of self-adaptation, addressing the challenges discussed above, diverse approaches have

been proposed:

Biology inspired models start from the realization that living organisms can effectively organize large

numbers of unreliable and dynamically changing components (cells, molecules, individuals, etc.) into structures

which exhibit properties like robustness to failures of individual components, adaptivity to changing conditions,

and the lack of reliance on explicit central coordination. Some of the adaptation patterns found in biological

system have been applied to computer systems, like diffusion (equalization), epidemic replication, stigmergy,

chemotaxis, morphogen gradients, local inhibition and competition, among others [24] [165]. Biology has also

contributed with a family of approaches known as evolutionary computing, which share a common idea: given

a population of individuals, the environmental pressure causes natural selection on the best fitting individual

rising the fitness of the population over time [82].

Cybernetic models are formalizations of goal directed systems, which incorporate elements from – and have

also influenced to – other disciplines like systems theory, information theory, and control theory 1 [198] [39]. This

kind of adaptive systems were extensively studied under the concept of ultra-stable systems [19], which consists

on two closed loops that maintain a set of critical variables within their operational margins, reacting to short

1The terms cybernetics is sometimes abused and then equalized to control theory when the later is a subset of – and a tool for
– the former
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term and long term disturbances caused by internal or external factors. Many of these concepts are incorporated

in the Viable System Model (VSM), a conceptual framework for self-adaptive systems that considers aspects of

coordination, control, intelligence, policy and audit [145].

Control Theory models include the classical feed-back or reactive control, on which the current state is

observed to detect deviations with respect to a target state, and also predictive control, on which a model of the

system is used to predict the future behavior over a prediction horizon [1]. Developing a controller for a system

requires the mapping of the particular QoS control problem into a system of feedback loops, developing effective

resource models, choosing proper actuators, handling sensor delays, and addressing lead times in effector‘s

actions [72] [2].

Agent-Based models use agents, entities capable of perceiving an environment and acting autonomously

upon it, as its basic abstraction. There are multiple paradigms to represent agent behaviors like deliberative,

reactive, and planing based, among others. This approach leverage the methodologies, architectures and tools

for the modeling, design and implementation of systems which covers significant aspects of self-adaptation such

as environment awareness, reasoning, organization and coordination [214]. One interesting characteristic of

this approach is that it helps in closing the gap between the modeling and the actual implementation of the

self-adaptation mechanisms using agent-based engineering methodologies [125]. Examples of this approach are

[195] [75] [31].

Social models are based on the concept of social networks formed by individuals and their social connections,

contacts, interactions, etc. These models consider how aspects like network topologies and their properties,

behavioral patterns, and information dissemination and learning mechanisms impact in individuals preferences,

trust, reputation, and other social outcomes [106]. For example [15] explore how concepts related to how

socio-economic systems autonomously manage themselves – by making decisions, adapting their structure and

behavior, and organizing with other entities in the environment – can be applied in the development of self-

adaptive computer systems. In [104] a social tag model is used to allow nodes in a P2P network to coordinate for

sharing files. Is important to notice that biological and economics-inspired models have many common elements

with social models as some insects exhibit social behavior and obviously markets are social organizations.

Economics based models exploit the insights that economic theory, and more specifically micro-economics,

offers to the understanding of how markets work as decentralized coordination mechanism. Based on price

signals and competition, markets allow their participants to self-organize to achieve their goals and adapt to

changes in the environment and disturbances to individual members [90] [113]. In such systems a state of

coordinated actions can emerge through the bartering of self-interested participants, who try to maximize their

own utility and choose their actions under incomplete information and bounded rationality [87]. We elaborate

more on this model in section 2.2.
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2.1.3 Emergent Self-adaptation

Emergence is a phenomenon on which novel system-level organization arises from the local properties and

interactions of its constituent elements, increasing in an autonomous way the degree of order [158] [66]. The

key elements of this concept are the pass from micro to macro-level properties based on interactions of the

components to achieve a coherent state of order.

A close concept to emergence is that of self-organization, defined as ”a dynamical and adaptive process

where systems acquire and maintain structure themselves, without external control” [66]. Even when similar

those two concepts are different. Self-organization does not necessarily implies emergence as a system can be

designed to achieve an predefined and predictable organization. On the contrary, emergence – in the case of

dynamic systems – implies self-organization.

Emergence can be used as a design strategy for large scale distributed systems [81] and results particularly

attractive for self-adaptive systems on which the direct engineering is not feasible due to the complexity of

the system and the uncertainty of the environment. When engineering a system by means of emergence, its

properties mainly reside in the interactions between components, rather than in the intelligence of individual

components [68].

System with emergent properties are not exempt of problems. The engineering process will require new

approaches as architecture is no longer dictated by a strict specification of structure, but rather by a set of

constrains [97]. Also, some unwanted behaviors, such as oscillations, trashing, abrupt phase changes, or mere

chaos can emerge, either due to inherent flaws of algorithms, or caused by faulty elements, or induced by the

environment. Therefore, new techniques are required to predict, detect and ameliorate those misbehaviors, as

well as for testing proposed designs to detect inherent flaws [162].

2.1.4 Epidemic Style Self-Organization

There has been an increasing interest in epidemic (gossip) algorithms2 as an underlaying mechanism for sup-

porting self-organized and self-adaptive distributed systems. An epidemic distributed algorithm satisfies, to

some extent, the following conditions [32] [61]:

1. Involves periodic, pairwise interactions among participants

2. The information exchanged during these interactions is of bounded size

3. When nodes interact, the state of one or both changes in a way that reflects the state of the other

4. Reliable communication is not assumed

5. The frequency of the interactions is low compared to typical message latencies, so that the protocol costs

are negligible

6. There is some form of randomness, generally in the peer selection and in the information dissemination.

The epidemic algorithms have a series of inherent properties [32] [61] that make them particularly suitable

to environments with high variability and large scale, namely:

2In the rest of this discussion we will give preference to use the term epidemic over gossip and will use interchangeably the terms
algorithm and protocol.
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• Simplicity. Their behavior and properties emerge from simple rules which are easy to implement.

• Convergent behavior. For example, nodes will agree on a global property within a bounded time [85].

• Emergent structure. Complex stable structures with predictable properties can emerge from the interac-

tions among participants [122].

• Bounded load for participants in terms of processing power, memory and bandwidth consumption.

• Independence from the topology of the underlying network.

• Robust to transient conditions like network or node failures, message lost or information inaccuracies.

One important aspect of these algorithms is that regardless their random nature, some of their global

properties are well known. In particular, those regarding the dissemination of information [128] [85]. However,

the detailed analysis of the properties of a particular algorithm is in general a complex task, as analytical models

are difficult to develop. Therefore, simulation is the more commonly adopted method for evaluating them [27].

Epidemic algorithms are no exempt of some limitations, though [32]. For one hand, they have a limited

information carrying capacity due to the bounded information exchange and the (relatively) slow periodicity

of the message exchange. Therefore, a high rate of events can quickly exhaust the capacity of the algorithm.

Another important limitation of the algorithms is that they are not particularly robust against malicious be-

haviors and correlated failure patterns, as they depend on randomness and the symmetry of the behavior of the

participants.

Epidemic algorithms have shown to be very flexible and have been used many different tasks like infor-

mation dissemination [11] [83], information aggregation [131] [105], peer discovery and sampling [123] [203],

arbitrary topology maintenance [122], building structured overlays [3] [102], coordination [103], maintaining

data consistency [71], and clustering or slicing of nodes in a network [163] [182] [204], among others.

Moreover, epidemic algorithms have been proposed as a basic building block and organization paradigm for

distributed systems [177] [202] [25] [84]. This comes from the realization that epidemic algorithms are amenable

for composition and, due to their simplicity, easy to adapt and extend.

2.2 Economic Self-Adaptation

The proven ability of a free-market economy to adjudicate and satisfy the conflicting needs of millions of

human agents makes it a clear prospect as a decentralized organizational principle [86]. Markets are in essence

coordination mechanism available for whatever purposes agents pursue [111]. In particular, they can be used to

facilitate agents to maximize utility functions [78] which reflect the operational goals of the system, like response

time, resource consumption efficiency, among others. The study of economics brings some interesting insights

on the behavior of the markets as large scale coordination mechanisms, and the role that rationality plays in

them.
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2.2.1 Markets as Coordination Devices

Micro-economics, and more specifically, Complexity Economics, has studied how economic organization can be

thought as a network, or collection of networks [136] [205]. The nature of these networks influences the outcome

of the economic process [21] [88], and at the same time the economic process itself modifies the networks, as the

individuals learn not only about the appropriate actions to take, but also about whom they should interact with.

The network therefore evolves over time with the evolution of the players and there is a continual feed-back

from one to the other. It is then impossible to attribute the resulting structure to one subject only, or to explain

for one reason. This resembles the purpose of self-adaptation, which precludes any exogenous control device to

achieve an equilibrium state in the face of fluctuations in the environment.

One major inspiration for our work was Hayek’s concept of ”catallaxy”. Hayek and other Neo-Austrian

economists understood the market as a decentralized coordination mechanism, as opposed to a centralized

command economy where a central entity has global knowledge of the system and commands every entity

decisions. For them, the goal of markets is to arrive at a state of coordinated actions, the spontaneous order,

which comes into existence through the bartering and communication of the community members – which try

to maximize their own utility – with each others and thus achieving a community goal that no single user has

planned for [111].

For those economists strongly influenced by Hayek, markets are the set of institutions that surround the

use of exchange as a means to achieve human ends. Participants on a market agree to use it as a process for

engaging in certain forms of behavior without having to agree on what our ends or goals are. What holds

markets together as institutions is this agreement on the means. The market here is nothing more than a

communication bus – it is not a central entity of its own, which collects all information and matches market

participants using some optimization mechanisms.

One key implication of this perspective is that it suggests that markets are, in Hayek’s terms, ”ends-

independent”. Markets have no purpose of their own, other than to serve as a process by which individuals and

organizations pursue their own purposes. Markets are available for whatever purpose their participants pursue.

Like other social institutions, such as language and the law, markets facilitate social coordination by providing

rules and signals that guide actors making choices in a world of uncertainty. From this perspective the idea

of aggregating utility is simply meaningless (if not just wrong) since utility is seen as essentially nothing more

than a degree of importance attached by a decision making individual to an option, in his comparison of it with

other options [137]. Therefore markets are to be judged by the degree to which they coordinate the various

plans of individuals and organizations [111].

In this model, a central presumption is “constitutional ignorance ”, assuming that it is impossible (and

even undesirable) to know all the economic variables needed for a centralized or planned resource allocation.

Therefore, the knowledge of participants, or more precisely, the fragmentation of knowledge, becomes a critical

issue. The economic problem is about how to achieve the best use of resources, given the limited knowledge

of participant agents, for ends whose relative importance only these agents know. Which things are to be

considered goods, or how scarce or valuable they are, is something that competition should discover guided by

the prices that market offers for the diverse goods and services [108].
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2.2.2 Bounded Rationality

Rationality, in the sense that is understood by economics, can be defined as the ability to select the action

with the best expected utility (in terms of agent’s expectations and preferences), given its available information

about the environment [78].

The rational choice capabilities of agents are bounded by diverse factors. From the computational perspec-

tive, agents are restricted by the resources available to perform their computations, and by the limits imposed

by their architectures regarding what type of knowledge can handle and the adaptation that are capable based

on this knowledge [221]. Agents are also limited by the completeness and consistency of the information avail-

able, by their capability to process this information, by the inertia to assimilate new information, and by the

adequacy of their preferences to match decision to their current environment [78].

An agent’s rationality can be provided by three approaches: a) by design, in which the agent designer

finds the optimal solution and embeds it the agent; b) by deliberation, in which the agent itself performs a

resource constrained explicit deliberation in order to make decisions; and c) by adaptation, in which the agent

is equipped with mechanism to adapt its behavior in response to feedback from the environment, so that the

quality of its decisions improves over time [221]. These approaches differ is aspects like the resources required

to find an optimal solution, the likelihood of finding such solution and the adaptability to changing conditions.

In an adaptive approach, the search process conducted by a bounded rational agent depends on several factors

[156] such as (1) the memory, or the extent to which an agent is able to encode inferences from history into

routines that guide future behavior (2) the form of the search process, or how new information is obtained and

the direction in which the agent moves to obtain it, (3) the speed of learning, or the speed at which the agent

can adjust its behavior in response to changes in the environment (4) the feedback, or the process by which the

environment returns to the agents information required to compare the outcomes of their present strategy with

an ideal strategy.

The studies on bounded rationality [192] [18] has shown that agents can achieve successful economic behaviors

without requiring sophisticated models or exhaustive information about the environment and still exhibiting

highly sophisticated adaptation to changing environment.

Wall [208] characterized a bounded rationality decision making process by the following properties, which

define a framework for constructing such process:

1. Information processing tends to be frugal and solutions are simple-minded.

2. New solutions are synthesized by modifying currently implemented one, using a local search.

3. Alternatives are considered one at a time, so search is sequential.

4. The search for a new and better solution is undertaken only when it is observed that the goals are not

being satisfied.

5. Search is completed when a satisfying (good enough) solution is implemented.

6. Goals are stated in terms of aspirations, formed by adaptation and learning from experience.

7. Search strategies are developed on the basis of learning and adaptation through experience.
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8. The attention the decision maker pays to the environment is the product of learning and adaptation driven

by experience.

As was noticed in [176] this model has the advantage that it incorporates the update of aspirations and

diverse search models into a simple, yet plausible framework. In addition, decision sequences under this model

were shown by Wall to result in a variety of dynamic behaviors.

The possibility of implementing an adaptive behavior with limited processing capabilities and frugal infor-

mation requirements is appealing because it broadens the applicability of the solution to environments where no

accurate information is available and where agents must adapt quickly using limited resources to avoid excessive

overhead in the system.

2.2.3 Utility Functions

In economics, utility is a measure of relative satisfaction derived from an outcome. Expected utility has been

indicated as a unifying principle for decision-making rules as they allow to express preferences over a set

of alternatives [58]. In economics, the concept of preference is fundamental as rational economic agents are

expected to chose maximally preferred alternatives [78].

A utility function in the form U : An → [0, 1] maps a vector [a0, ..., an] of attributes that capture the state

of the system and its environment to a single scalar value conventionally in the [0, 1] range. Utility is generally

an aggregated function of the benefits, costs and risks associated with a situation (for example, the outcome of

an action).

It is important to notice that we follow the convention adopted in the computer science community (see for

example [70] [134] [130]) to use the term Utility Function to refer to any preferences function, and not in the

more restricted sense used in economics that relates utility functions to preferences in the presence of risk [80].

As mentioned in [134] for self-adaptive systems, utility functions are attractive because of their ability to

evaluate attribute points in the state space providing an objective and quantitative basis to compare self-

optimization strategies, in order to ensure certain levels of performance, or even assign monetary value to the

operation of a system. They thus provide a sound foundation for decision-making, as they can tie those decisions

to high-level requirements, concerns and goals.

Utility functions have been applied to multiple domains like the automated management of large, multi-

application computing data centers [130], admission control in web applications [45], web services composition

[9] [218], workflow execution [146], sensor network optimization [38], and network congestion [126], among

others.

In all cases, to make the utility abstraction operational, it is necessary to translate it into an utility function

that can capture the definition of utility in the context at hand. Many different functions have been proposed

in the literature:

• One commonly used utility function is the Cobb-Douglas formulation U = T θC1−θ, which relates the

utility to both the execution time T and the cost of execution C.

• In [77], the utility function for a node in a P2P with high churn is defined in terms of its available

bandwidth B and the estimated connection time S: U = B ∗ E(S).
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• In [134], the utility is a function of the deviation of the service’s actual response time RT from a target

response time RT0: U = (RT0 −RT )/RT0 if RT < RT0, 0 otherwise.

The formulation of the service’s utility function for a given service is beyond the scope of this work. This

problem of eliciting the utility function has been addressed from multiple perspectives. In economics, the

Analytical Hierarchical Process (AHP) [180] is used to establish priorities of the attributes that constitute the

utility function.

In the context of self-adaptive systems, in [35] it is elicited in an automatic way by the resource allocator

by asking the applications for samples of their utility function at certain critical allocation levels. In [70] it is

elicited through statistical correlation over the measurements of relevant quality attributes of the application,

as well as characteristics of its runtime environment.

2.2.4 Market based Resource Allocation

Large, complex distributed systems and economic systems share many characteristics: are made of numerous

autonomous agents that interact in complex ways, operate in an open, uncertain environment, and pursue

goals that may vary over time. They also share the need for efficient, decentralized and scalable coordination

mechanisms [22] [113] [197] [17].

This apparent parallelism between economics and distributed systems lead to the idea that a computational

system set up along market rules – based on decentralized negotiations and a price system – can allow the

system as a whole to adapt to changes in the environment or disturbances to individual members [90] [113].

Several attempts have been made for economic based solutions to very specific resource allocation problems

like data replication [44] [140] [194], task allocation and scheduling [37] [210] [207] distributed computing resource

allocation [91] [100] [143], and local computing resource allocation [171], to name a few.

It is important to notice that the aim of economics-based models in computer science is fundamentally

different from the aim of economic theory. In economics-based models, microeconomic theory is taken as a given

and is used as the theory for implementation of computational agents. Whether or not the microeconomic theory

actually reflects human behavior is not the critical issue. The important question is instead how microeconomic

theory can be utilized for the implementation of successful resource allocation mechanisms in computer systems

[217].

Based on these principles, an in order to explore how they could be applied to resource allocation in large

scale distributed systems, we proposed a framework called the Grid Market Middleware (GMM) inspired by

the concepts of Market Oriented Programming [211] and the Catallactic Information Systems [86]. The GMM

addresses the problems of providing a general infrastructure for decentralized markets, a scalable architecture

and a high level programming abstractions independent of the market model.

The GMM has been designed under two guiding principles: a) integrate under a common framework the

services related to information gathering and dissemination in decentralized market, and b) take advantage of

the functionalities provided by overlays to organize a distributed system and allow efficient communications and

decentralization.

The architecture of the GMM (see figure 2.1) considers the following layers which progressively abstract
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from the technological aspects to the market high level abstractions and the application programming interface:

Market: Market specific participants that implement the market allocation mechanism [114] by engaging in

trading interactions. Participants are agents (in the general sense, not in the MAS sense) that behave on

behalf of resource providers or resource consumers, or meditate between them. Participants are responsible

for gathering and evaluating market information and deciding their strategies to sell/buy (e.g. pricing). They

can also behave as mediators (broker, arbiter, market makers). The EERM provides the capabilities to access

grid resources from the grid market. It registers resources in the market and provides information about its

availability and relevant performance metrics, which is integrated with the market information. EERM also

serves as a gateway to access resources, verifying that the intended access are backed by a previous agreement

between the parties (provider and consumer).

Core Maket Services: Services that support the development of participants, enabling them to engage in ne-

gotiations for resources. The Exchange Service provides a trading infrastructure designed to support different

market allocation protocols. The Market Directory Service provides a decentralized, market wide registry

for participants (providers, consumers) and the resources/services been traded. The Market Information

Service provides current aggregated information and historical statistics of market indicators, like prices and

trade volumes, under publish/subscribe and query interfaces. The Logging Service keeps a registry of the

transactions for accounting, dispute resolution and security purposes. The Currency Service is a distributed

banking service which enables users to perform and receive payments for resources usage and sharing using a

virtual currency (g-currency. It also serves as an overall regulation system, by restricting users with a limited

purchase power leading to price contention during peak demand periods [147].

Distributed Information Services: Generic services that allow an efficient management of information in

fully decentralized deployments: processing queries and their responses, filtering messages, aggregating infor-

mation and ensuring consistency and transactional access to critical data. This layer embodies the ideas of

Figure 2.1: Architecture of the GMM
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self-organization and information dissemination on decentralized markets.

Overlay Services: Provide sophisticated communication and cooperation mechanisms based on a overlay,

like publish/subscribe, group casting, distributed lookup (DHT), and replication. Allows both the static –

design time – adaptation to different platforms, as well as dynamic – run time– adaptation to changes in the

operational conditions like network topology, churn of participants, surges in workload, etc.

2.2.5 Limitations and an Alternative Approach

Despite the efforts like Market Oriented Programing and the GMM for providing a generic framework to

guide the design and implementation of marked-based resource allocation systems, a generic approach for the

translation of the adaptation problems to economics principles remains as an open research question.

One of the reasons is that mapping a resource allocation problem to a market model is a non trivial task

and is not except of problems [164]. In particular, is not clear the applicability of markets to computational

environments, as some of the assumptions commonly made in economic theory may not hold [144] [166]. For

example, that prices alone carry all the information necessary for (rational) economic decision making. Addi-

tionally, there are practical problems to overcome like how to establish resource pricing and managing virtual

currencies whose value may not be well defined outside the computational market [190].

We have therefore opted to avoid the market metaphor and base our approach on the under-

laying concepts of utility maximization and bounded rational behavior, within the context of the

Catallaxy – i.e. fully decentralized markets operating with incomplete information.

In this sense, we have moved more towards the frontier of social and economics inspired self-adaptation

models.





Chapter 3

Collectives

The implementation of self-adaptive systems faces many challenges along its life-cycle, from the modeling to the

implementation, deployment and final operation. In this chapter we present Collectives a middleware framework

that provides both the modeling concepts needed to encapsulate the relevant adaptation concerns at the proper

level of abstraction and the architecture to realize them.

The main contribution of the Collectives is to integrate into a single, comprehensive and extensible model

multiple aspects that are subject to adaptation. A clear separation of concerns allows considering individually

the different adaptation requirements of the application and use mechanism provided by the proposed framework

to adapt the applications to specific requirements.

We propose a concise set of practical design abstractions for understanding, analyzing, and building self-

adaptive distributed applications using overlays as the basic organization and communication mechanism. The

proposed structuring allows an ordered approach to the development of solutions, by mapping the different

concerns to the components of the architecture.

3.0.6 Adaptation Concerns

Current distributed applications have become increasingly complex with respect of their functionalities, envi-

ronments and infrastructures. Their functionalities are scattered along a large number of nodes which need to

collaborate tightly using complex interaction patterns to accomplish their tasks. They must operate in open

environments, on which new components, nodes and users can be introduced, migrated or removed at any time

[96]. Additionally, when implementing their supporting functionalities, such as searching and data replication,

it is difficult to find a single distributed algorithm which behaves appropriately in all scenarios and alternative

algorithms must be selected at run time.

As a consequence of all the factors mentioned above, the process of designing and implementing distributed

applications must consider the adaptation in different dimensions.

Static-Dynamic Adaptation . The static adaptation considers the configuration and customization of

components at implementation or deployment time, while the dynamic adaptation consists in the configuration

and tuning of these components at execution time [183]. This adaptation can be achieved either by changing

23
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operational parameters of application components or by changing their composition (arranging elements using

different patterns and selecting the elements that participate in them).

Application-Infrastructure Adaptation . At the application level it is necessary to consider adaptation

to changes in the policies, user preferences, and usage patterns. At the infrastructure level, to achieve the

levels of scalability and efficiency required by large-scale deployments it is indispensable to take advantage of

the particularities of the platform by selecting algorithms that exploit them [56] or even consider alternative

infrastructures that adapt to different environments.

Local-Global Adaptation . Local adaptation deals with local issues that affects a node and its neighbor-

hood (network congestion, node failure) requiring only local information and little or no coordination of the

corrective actions. Global adaptation is necessary to deal with application-wide changes such as variations in

the application’s workload, which may require global information or coordinated actions.

Proactive-Reactive Adaptation . Applications need to adapt reactively to changes in the environment

(e.g. node failures, congestion) but it is also necessary to adapt proactively to achieve application goals.

3.1 Model

The conceptual model of Collectives is based on four key abstractions: Agent, Collective, Protocol and Overlay

which are summarized, with their corresponding adaptation concerns, in table 3.1.

Concept Abstraction Examples Adaptation concerns
Agent Computation com-

ponent
LRM, object store Alternative implementations of

functions
Collective Distributed compu-

tation
Bag of tasks, DHT Usage policies, application goals

Overlay Computation’s
structure

Random, hypercube, tree Optimize communications, han-
dle churn

Protocol Interaction pattern Broadcast, scatter, gather Exploit topology, adapt to data
flow patterns

Table 3.1: Basic Abstractions and Adaptation Concerns

Agents represent the functionality provided by the application. Each agent offers actions and exposes

attributes, which are available to other agents (within a Collective, as seen below). Agents must cooperate to

fulfill their functions. For example, agents implementing a distributed storage service must cooperate to search

for an item and also to exchange data items for load balancing.

A Collective represents an aggregate of agents that interact to fulfill a set of goals and are governed by

some policies. The Collective allows agents to invoke actions on other agents and to obtain a global view of

the state of the collective. The Collective can also trigger actions in its constituent agents to fulfill the policies

in place, like the load balancing in a distributed storage system. Moving this proactivity out from individual

agents to the Collective makes the resulting applications more flexible.
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The Collective maintains a global view of its state by inquiring the attributes of each agent and aggregating

them using diverse aggregation protocols, which offer different characteristics of this global view in terms of

consistency and accuracy.

Agents that participate in a Collective are organized in an Overlay, an application driven self-organizing

and self-adaptive communication infrastructure. It abstracts from underlying network infrastructure (the un-

derlay [167]) and allows the agents to engage in complex interactions, adapting its topology to the needs of

the interaction patterns and the network conditions. The overlay can be adapted by gathering network and

application level attributes from other agents and filtering them based on these attributes.

The actions initiated by an agent and the information collected by a Collective are propagated by means

of Protocols, which control how the agents interact. First they define the scope of one agent’s neighborhood

within the overlay (e.g. all within a ”radius”, or a fixed number of randomly selected agents). Second, control

how the agents in the neighborhood are visited to perform a function (e.g. all the neighbors, or the first one

who responds). Finally, they can also filter the view to those agents that meet certain conditions.

The relationship among these concepts is shown in figure 3.1

Figure 3.1: Conceptual Mode of Collectives

The model of Collectives can be analyzed along four axes, which separate the main adaptation concerns in

the design of distributed self-adaptive applications, as can be seen in figure-3.2.

Structural-Collaboration. Agent and Protocol present the structural abstractions that describe the com-

ponents of the system, while Collective and Overlay abstract the collaborations on which these components

are involved. Structural elements adapt by changing their parameters, while collaboration elements adapt by

changing their composition (selecting structural elements or arranging them using different patterns) [110].

Application-Network. Agent and Collective deal with the application-specific issues (e.g. policies), while

Protocol and the Overlay deal with the network foundation (e.g. optimize message routing).

Local-Global. the Agent and Protocol deal with to local adaptation issues (e.g. minimizing message traffic),

while the Collective and the Overlay deal with global adaptation (e.g. network-wide topological changes and

variations in the application’s workload).
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Proactive-Reactive. Protocols and Overlays adapt reactively to events (node failures, congestion) while

Agents and Collective adapt proactively to achieve application goals.

It is important to notice, however, that such clear-cut separation along the axes is not always possible, as

cross-axis adaptations are frequently required.

Figure 3.2: Separation of concerns in Collectives

3.2 Architecture

In this section we present how the concepts of Collectives are realized in an architecture for self-adaptive

distributed applications. This architecture is organized, as shown in figure 3.3, in three layers: Underlay,

Adaptation and Application, which can communicate by means of a shared state that allows a cross-layer

cooperation.

Figure 3.3: General Architecture of Collectives

The Underlay [167, 187] provides application-independent network capabilities, like finding adjacent nodes,

delivering messages to a given node and also proving performance metrics such as latency and distance to other
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nodes. The Adaptation layer provides the mechanisms for adaptation. The Application layer provides the

application-specific knowledge to adapt the behavior of the Collective. The local State is formed by a set of

variables – usually mapped to agent’s attributes –that allows cross-layer adaptation. The components of these

layers are detailed in the next sections.

3.2.1 Overlay

The function of the overlay is to self-organize agents into an application level topology and offer a routing

mechanism to propagate messages efficiently over such topology. It serves as a communication substrate which

can be used by application protocols to implement complex communication models.

Figure 3.4: Overlay Architecture

The Overlay allows the organization of agents by selecting those which better fit an application-specific

selection criteria (e.g. physical distance, closeness of their logical ids, semantic similitude) in order to optimize

the efficiency of the communication, also under an application-specific metric (e.g. number of hops, response

time, search hit ratio). It builds on the concept of emergent overlays [93] [122] on which nodes self-organize by

means of simple rules in response to local information, without a predefined globals structure. More specifically,

the overlay uses epidemic algorithms to construct the topology and disseminate information about the nodes to

leverage their scalability, robustness, and resilience [32] [85]. Collectives uses push style algorithms because they

have a fast initial propagation rate [128], a desirable property when the information is used locally and a system-

wide propagation is not needed. Additionally, they are simple to implement using a lightweight communication

protocol like UDP, not requiring synchronization between nodes.

Figure 3.5 shows a generic epidemic algorithm. Periodically each node selects a subset of its neighbors (the

exchange set) and sends a message with its local view (the neighbor set) and its own current state. When a

node receives this message, merges it with its current neighbor set and selects a subset as the new neighbor set.

The different epidemic algorithms proposed in the literature differ basically in how they select the neighbors to

be contacted, and how they merge the information received (see [124] for a study of different alternatives and

their properties).

As it has been shown in [61] [84] [177] [202] epidemic protocols can be used as basic building blocks for

implementing different functionalities in distributed systems. This comes from the realization that epidemic

algorithms are amenable for composition and easily adaptable and extendable. Collectives takes advantage of
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Figure 3.5: A generic epidemic overlay maintenance process.

these characteristics by using a highly modular epidemic overlay as the basic structuring mechanism.

Collectives allow the application to tailor the epidemic overlay construction by specifying the functions used

to select the exchange set, the protocol used to exchange the view, and the function used to merge the local

view with those received from other nodes.

The composition of epidemic algorithms in Collectives follows the principles outlined in [154] regarding the

potential synergies between overlays, but adapted as composition patterns shown in figure 3.6. The composition

can be done either horizontally or vertically and can consider different capabilities of each overlay. In the

horizontal composition, overlays use each other’s capabilities or share a common capability, while in the vertical

composition one overlay uses the other overlay’s capabilities, establishing a hierarchy. The composition can

consider communication and state capabilities. In the case of the communications capabilities, in the vertical

composition one overlay uses the other as its communication substrate, while in the horizontal composition both

overlays share the same communication allowing an optimization of the communications like those proposed in

[201]. With respect to the state composition, in the vertical composition one overlay have access to the state of

the other overlay – for example, its routing tables – and receives notifications of changes on that state. In [163]

this approach is used to create per-application slices of a large overlay. In the horizontal composition, both

overlays cooperate to maintain a shared state, as in the Synergy overlay [141].

3.2.2 Routing and Protocols

The Router forwards messages to a destination over the topology. A routing destination is defined as a set of

constraints on the attributes of a node that must be satisfied to process a message, as proposed in [219]. The

objective of the routing process is to deliver messages in an efficient way, selecting at each step the best path

considering the available information about the neighbors and the constrains of the destination.

Collectives provides a modular multi-hop router based on the three functions shown in figure 3.7: Admis-

sion Control, Routing Algorithm and Ranking. These functions capture the main routing decisions on which

application-specific logic can be used to adapt the routing process to the application’s needs.
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Figure 3.6: Different approaches for overlay integration (adapted from [154]).

On each node, the Admission Control function is used to determine if the node will process the message.

If so, the message is delivered. Otherwise, it is forwarded to the next hop. The admission control function

applies policies to, for example, prevent overloading.

The Ranking Function orders (and potentially filters) the nodes from the local view according to their

attributes and the destination. For example, considering the distance to the destination, the load of the node

to achieve load balancing, or the past experience on routing through each neighbor [115] [219].

The Routing Algorithm selects the next hop based on the ranking. Examples are: a probabilistic selection

proportional to the ranking, a greedy selection of the top ranked node, a weighted round-robin considering each

node’s ranking, among others.

The routing process detects and suppresses duplicated messages produced by loops, recovers from transient

failures and can attempt alternative routes. In this way the protocols can handle messages without considering

these details.

The router also supports multicast routing, on which the message continues to be propagated even if de-

livered to a node. The multicast propagation can be controlled by means of the mechanisms offered by the

RouteObserver interface as discussed below.

Figure 3.7: Routing

The Protocols implement application-specific communication patterns – which carry the requests and
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information among agents that participate in a collective– using the routing service. On each step, the protocol

receives the incoming message, can trigger actions in the Collective, forward any response back to originator

and decide to modify the destination of the message.

Protocols have access to the overlay’s topology by means of a View, which filters it according to some

attributes. Views also allow maintaining protocol-specific information about nodes. One or more protocols can

share the same view to allow a protocol to add some attributes used by other protocol. For instance, a protocol

can be used to find nodes with a certain attribute and other protocols can then deliver messages only to those

nodes. The protocols can also use views to propose candidates to be included in the topology 1.

The interface between the application protocols and the router follows an model similar to that of the

common API for structured peer-to-peer overlays [63], even when Collective’s overlay is non-structured. In

particular, the Router offers the interface RouteObserver to handle the main events during the routing process

and allows the protocol to control it:

• When the routing process starts at the source node. The protocol can modify the destination.

• When a message is to be delivered to a node. The protocol can reject the message.

• When a message is dropped because no suitable destination was reached and the TTL was exhausted.

The protocol can, for example, switch to a different routing algorithm or modify the destination.

• When no suitable next hop is found. The protocol can retry later or even change the destination.

Multiple route observers can be combined in a chain to create complex logic from basic building blocks. These

events can also be used to gather protocol-specific information about other nodes. For example, a protocol used

for searching can use the reception of a response to update its view with statistics of the number of responses

received from each node. This information can later be used by the ranking function to deliver queries to nodes

based on their past performance 2.

Additionally, the router offers extensive instrumentation points to gather statistics about messages routed,

forwarded, delivered, failed, and dropped, which are accessible to the protocols.

3.2.3 Collective and Agents

The architecture of a Collective, as presented in figure 3.8, is formed by a set of Actions and the Adaptation

Manager.

The main Application component is the Agent. Agents must implement an interface with two methods:

visit and inquire. Visit is used by the Collective to execute an action and receive a response. Inquire is used to

retrieve agent’s attributes.

The Collective offers two methods to agents. The visit method allows an agent to invoke an action on

other agents belonging to the collective and the inquire method allows agents to retrieve a global attribute of

the collective. Those global attributes are maintained by the Collective using aggregation protocols.

The Actions are the interface to the application-specific functions provided by Agents. Actions can act

only locally or be propagated to other agents in the Collective. They can also read and modify the local state.

1This is actually how the topologies are maintained by the overlay’s maintenance algorithm.
2see [115] for a discussion on several of similar heuristics and their impact on searching over unstructured overlays.
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Figure 3.8: Architecture of a Collective

The actions are triggered either by agents, when they request an action to the collective, or by the Collective’s

Adaptation Manager following the application provided Adaptation Strategies. The description of the

Actions include the binding of the action’s parameters to state attributes, the function that must be invoked

on the agent, and the protocol and destination to be used to propagate to other nodes, if any. Any of these

elements can be changed dynamically at run-time.

3.2.4 Adaptation Strategies, Rules and Actions

The Adaptation Strategies provide application-specific adaptation logic based on Rules and Actions. Rules are

functions that returns a value in the [0 : 1.0] interval. Actions are triggered depending on the value of the

associated rule(s). Having a real valuation for rules allows not only simple true/false conditions to determine if

an action must be executed, but also more complex probabilistic or fuzzy conditions. Some Rules provided by

the Collectives framework are given in the table 3.2.

Rule Returned value
Simple Ratio Ratio of an state attribute with respect of a maxi-

mum value
Random A random value following given probability distribu-

tion

Composite Weighted Weighted sum of the individual rule’s values

Table 3.2: Examples of Adaptation rules.

The Adaptation Manager evaluates the strategies when certain conditions on the local state occur (e.g.

periodically, or when a state variable changes). Strategies trigger the execution of corresponding adaptation

action(s). Some examples provided by the framework are shown in table 3.3. In simple strategies, actions are

triggered depending of the rules’s valuation. Composite strategies are formed by multiple actions, each one with

an associated rule. One or more actions are triggered depending on if corresponding rule’s valuations. It is clear

that some strategies can be implemented combining others but are offered as separated types for simplicity. For
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example, the random composite strategy can be implemented as a probabilistic composite strategy on which

each action has an uniform random rule. As part of the future work, we are planning to implement some other

commonly used adaptation strategies, like reinforcement learning [196], which presently requires a considerable

development effort.

Strategy Action Triggered
Simple Probabilistic With a probability proportional to the rule’s valua-

tion
Threshold If rule’s valuation above(below) a threshold

Composite Greedy The action with the highest valuation
Probabilistic One action with a probability proportional to its

rule’s valuation
Threshold Every action above (below) a threshold
Random A Randomly chosen action

Table 3.3: Some examples the of diverse adaptation strategies that can be implemented using the Collectives
framework’s adaptation rules and actions.

3.3 Discussion

Raising the level of abstraction when designing a software architecture brings many significant benefits. Reason-

ing on models brings the focus to the global aspects of the architecture instead of the particularities of specific

cases. This is of particular importance when one of the adaptation aspects to consider is the utilization of

alternative algorithms for the different components of the system; in this case one can be concerned about the

properties of the solution despite the specific algorithms it uses. Moreover, the use of a conceptual architecture

helps the designers to better understand and compare alternative designs with respect to the aspects covered

by the model – in our case, adaptation concerns.

However, a model should satisfy some key requirements to be practical [186]. It must be understandable;

inexpensive to develop with respect of the complexity of the system it models; and executable, in the sense it

should lead to an implementation without a significant translation effort to pass from the abstract concepts

to the implementation artifacts. Collectives addresses all these requirements by using abstractions that easily

capture the problem domain – adaptation is distributed systems – and are provided as implementation artifacts

by the middleware framework.

Another important advantage of a clear encapsulation of the adaptation concerns is that it facilitates the

reutilization and composition of basic elements to create more complex behaviors. This can be more clearly

appreciated in chapter 5 when we discuss the implementation of a middleware for self-adaptive services by

composing these basic building blocks.



Chapter 4

Adaptive Web Services

In this chapter we introduce the basic concepts of service-oriented architectures. We discuss their characteristics,

describe the scenarios of interest for this thesis, and propose a model to understand the functional components

that participate in providing self-adaptation capabilities to such systems. This model offers a point of reference

to understand the concerns, scope and limitations of the middleware infrastructure for self-adaptation proposed

in chapter 5.

4.1 Service-Oriented Architecture

Modern distributed applications are evolving towards a Service-Oriented Architecture (SOA), dividing their

functionality in a set of independent services, each of them offering a well defined capability. More formally,

the W3C consortium [206] defines a SOA as:

A set of components which can be invoked, and whose interface descriptions can be published and

discovered

Where a service is defined as:

[A]n abstract resource that represents a capability of performing tasks that represents a coherent

functionality from the point of view of provider entities and requester entities. To be used, a service

must be realized by a concrete provider agent.

The term service covers a wide range of concepts including physical resources (computation, communication,

and storage), informational services (databases, archives, instruments), individuals (people and the knowledge

they represent), capabilities (software packages and supporting services) [92] [65].

Many large web service providers have leveraged SOA and adopted a ”Software as a Service” (SaaS)

paradigm, offering application services to third parties which can be composed to create new value added

services [185]. Under this model services are reused and combined, new services are introduced frequently, and

usage patterns vary continuously. This paradigm has been further extended to offer application platform ser-

vices to support the deployment of third party services (Platform as a Service or PaaS) and raw computational

resources (Infrastructure as a Service or IaaS).

33
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In the context of this thesis, we adopt the following formalization – adapted from [120] –of SOA and the

problem of QoS-aware request allocation:

Node: A specific type of capability which can run an instance of a Service. We denote as N = {n1;n2 . . . }

the set of nodes of a SOA based system.

Service: A software functionality available on-request via a network. Each service implements a particular

set of capabilities. We denote as S = {s1, s2 . . . } the set of services of a SOA based system.

Service Instance: An activation of a service in a node that enables it to process service requests. We denote

as Is ⊂ N the set instances of the service s (nodes on which the service has active instances).

Service Consumer: An entity using a particular service. We denote as C(s) as the set of customers for

service s

Request: An atomic unit of work, issued by a service consumer, to be processed by a service.

Workload: A series of service requests generated by a service consumer. For each consumer ci, we denote wi

as the workload and Ws = {wi}, i Cs as the workload for a service s.

Quality of service (QoS): A non-negative real-valued quantity specifying the expected execution attributes

of a request, such as response time, execution cost, security and others [159]. We denote as Qs(c) the expected

QoS of the customer c for the service s.

Utility: A non-negative real-valued quantity specifying how well a request can be executed in a node. We

denote as Us(n) the utility of the node n for a request of the service s.

Overlay: An undirected graph O = {V,E} where V ⊂ N is the set vertexes and E is the set of edges. An

edge e = (ni, nj), ni, nj ∈ V defines a non symmetric and non transitive relationship between ni and nj . In an

overlay, we denote the neighborhood of N(n) as the subset (n, ni)ofE, ni 6= n.

4.2 Model

Internet services can be seen as a stream of requests coming from clients through the Internet, that are received

by a site, processed by a service instance using resources provided by a server, and returned to the clients upon

completion [33].

The focus of this thesis in on cluster-based locally-distributed web services [43] using non dedicated in-

frastructures, on which web services are deployed over a set of machines housed together in a single location,

interconnected through a high-speed network, and presenting a single system image to the outside. However,

this approach can also be applied to cloud based web services, as they follow a similar architecture [155].
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A model for locally replicated web services running on non-dedicated servers is shown in figure 4.1. Every

server – or physical node – supports one or more instances of different services. The resources provided by the

node – memory and CPU, network bandwidth, disk – are shared by these instances. Each instance processes

requests using a dispatching discipline. In this thesis we assume that each service instance dispatches requests

using a processor sharing discipline. This model fits well for web servers like Apache, a well-known and widely

used multi-threaded web server, and is amenable to analytical evaluation using a M/G/1/k∗PS queuing system

[40].

Figure 4.1: Model for a Web Service running on non-dedicated servers.

We focus on Internet services in which each of its incoming request carries with it a specific amount of

computation to be performed which must be completed before the request is fully returned to the client. It is

important to notice that not all the existing online services fall into this definition of web services. For example,

asynchronous systems which would receive (and acknowledge) the requests but that continues processing and

sending responses incrementally. Examples of such services are video streaming and push style notifications

(e.g. a chat).

An important characteristic of this model is that service instances must execute multiple independent re-

quests which have similar execution characteristics and QoS requirements. As a consequence, each instance is

able to estimate the QoS it can offer considering only its current execution state. A contrasting case is the

execution of jobs in a grid where every job may have different requirements, like the number of processors,

memory, total execution time or the access to certain dataset replicas. In that scenario, an instance could not

assess the QoS it can offer to a request until it receives it and evaluates the request’s requirements.

One additional assumption we made is that we consider fine grained services, on which individual requests

represent a small fraction of the overall workload and that the service level objectives allow for a fraction of

those requests to under-perform (e.g. it is expected that %95 of request to be under a certain response time,

so the remaining %5 percent can miss this goal). This case contrasts with the scenario of scheduling a parallel

job on which each process represents a substantial amount of work and the delay of one process may affect the

performance of the whole job (due to task dependencies) [189].

Finally, it is important to notice that in our work we concentrate in the web application layer and assume

that the data access, including consistency requirements, are handled by a separated data layer as proposed in

modern highly scalable web architectures [138]. Moreover, we assume services are stateless in the sense that
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even when session affinity can be desirable, a request can be attended by any service instance. This property

can be achieved by using a separate distributed cache for session handling. Despite this assumption, we propose

alternatives – discussed in section 5.8 to handle situations when session affinity is mandatory.

For our study, two aspects of the environment are the most relevant: scale and dynamism. The scale

determines how many servers are considered. We differentiate low (several tens to one hundred), medium (a

few hundreds) or large (several hundreds to thousands) scale. The dynamism measures to what extent the

configuration – number and characteristics of nodes – is mostly static (low) or changes frequently (high).

The workload can be characterized in terms of its arrival rate, that influences how frequently dispatching

decisions are made, and the granularity of the requests, that defines how much the processing of each individual

request can affect a server’s state. These two characteristics influence how much the system state can vary

between information updates.

Table 4.1 compares various classes of applications found in the literature (job scheduling/Grid, traditional

web servers and P2P) to our scenario of interest – which we identify as Large-Scale Distributed Services (LSDS)

– using the characteristics discussed above. It is clear that LSDS’ share characteristics with those other scenarios

and therefore can benefit from the approaches used in their contexts, but also introduce new challenges due the

scale and dynamism of the environment, requiring new approaches. This need is one of the main motivations

of the present work.

Grid Web P2P LSDS
Scale medium Low/Medium Large/Very

Large
Large

Dynamism Medium1 Low Vey High High
Arrival rate Low High High High
Granularity Large/medium2 Small Medium3 Small

Table 4.1: Comparison of request routing scenarios

4.3 Conceptual Architecture

The management of web services that face changing conditions in their environment and workload is a well

studied problem. Even when some good surveys on the subject exists (see for example [43] [101]) they are

more focused on describing and comparing existing systems rather than in guiding the design of new solutions.

Therefore, to better understand the requirements of adaptation for web services and put our approach in

perspective with respect of alternative approaches, we have developed a conceptual architecture for adaptive

web services.

We have separated the main design concerns into three components that form this architecture as shown

in figure 4.2. The Service Sizing decides the number and location of service instances needed to satisfy the

allowed workload with the desired QoS. The objective of the Request Allocation is to route requests to a

service instance that can process it with the desired QoS, while preventing overloading of the instance. Finally,

1This Dynamism comes mostly from the consideration of heterogeneous or non-dedicated serves, but configurations are generally
considered stable at short term.

2[189] considers medium sized service requests, like jobs of short duration.
3Mostly for file sharing and streaming, the two more common P2P usage scenarios.
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the Monitoring component provides the aggregated information for the other two functions to work properly.

In the following section we explore each of the components and discuss relevant work.

Figure 4.2: A conceptual architecture that identifies the main functional components involved in adaptive web
services.

4.3.1 Service Placement

To adapt to changes in the demand or to eventual failures of nodes, it is necessary to periodically decide the

number of active instances for each service and their placement over the pool of shared servers. One approach

is to consider the problem as a global optimization problem and solve it either centralized or decentralized way,

but considering the maximization of a global objective function. For example, in [129] the dynamic placement of

the instances of multiple applications on a set of server machines is formulated as a two dimensional packaging

problem. However solving this kind of optimization problems has a high computational complexity, severely

limiting its scalability.

VioCluster [179] uses a decentralized approach in which service domains brokers negotiate the number of

virtual machine instances each domain will borrow/lend from each other, seeking to maximize their throughput.

A totally different approach is to rely only in local information for decision making. In [157] the application

placement is modeled using game theory as a minority game on which agents representing the applications

decide autonomously on which server to run. In [4] each server autonomously decide which applications to run

based on information from its neighbors – about resource usage and requests rate – and a utility function that

defines the utility of serving each service. Similarly, in [89] each service instance of a service deployed over an

overlay uses a heuristic based on local information from neighbors to decide when to migrate part of the current

load to other nodes.

4.3.2 Resource Discovery

The service placement function requires the location of resources which can provide an adequate quality of

service (e.g. that have sufficient capacity) to be considered for the placement of an instance. In centralized

or hierarchical information systems the resources are registered in a predefined set of nodes and their state is

periodically updated. Example of this approach are grid information systems [62]. For very large scale systems
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on which resources change frequently, this approach may not work well due to the overhead of continuously

updating global information.

A different approach has been to use structured overlays for resource allocation to leverage their performance

guarantees (see for example [107] [112] [28]). The general idea is to construct a multidimensional DHT that

allows queries over multiple attributes. Two major limitation of this approach are that a) in general, requires

that the attributes (and in some cases the range of values for each attribute) to be fixed and known in advance;

and b) the maintenance cost makes them unsuitable for frequently changing attributes.

Non-structured approaches overcome these limitations to the expense of only having best-effort performance

and need to prevent overflowing the entire overlay with queries. In [115] diverse query dissemination heuristics

are proposed to improve the accuracy and latency of queries. Resource slicing or clustering approaches [182] [163]

limit the search to a subgroup of potential nodes. Kelips [102] proposes an hybrid epidemic-clustering approach

to obtain O(1) look-up time, but its applicability to highly variable environments has not been explored.

4.3.3 Demand and Capacity Prediction

One fundamental problem of service placement is the forecasting of the service demand to estimate future

resource demand. In the case of non-dedicated servers – that is, servers whose load is not completely under the

control of the service placement mechanism – it is also necessary to forecast the server utilization to predict

future system performance and guide the adaptation process.

Workload prediction: Tries to characterize the workload seen by a service by two properties: the request

arrival process and the service demand distribution. The general approach is using time series analysis tech-

niques. In [55] the arrival rate is predicted using an autoregressive model based on the last observed arrival

rate (an AR(1) model), while th service demand is characterized by its probability distribution derived from

the histogram of pass observed service times. In [116] web server access data is viewed as a realization of a

set of underlying time-varying (non-stationary) stochastic processes, and auto-regressive time-series analysis to

obtain the key properties of this set of processes. A different approach is used in [109] where the non-stationary

behavior of the mean of requests per second is characterized considering the influences of time-of-day, day-of-

week, and month as well as time serial correlations, which can be used to predict demand several minutes or

hours ahead.

Server utilization prediction: Takes as input recent measurements of resource utilization and tries to

predict future utilization. In [74] multiple linear and non-linear regression models for load prediction are

evaluated, including autoregressive, moving average, autoregressive moving average (ARMA), autoregressive

integrated moving average (ARIMA), and autoregressive fractionally integrated moving average (ARFIMA)

models. Their results show that the simple autoregressive model has a good predictive power and low overhead,

while more complex liner models are expensive to fit and hence difficult to use in a dynamic or real-time

setting. The Network Weather Service [213] uses an adaptive, non-parametric approach, applying a set of one-

step-ahead forecasting models and dynamically choosing the one that has been most accurate over the recent

set of measurements. In [216] simple predictors that track on recent trends are proposed and are shown to
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outperform other regression based approaches. In [13] a two-step approach is proposed that first evaluates the

load trend through a load tracker function, and then applies the load predictor to the load trend results, instead

of working on direct resource measures. A different approach is used in [174] where diverse data mining and

machine learning techniques for short time forecasting are evaluated, finding that methods based on Bayesian

network classifiers and multivariate regression perform better (on average) for a variety of tasks over univariate

auto-regression methods.

4.3.4 Performance Isolation

In non-dedicated infrastructures services hosted on the same physical node may interfere with each other’s

performance. To prevent this, some degree of performance isolation can be achieved through scheduling policies

and/or resource partitioning mechanisms1.

Request scheduling approaches control the intensity and the order in which concurrent requests from dif-

ferent services should be served, effectively controlling the fraction of resources they consume. In general, the

scheduling require some form of prediction of resource consumption for each type of request, either derived

analytically [55] [79] or based on observation of past executions [8] [54]. Others, based on control theory [34]

[73] [127] [172] use of a closed-loop controller that controls the parameters of the resource provisioning using

feedback information from the system.

One limitation of scheduling is that they are generally based on limiting the arrival rate to enforce a certain

level of resource consumption and guarantee some service response time. This approach assume either that

there is one single resource to manage – generally CPU or bandwidth – or that the allocation for the different

resources is proportional. Neither of those assumptions hold in a general case 2.

The partitioning mechanism can be applied at different levels of granularity, depending on the definition

of the resources. In [220] servers are assigned to services based on their relative priorities to ensure the QoS

objectives per service are met. Cluster reserves [16] extends resource allocation mechanisms provided at the

node level to a cluster-wide resource allocation. Virtualization is gaining popularity as a resource partitioning

mechanisms as it can be implemented in a non-intrusive way. For example, in VioCluster [179] each service

deployed over a virtualized shared cluster composed by virtual machines interconnected by a virtual network.

However, even in the case of consolidated infrastructures based on virtualization – which provide a great

level of granularity and control – this isolation is never perfect as some side-effects like cache invalidation [118],

network media access collisions and increased disk latency due to head movements can cause some degree of

interference.

4.3.5 Membership Management

Request dispatching requires information about the active instances at any given moment. As the number of

instances and their location over the (potentially very large) pool of servers may vary over time, traditional

membership protocols aimed to support group communication at smaller scales are not well suited. Instead,

1In the literature (see for example [101]) this problem is generally studied in the context of service differentiation.
2The multiple resources case is different from the multi-layer service case – which can be handled using queuing based schedulers

– because the resources are consumed simultaneously and therefore must be co-allocated.
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many membership protocols have been proposed that provide each participant with a partial view of the members

which is sufficient to support reliable routing in the presence of node failures and churn. Cyclon [203] SCAMP

[94] and the peer sampling service [124] use gossip (or epidemic) dissemination of memebership information.

RandPeer [151] use a trie data structure to organize the membership information and can cluster peers based on

their QoS characteristics, restricting random peer selection within specific QoS clusters to support applications

in achieving QoS awareness in neighbor selection.

4.3.6 Request Dispatching

The objective of the request dispatching function in to assign requests to service instances maximizing the pos-

sibility that the selected instance can handle it while preserving the QoS requirements. The request dispatching

can be applied centralized or decentralized way, using global or local information [42]. It can also be done once

per request or in a multi-round (or multi-hop) allocation when a server that cannot handle a request assigned

to it, repeats the routing process.

Request dispatching must address two main aspects: how and where redirect the requests and how select

the best destination (load balancing).

Request Redirection. There are many alternative mechanism to implement the redirection requests to

cluster based web servers [43]. The redirection can be done at different levels of granularity: at the TCP con-

nection, HTTP request, HTTP session (group of related HTTP requests). The redirection can be implemented

at different points along the request processing, as shown in figure 4.3:

1. At the web client that originates a request, generally at a reverse proxy acting on behalf of it.

2. At the DNS level, during the address resolution phase, the entity in charge of the request routing is

primarily the authoritative DNS server for the web site.

3. At the network level, the client request can be directed by router devices or through multicast/anycast

protocols.

4. At the web system level, the entity in charge for the request assignment can be any web server or other

dispatching device(s) typically placed in front of the web site architecture.

Depending on the redirection approach, it is possible to implement content-aware – which consider the

specific object or service being accessed – or content blind dispatching policies. For example, neither DNS level

nor L4 level network redirection allow content-aware because the redirection occurs before the actual HTTP

request is sent and therefore the target can’t be identified.

Another consideration is that, depending on the placement of the dispatching mechanism, disseminating

state information can be more complex. For example, updating DNS entries with accurate load information

would require setting very short TTL for the DNS entries to force a frequent refresh, which will impact negatively

the performance of the client.

In the case of static content, other considerations apply, mostly to improve cache efficiency, which do not

apply to case of dynamic content and are therefore not considered here.
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Figure 4.3: Generic architecture for a locally distributed web service.

Load Balancing. Is responsible for distributing requests across web servers, ideally in proportion to their

available capacity, to ensure that all servers are used to their full capacity, while no web server is overloaded. It

should be noted that load balancing by itself does not guarantee an adequate quality of service on each server,

only that each server has a fair amount of work to process.

The problem of request balancing in distributed system has been thoroughly studied in the literature and

many heuristics have been proposed using combinations of centralized/decentralized decisions and static that

do not require any information about the server’s state (for example, a round robin) and dynamic decisions

that consider the servers’ state in terms of its current load [42] [43] [36]. For dynamic heuristics, one important

consideration is the load balancing in the kind of load information being used and the frequency of update of

this information. Many load information types have been proposed: the number of active sessions, number of

concurrent requests, number of requests in queue, round trip time for requests, total number of bytes transmitted,

among others.

4.3.7 Admission Control

Is based on reducing the amount of work the server accepts when it is faced with overload by refusing a

fraction of the connections [101]. Simpler admission control approaches refuse all the incoming connections

when predefined thresholds are reached [117] or based on performance indicators [57] [34]. In [149] the resource

consumption (bandwidth) of clients is controlled by delaying the requests from clients demanding an excessive

amount of resources. SEDA [212] implements an finer grained admission control accomplished by internally

monitoring the performance of the service, which is decomposed into a set of event-driven stages connected with

request queues, to allow the rejection of only of those requests that are limited by the bottleneck components.

4.3.8 Monitoring

To support the management of the service, it is necessary to count with global aggregate information. A

number of monitoring mechanisms have been proposed, which adapt to different scenarios. Astrolabe [199] and

STAR [119] maintain aggregation trees using an epidemic membership algorithm to locate new nodes and detect

failures. Such systems are aimed to scenarios where there exist a sink that gathers all the system information.
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Other systems like Willow [199], SOMO [ZSZ03] and DSIMS [215] rely on DHTs to build aggregation trees.

One common limitation of those systems is the cost of maintain the DHT; additionally, the attributes being

monitored must be predefined (or, even worse, the range value of such attributes must be known).

Epidemic algorithms are also been proposed to maintain global aggregates in very large scale and higly

dynamic systems [131] [121]. Their main drawback is the time needed to have an accurate global estimate of

the actual values. Epidemics have also been used to maintain a shared bulleting board [12]. Its main drawback

is that the average of the information increases rapidly with the size of the cluster and therefore seems not be

appropriate for the scenarios of interest.

4.4 Discussion

We have presented a model for adaptive infrastructures for web services, with emphasis on locally distributed

deployments. This model proposes a modular separation of the multiple concerns that must be considered when

developing such solutions, providing a framework to understand their requirements and clarify their scope.

We have also surveyed solutions from the literature and mapped them to the model, identifying the diverse

approaches that have been proposed for each of the concerns we have identified. In this way we facilitate the

comparison of alternative approximations for each of the concerns, identifying their advantages and limitations.

Finally, we consider that infrastructures developed following this model will promote the reutilization of

solutions and their composition in new ways. Our own proposed infrastructure eUDON – presented in chapter

5 – exemplifies its potential.



Chapter 5

eUDON an Elastic Utility Driven

Overlay Network

The Elastic Utility Driven Overlay Network (eUDON) is a middleware for dynamically adapting a service

deployed over a highly dynamic large scale infrastructures of non-dedicated servers to ensure it satisfies a target

QoS objective. It addresses the following concrete adaptation objectives: a) adapt to fluctuations in the available

capacity of each node; b) scale (up and down) the number of instances to match variations in the workload; c)

handle the churn of instances as they are activated/deactivated or experiment failures; and d) handle massive

failures that require the rapid allocation of multiple instances.

eUDON is based on the Collectives framework. Each service deployed over a shared infrastructure behaves

as a collective of service instances (the agents) organized using a (composite) overlay. The main function of this

collective is the allocation of requests to instances that provide an adequate QoS. This is done by exploiting

the modular adaptive routing provided by the Collectives framework to implement the resource location and

load balancing heuristics. The main adaptation strategies implemented by eUDON are the adaptation of an

admission window on each instance to prevent overload, and the elastic assignment of service instances to

adapt the global capacity of the system to the fluctuations in the demand. The collectives provides aggregate

information used for adaptation strategies.

Following the conceptual architecture for adaptive web services discussed in chapter 4, eUDON covers the

functions related to Request Allocation: Membership Management, Request Routing, Load Balancing, and

Admission Control. The Resource Isolation function is not required for eUDON to work and this is one of its

main advantages. It also partially covers the function of Service Sizing, as it can dynamically adapt to the

workload, but it is limited to do so from a set of already active – but potentially not serving requests– instances.

The Monitoring function is covered by the Collectives aggregation function1.

eUDON follows the principles of emergent, utility-driven, and model-less self-adaptation. The adaptation is

executed locally on each service instance using simple strategies that really on the current state of the instance

and, in a leaser degree, on estimated global aggregate information. The utilization of global information may

1This aggregation is not currently implemented. In the experimental evaluation aggregated information is simulated by feeding
nodes with the values of the aggregated metric perturbed by a certain random value to simulate the aggregation error.
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seem to contradict the emergence principle – which call for local information and coordination. However, this

aggregated information can actually be estimated from information obtained from neighbors. It does not need

to be either accurate or up to date. The adaptation rules we have chosen are purposefully simple. They are

reactive (do dot anticipate changes), probabilistic in nature and depend of few parameters, which basically

reflect how aggressively the adaptation process should react to deviations from the desired QoS objective.

5.1 eUDON Model

The model of eUDON is shown in Figure 5.1. There is a large pool of servers available for diverse services. At

any given time, on a subset of those servers there are instances activated to process requests for a service.

Incoming requests for a service are processed through a set of entry-points, which correspond to segments of

users with similar QoS requirements. In the context of QoS-based service discovery and composition [150], each

entry point represents one of such services with a particular set of QoS attributes. Each entry point is replicated

and requests are evenly distributed over the multiple replicas using traditional DNS or level 4 network load

balancing techniques [43]. The entry point replicas route the requests to the service instances using the eUDON

overlay, which handles the load balancing among the instances and the QoS considerations, as explained below.

Each service has a utility function that maps the attributes and execution state of a service instance (e.g.

response time, available resources, trustworthiness, reliability, execution cost) to a scalar value that represents

the QoS it provides. The QoS offered by an instance may vary over time due to, for example, fluctuations on the

load or the available resources of the non-dedicated server it runs on. Each entry point has a QoS requirement

defined as the minimum acceptable utility that a service instance must provide to process a service request

coming from the entry point.

The adaptation process occurs at three levels whose interplay allow the system to respond to both short and

mid term load fluctuations, as well as to failures. First, on the pool of available servers, a certain number of

service instances are activated to form the Service Search Overlay, which is used to locate instances offering

an adequate QoS. The number of active instances is adapted periodically considering the expected workload

and the level of redundancy needed to handle short term peaks and eventual failures. Active instances that are

not needed are deactivated to save resources and energy. How the number of active instances is calculated and

adapted to the workload variations and management policies is not covered in this thesis. Diverse techniques

exists as discussed in section 4.3.1.

Having active but not promoted instances can be justified both in cluster and cloud based scenarios. In

shared clusters, the active instances which are not promoted for processing requests add little overhead to the

cluster. In a cloud scenario, it makes sense to have instances activated for some time even if idle, because of the

activation overhead and because computing resources are usually paid by the hour – and therefore a 15 minutes

activation cost the same than a full hour activation.

At a second level, from the the active instances, a subset capable of processing the current workload while

preserving the expected QoS is promoted to the Service Routing Overlay, which has the responsibility of

distributing requests to balance the load among the service instances. Those instances which are underutilized

or are not meeting the required QoS are demoted, moving back to the Service Search Overlay. This mechanisms



CHAPTER 5. EUDON AN ELASTIC UTILITY DRIVEN OVERLAY NETWORK 45

Figure 5.1: Elastic service overlay model.

tries to minimize the number of promoted instances and maximize the resource utilization – an important

objective when considering energy efficiency – and reduce the number of hops needed to allocate each request.

Finally, on each instance, an Adaptive Admission Function limits the load of the instances to ensure the

required QoS, adapting to variations in the server’s available resources due to the interference of other services

sharing the same physical or virtual machine, or deployed over the same service container.

The routing and search overlays use a push style epidemic algorithm to maintain their topologies, find new

(activated, promoted) instances, remove unavailable (failed, demoted, deactivated) instances, and disseminate

the current state of instances.

One important consideration in both load balancing and admission control is offering service differentiation

for multiple services and service classes. In eUDON we address this requirement indirectly. Each service and

service class run in a separate instance of eUDON. The maintenance of multiple overlays does not necessarily

implies increasing the system’s overhead, as messages from multiple epidemic overlays may be efficiently delivered

by piggybacking them on a single message [201].

The following sections describe the diverse aspects of the model outlined before in more detail and explore

the self-adaptation options they offer.

5.2 Utility Function

The utility function is the application dependent component of eUDON, as each service may have a different

definition on utility depending on its functionality, user expectations, provider’s goals, and others. Several

utility functions have been proposed in the literature [77] [134]. In our experiments we use a utility function
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adapted by the function used in [134] that relates the utility to the deviation of the response time RT from a

target maximum response time RT0:

U(RT ) =

[
RT0 −RT

RT0

]α
(5.1)

As shown in Figure 5.2 the coefficient α controls how quickly the utility decreases as the response time

approaches the maximum. This function was selected because it can easily be related to metrics obtained from

both the analytical and simulation models, making it straightforward to predict and measure the impact of the

adaptation decisions in the resulting utility.

However, it is important to stress that the adaptation process considers only the utility function and makes

no explicit reference to the underlying response time. This allows us to generalize the results to other utility

functions given that they satisfy the basic assumption of being non-increasing with the load of the system, as

discussed later in section 5.4.
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Figure 5.2: Utility Function.

5.3 Overlay Maintenance and Request Routing

eUDON uses the generic overlay construction and routing framework mechanisms provided by Collectives, which

are shown in Figure 5.3.

Figure 5.3: Greedy routing over two overlays.
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The search and routing overlays are organized using epidemic algorithms. Over each overlay, requests are

routed using a generic routing process shown in Figure 5.3. On the reception of a request, the instance uses

the Admission Function to determine if the node can accept the request for processing. If the request is not

accepted, then a Ranking Function is used to rank the neighbors and a Routing Algorithm selects the next

hop in the routing process based on the ranking. This function accommodates the heuristic for selecting the

next hop. When a request is routed beyond a predefined number of hops, it is routed using the search overlay,

looking for an active (but not promoted) instance capable of serving it.

In eUDON the routing and search overlays use different variations of the neighbor selector, ranking heuristic

and routing algorithm to meet its particular requirements as explained in sections 5.5 and 5.6. Tables 5.1(a) and

5.1(b) show how alternative versions of these components can be combined according to the unique requirements

of each overlay. From the table, it can be appreciated how the proposed modularity offers a great level of

adaptability and facilitates the composition of generic building blocks.

Neighbor Selector Ranking Function Routing Algorithm
Random – Round Robin
Age – Round Robin
Age Capacity Two Choices
Age Capacity Probabilistic

(a) Routing Overlay

Neighbor Selector Ranking Function Routing Algorithm
Random – Random Walk
Age Utility Greedy

Gradient Utility Greedy
(b) Search Overlay

Table 5.1: Example of combining Collective’s overlay components to create alternative overlays.

5.4 Adaptive Admission Control

eUDON uses an adaptive admission function – inspired by those proposed in Quorum [34] and in [20] – that

follows the principles of adaptive bounded rationality proposed in [208]. The operation of this function is

summarized in Figure 5.4.

The utility of the service instance is periodically monitored and compared with a target QoS objective and

the size of the admission window is increased or decreased as needed to correct deviations. The acceptance

window is calculated using the following formula:

∆W = Wn ∗ (Un − Utarget)

W = Wn +∆W (5.2)

Wn+1 = φ ∗Wn + (1− φ) ∗W

The only assumption made by this process is that the utility is non-increasing with respect of the load. That
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Figure 5.4: Adaptive admission process.

is, that increasing/decreasing the load lowers/rises the utility, given that the rest of the utility related attributes

remain equal. One significant advantage of this adaptive admission function is that it does not require any model

to estimate the future performance of the service. Moreover, it works even when the resources allocated to a

service cannot be reserved and therefore the available capacity fluctuates.

Figure 5.5 shows how as the background load fluctuates so does the capacity of the node to compensate the

change in the available CPU and maintains the offered utility close to the target utility UT . Another interesting

result is that the adaptation process not only meets the utility goal, but also achieves a high level of system

efficiency, with a total utilization of the node around 0.9.
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Figure 5.5: An example of the admission self-adaptation process in presence of background workload variations.

5.5 Load Balancing

The main objective of the Routing Overlay is to efficiently deliver requests to a service instance with adequate

QoS, while still balancing the request among instances. The load balancing is responsible for distributing

requests across instances, ideally in proportion to their available capacity, to ensure that all of them are used to

their full capacity, while none is overloaded. It should be noted that load balancing by itself does not guarantee
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an adequate quality of service on each instance, only that each one has a fair amount of work to process. The

admission control function is responsible for controlling the rate at which instances accept requests to ensure

they meet the QoS objectives [41] [36].

In eUDON these heuristics are implemented by a combination of a ranking function that orders the neighbors

according to a particular criteria, and a routing algorithm that picks one of the neighbors according with their

ranking. Two important aspects must be considered in the load balancing in eDUON: stale information, and

the heterogeneity and variability of servers’ capacity.

Stale information is due to the utilization of partial views of the overlay on each instance and epidemic

algorithms to probabilistically disseminate information, making impossible to have an accurate global view of

the system. The problem of using stale load information was studied in [161] and [64] in the context of a system

on which a set of decentralized dispatchers assign requests to a set of servers, using the two random choices

heuristic described below. Each dispatcher has full information of the load of the servers, but this information

is stale due to delays in the dissemination. Authors found that a random assignment based on stalled load

information worked better than either selecting a random server – without considering the load information

– or just selecting the server with the lowest load. Also, they discovered that the load received by a server

depends only on the server’s rank in the list of the dispatcher (based on the load information) and not in the

absolute magnitude of the load information nor the difference of this information with respect of other servers.

Therefore, stale load information is useful as long as it allows a ranking of servers.

The heterogeneity and variability in capacity of the service instances is due to the fluctuations in the load

processed by the non-dedicated node on which they reside. Therefore, knowing the current load for a service

instance gives little information about the actual capacity of a instance to receive more requests. In [178] authors

proposed to dispatch requests with a probability proportional to the server’s maximum capacity, outperforming

approaches that use server’s load information, with the additional advantages of adapting to the heterogeneity

of the servers and also to require updates only when a server’s capacity changes.

Under these considerations, we have proposed different alternative heuristics to be evaluated in the context

of UDON :

• Round Robin: Assigns requests orderly among servers. As the list of neighbors change frequently,

eUDON implements a variation of this approach is selecting the servers randomly with a uniform proba-

bility.

• Random choices[23]: For each request k servers are randomly selected and a the request is dispatched

to the least loaded one, according to some load measure. This heuristic is known to achieve a good load

balancing and prevent the herd effect (all requests being assigned to the less loaded servers, actually

overloading them), which is likely to occur in decentralized allocations. We consider the two random

choices version (K = 2) on this heuristic.

• Probabilistic [20]: For each request a server is chosen following a probability distribution that is based

on the server’s state. It can be considered a generalization of the weighted round robin heuristic, amenable

to scenarios where the list of server or their probabilities vary over time.
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Following the ideas proposed in [178] we have considered therefore as the load information for the Random

Choices and Probabilistic heuristics the Capacity, defined by the size of the admission window as discussed in

section 5.4.

5.6 Resource Discovery

The objective of the Search Overlay is to find with a high probability and a low number of hops, a service

instance offering adequate QoS. We evaluated three alternative overlays that use variations of the generic

epidemic algorithm described in section 3.2.1 and different ranking functions: the age-based algorithm with a

greedy search, a gradient overlay as proposed in [181] and a random overlay as proposed in [5]. In all these

overlays, each node selects a random subset of neighbors to disseminate its current state.

In the gradient overlay, each node merges the received information by selecting the nodes that have a utility

similar to its own current utility. Requests are routed using a simple greedy routing that exploits the resulting

utility gradient. The rationale of this overlay is that, if a node offering a certain QoS cannot handle a request

because it has no capacity, it is highly probable that one of its neighbors can handle it offering a similar QoS.

This overlay was selected to evaluate if, under the changing conditions of the scenarios of interest, organizing

nodes according to their utility offered any advantage.

In the random overlay, each node merges the received information by selecting a random sample of nodes.

The routing is done by means of a random walk. This overlay was selected as a baseline to evaluate if the age

based overlay offers any systematic improvement over a random search.

5.7 Promotion and Demotion

All active instances participate in the processing of requests. However, to maintain the number of hops needed

to process requests low, the routing overlay should minimize the number of instances needed to process the

current workload. This is the main function of the promotion/demotion mechanism, as discussed in the next

section.

The decision to promote/demote is taken by each instance autonomously based both on its local information,

like the rate of request being processed or the server’s utilization, and aggregate non-local (potentially global)

information like the total workload of the system or the average service rate of other instances.

eUDON uses a probabilistic adaptation strategy implemented by two rules based on the service rate (the

number of service requests processed per time interval). An instance promotes itself if its service rate is close

to the average of the system and demotes itself if it is offering a service rate below the 25th percentile of

all instances. These rules where chosen for their simplicity and because they could be easily traceable to the

system’s status, more than looking for optimality. However, they exhibit a very acceptable behavior as shown in

the experimental results. The probabilistic nature of the rules leads to a progressive adaptation preventing that

many instances take simultaneously the same decision, over-reacting to a situation and leading to oscillations

in the system.

The probability for promotion/demotion an instance is given by the following equation, with a S − curve
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form:

P (Sε) =
1

1 + ekSε
(5.3)

Where Sε = (S̄ − S)/S̄ is the deviation of the node’s service rate S from the target service rate S̄, and k is

a parameter that adjust the sensitivity of probability to the service rate. When calculating the probability for

demoting, k > 0 and for promoting k < 0. Figure 5.6 shows this probability for various values of k, and S̄ = 50

for promotions and S̄ = 20 for demotions.

An estimation of the global service rate can be obtained by an epidemic aggregation process embedded into

the overlay maintenance algorithms [131] [121]. In the simulation described in section 6.1, each instance gets an

approximation of these values perturbed by an error factor to simulate the estimation error of the distributed

aggregation algorithms.
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Figure 5.6: Promotion/Demotion probability function for diverse values of k.

As the promotion and demotion rules behaves independently of each other, we have added an additional

condition to prevent an instance to be continuously promoted/demoted without having the change to stabilize:

instances will not run these rules again for the 3 adaptation cycles following a promotion/demotion. This

number was empirically obtained by testing multiple options and found to work well in different situations.

5.8 Discussion

One important conclusion we obtained from the design of eUDON is that the proposed conceptual architec-

ture for self-adaptive services presented in chapter 4 results useful to effectively decompose the problem in a

manageable way and understand the scope of the solution. Moreover, it helps in the selection of alternative

approaches and techniques for the diverse aspects involved.

eUDON departs from the majority of the work on adaptive web services discussed in that reference model

in a variety of ways. In particular, the simplicity of the design and the adaptation rules contrasts with the

complexity of other approaches based on models reviewed in chapter 4.

Its model-less approach makes it well suited to form part of a generic middleware stack which could be used

to provide self-adaptation to existing services in a non-intrusive way, not requiring a model for the service’s
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performance. Our approach offers a high level of flexibility by allowing new services to be added and resources

reconfigured without requiring any re-engineering of its internal software or hardware infrastructure. Other

approaches require models for the workload, the resource utilization or the prediction of the service performance

under a certain combination of demand and resource availability.

One additional advantage of the proposed model is that it unifies the responses to different events like service

failures and workload surges under a single set of simple adaptation strategies, facilitating the system design.

Additionally, the totally decentralized nature of the solution for load balancing, admission control and

request routing, gives room for the scalability in terms of the number of service instances.

Finally, the utilization of both epidemic overlays for organizing the system and disseminating information,

in conjunction with bounded rational adaptation rules, makes the system extremely lightweight in terms of both

the communication and processing requirements.

As presented in this thesis, eUDON has some limitations. Presently we use only instantaneous measurements

of an instance’s utility for the various adaptation decisions and in particular for the admission acceptance

window. As a consequence, even when on average the QoS objective is met, no guarantees of the type ”95%

of request will have a certain QoS” are possible. However, we consider that we face here the same kind of

trade-off that exists in large scale data services like Amazon’s Dynamo [69] or Yahoo!’s PNUTS [60] on which

the strong consistency guarantees are traded by eventual consistency in exchange of scalability, availability and

responsiveness. In the case of eUDON the trade-off is between scalability and frugality in one hand, and hard

QoS guarantees on the other. Despite this observation, we are exploring the utilization of metrics other than

instantaneous measurements to improve the guarantees. For example, the utilization of histograms to estimate

the probability of breaking the target QoS.

Anther aspect not considered is the session affinity: the need to map multiple consecutive requests coming

from the same source (e.g., same user) to the same service instance, to benefit from session related state

caching (for example, maintaining the list of visited items in an online shop). We think that this requirement is

becoming less important as web services move towards highly scalable architectures inspired by cloud services,

on which this session state is delegated to a distributed caching mechanisms and persistent storage-backed

session information [138].

Alternatively, eUDON could still be used while maintaining session affinity in the following way: the proposed

request routing algorithms can be used when sessions are first established, to find an appropriated service

instance. Subsequent request are routed to the selected instance; If the instance can not met the QoS for all the

sessions assigned to it an adaptation action could be triggered to redirect a subset of those sessions towards other

instances using the same allocation process. In this way, user sessions migrate from one instance to another

trying to maintain the expected QoS. One important limitation of this approach is that presently each service

is handled by an independent eUDON overlay. Therefore, if during a session multiple types of services can be

used, the session affinity could be preserved only at the individual service level. One possible solution could be

to consider a group of related services as a kind of compound service and handled them in a single eUDON

overlay. This approach would require a compound utility function to measure the QoS of this service, based on

the QoS of the individual services.

Finally, there is the issue of multi-site data centers, a very common setting for large service providers. In
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such scenario, the latency in the communication between sites cannot be ignored. Therefore a variation of the

basic epidemic protocol for overlay maintenance can be used, selecting the neighbors considering their proximity,

but still allowing a margin of randomness to prevent the partitioning of the overlay and allow the routing of

request to other sites. Over this overlay the usual request routing algorithms could be used, or it can be also

adapted to rank next hops considering the proximity. Both modifications are rather trivial to implement in the

framework. The evaluation of this scenario is part of future research.





Chapter 6

Experimental Evaluation

6.1 Experimental Model

In this section we describe the simulation model and the metrics used for the evaluation of the performance

of eUDON. The intention of this experimental evaluation is to assess the capability of eUDON to exhibit an

adaptive behavior under different usage scenarios and operational conditions.

The selected scenarios are: A base case with a stable load, which tests the efficiency of the system and its

adaptability to fluctuations in the capacity of each node; a peak load scenario on which the system must react

to a sudden increase in the load by allocating additional instances; and a failure scenario on which a significant

portion of the instances fail simultaneously and must be replaced by other instances.

We implemented a discrete event simulator of the routing and processing of requests to capture very detailed

measurements of the system’s behavior. In particular, such a simulator was needed to accurately measure the

number of hops required to allocate a request, a metric that depends of the concurrence of multiple events: that

the request arrives to a instance when the acceptance queue is to its maximum, which in turn depends on the

dispatching of the requests previously in the queue. Such detailed modeling is only possible if every significant

event is simulated and their timings considered.

One important drawback of modeling to this level of detail is that it limits severely the scale of the exper-

iments. We therefore extensively experimented in medium size configurations and made run test which larger

setups to check if the results were consistent. Another approach we considered was using a discrete time simu-

lation on which the ”average” behavior of the system during a short period is estimated using analytical model.

Even when this model allowed us to scale to up to 32K nodes and some metrics like utilization and allocated

demand were accurately estimated, the routing hops had a high error (up to 30% in some test runs) with

respect of the discrete event simulator. We therefore decided to trade the scalability of the model in exchange

of accuracy.

The simulation considered multiple parameters that define the execution environment. Those parameters are

changed to reflect different usage scenarios or operational conditions, while the characteristics of the workload

remain mostly invariant. Table 6.1 summarizes the more relevant parameters, which are explained in more

detail in subsequent sections of this chapter.

55
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Table 6.1: Simulation parameters.

Parameter Values Description

Overlay
Servers 128, ... 2048 Number of instances
Entries ratio 1:16, 1:32, 1:48 Ratio of entry points, with respect

of the number of instances
Neighbor set 16,32,48 Number of neighbors maintained

per node in the overlay
Update cycle 1,2,3 Frequency of information dissemina-

tion (in seconds)
Exchange set 2,4,8 Number of neighbors contacted per

node on each update cycle

Utility
RT 0.5 Target Response for request
QoS 0.7 Target utility for servers

Load
Arrivals 0.75, 100%,

125%%
Level of system load, with respect of
maximum capacity

Variability 0.10 Maximum variation of background
load per second

Load Maximum 0.5, 0.95 Maximum fraction of a server capac-
ity used by background load

Adaptation
Adaptation cycle 3 Frequency of the adaptation process

(in seconds)
Join probability .60 Probability of a service instances to

join the routing overlay at initializa-
tion

K 3 (promotion) Adaptation probability adjust con-
stant

3 (demotion)
S̄ 60 (promotion) Target service rate for promo-

tion/demotion
20 (demotion)

6.1.1 System modeling

Overlay. We have simulated an idealized network that mimics a large cluster, on which nodes communicate

with a uniform delay. The base experimental setup was 128 overlay nodes, with 8 entry points and 120 service

instances (a 1:16 ratio). We have conducted test runs with up to 2048 nodes which show analogous results.

Each instance maintains a neighbor set of 32 nodes and contacts 2 of them periodically to exchange infor-

mation. These values correspond to the optimal trade off between information freshness and communication

costs as discussed in experimental results section.

All service instances are initially members of the search overlay, but only a random fraction initially join

the routing overlay according to a join probability parameter. The adaptation process dynamically adjust this

fraction accordingly to the load.
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Service Instances. We model each server instance as a M/G/1/k ∗ PS queuing system [40]. In this model,

the server receives requests that follow a Poisson distribution with rate λ. Each request requires a varying

service time from the server. The distribution of the service time is unknown (hence the G in the queuing

model) with a mean value s̄. The server has a single processor and can process up to k concurrent requests. A

request will be rejected if the limit of active requests has been reached.

Accepted requests are served using a processor sharing (S) discipline to process them. A request in the queue

receives a small quantum of service and is then suspended until every other request has received an identical

quantum in a round-robin fashion. When a request has received the amount of service required, it leaves the

queue.

This model fits well for web servers like Apache, a well-known and widely used multi-threaded web server, on

which each request is handled by its own thread throughout its life cycle. Such servers usually have a maximum

number of threads.

It has been shown in [40] that for this model, the expected response time is given by:

T =
ρK+1(Kρ−K − 1) + ρ

λ(1− ρK)(1− ρ)
(6.1)

where ρ = λs̄ is the service rate of the system.

The usage of this model facilitates the comparison of simulation results with analytical estimates. In par-

ticular, it allows the estimation of the response time and from it of the utility which explains our selection of

the utility function as a function of the response time, as explained in section 5.2.

Arrivals. The service requests arrive following a Poisson distribution and are evenly distributed among the

entry points. The arrival rate is calculated using the analytical model for service instances considering the

average background load of servers to ensure that the allocation of the workload is feasible, but demands all the

available capacity. Therefore, the maximum theoretical allocated demand is of 1.0 and the expected utilization

is around 0.95.

QoS. All requests generated in the tests have a maximum response time of 0.5 seconds and the same expected

QoS of 0.7 which correspond to a response time of 0.35 seconds approximately, as shown in figure 6.1.
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Background Workload. One important aspect in our experiments is the evaluation of the impact of the

background load in non-dedicated servers, which impacts the utility that an instance can provide. This load

(defined as a fraction of the node’s computing power) is modeled as a random variable whose value varies along

the time following a random walk with certain Variability on each simulation cycle and a Drift or tendency

to follow a trend upwards or downwards. This model is consistent with the observed behavior of the load on

shared servers [169, 216]. Figure 6.2 shows the effect of these parameters in the behavior of one node’s utility

over time.
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Figure 6.2: Effect of simulation parameters on a node’s background load over time.

6.1.2 Metrics

In the evaluation of the proposed adaptation mechanisms we have considered the following metrics, which are

related to its main objectives of efficiently delivering requests to an appropriate node to maintain adequate QoS:

Allocated Demand. Measures the fraction of the demand that is actually allocated to a server, before being

dropped due to the expiration of its TTL (set to 10 hops in our experiments). This metric measures how

effective is the system in allocating requests.

QoS Ratio: Ratio between the target QoS expected by a service request and the actual QoS received. A

ratio below 1.0 means that the target was not met, while a ratio over 1.0 means the target was exceeded (which

is not necessarily desirable, as it may indicate the server is underutilized).

Utilization: Percentage of the node capacity being used, considering both the background load and the load

produced by the service requests. Utilization can be higher than 1.0 if the instance is processing more requests

than possible considering the current background load. This metric is relevant as measures how efficiently

resources are used.

Routing hops: Number of hops (or retries) needed to allocate a request to a server with adequate utility. It

measures how efficient is the mechanism in allocating requests.
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In addition, there are other metrics related to the topological characteristics of the overlay worth to be

considered:

Age: Measures how fresh is the information at each node. It is calculated at each node by averaging, over all

the entries in its neighbor set, how long this information has been circulating on the overlay. Age is measured

in terms of update cycles, being a cycle the frequency of the epidemic propagation process in the overlay.

Staleness: Measures how accurate is the information in the neighbor set about other nodes; affects the

reliability of the decisions made using this information. The staleness is measured as the average of the (absolute)

difference between the value of an attribute in an entry in the neighbor set and the current (real) value of that

attribute in the node. It depends on both the Age of the information and the variability of the attribute.

Clustering Coefficient: Measures how tightly nodes reference each other, and therefore, the degree of po-

tential redundant propagation among them. A lower coefficient improves information dissemination, but makes

the overlay more susceptible to partitions in the presence of churn.

6.2 Experimental Results

In this section we present the results of the experimental evaluation of key aspects of eUDON: Load balancing,

service search and elastic adaptation. We also explore how it adapts to different scenarios and its sensitivity to

operational conditions and configuration parameters. The results presented correspond, unless the contrary is

explicitly indicated, to the average over 10 simulation runs. Each run simulates 200 seconds (300 for the peak

load scenario). The ram-up time is of 10 seconds, during which the adaptation process is not active.

In the graphics of experimental results relevant percentiles of the metrics are presented to show their vari-

ability.

6.2.1 Base scenario

In the base scenario, the system is submitted to a steady workload that demands all the available capacity to

achieve the QoS objective. Initially, a random fraction of instances join the routing overlay (≈ 60%) and the

rest are progressively added to satisfy the demand as seen in figure 6.3(a). As shown in figure 6.3(b) it quickly

converges to an utility ratio of 1.0, with a small variability. At the same time, the adaptation process also

achieves a high level of system efficiency, with a total utilization of system capacity around 0.9.

Load Balancing. We studied the efficiency of the balancing heuristics by measuring the fraction of the

demand that is actually allocated to a server, before being dropped due to the expiration of its TTL (set to 10

hops in our experiments). The three heuristics: capacity based probabilistic (Pc), two random choices (2C) and

round robin (RR) have a very similar fraction of allocated demand (figure 6.4(a)) and similar distribution of

hops (figure 6.4(b)). In general, all heuristic were capable of allocating around 90% of the maximum theoretical

load with a 75% of requests requiring 3 or less hops.
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Figure 6.3: Behavior for base scenario.
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Figure 6.4: Comparison of load balancing heuristics.

From these results, we can conclude that using load information has little effect with respect of not using

any load information (round robin), beyond a slightly better change of allocating requests in one hop (shown

by Pc). We hypothesize that two aspects account for this result. First, the age based overlay has a clustering

coefficient – fraction of neighbors that two neighbor nodes have in common – of around 0.2, which is higher

than the coefficient of a random overlay, around 0.1. This higher coefficient affects the capacity of the heuristic

of balancing requests among neighbors as the effective fan-out of nodes is lower than the neighbor size. This

hypothesis was tested by running the round robin heuristic with a random overlay. The resulting heuristic

RR-R achieved a better performance than the round robin with an age based overlay and even improved the

Pc heuristic.

In addition, the utilization of admission control in conjunction with the possibility of a multi-hop routing

(or, in other words, a multi-round dispatching) minimizes the impact of wrong load balancing decision in the

resulting performance. Consider by contrast how in the literature heuristics are generally evaluated in setups

where servers will admit the incoming requests up to a fixed maximum and reject the rest, leading to both

a high penalty for overloaded servers and a high rate of non-allocated requests. This is compatible with the

results found in [42] that the round-robin dispatching when combined with a distributed redirection mechanism
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can achieve good and stable performance.

Service Search. We evaluated alternative heuristics for searching instances in the search overlay when the

requests cannot be processed in the routing overlay (due to overload or failures). We considered the age based

epidemic dissemination with a greedy search (UDON), a gradient epidemic organization with a greedy search

and a random epidemic organization with a random walk search. As expected, in the UDON overlay, the Age

metric of the information is significantly lower and has less variation than in the other two overlays (figure

6.5(a)), and the information about the utility is much more accurate (figure 6.5(b)). More importantly, those

attributes converge very quickly and remains very stable along its execution.
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Figure 6.5: Evolution of metrics for a run with the base experimental setup.

UDON exhibits a better performance than the gradient or random overlays with respect of both the allocated

demand and the number of hops (see figure 6.6), allocating requests to a matching instance efficiently even when

a high precision (i.e. a low tolerance) is required. This can be explained by the higher accuracy in the information

maintained by eUDON (see figure 6.5(b)), which enables it to make better routing decisions.
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Figure 6.6: Comparison of search heuristics.

The comparable performance of the gradient overlay with respect of the age based overlay can be explained

in this scenario by the fact that the admission control function maintains the utility of each node relatively
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stable. However, if a different, more variable metric where chosen, like the node’s capacity, which varies more

significantly (see figure 5.5), then the age overlay maintains its performance while the gradient overlay degrades

significantly, as shown in figure 6.7
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Figure 6.7: Performance of age and gradient overlays when using the node capacity as load information attribute
(instead of Utility).

6.2.2 Elastic Adaptation

In this section we describe the different experiments we made to test the adaptability of the system under

diverse conditions and usage scenarios.

Peak load scenario. In this scenario, the system is initially submitted to a steady workload that demands

70% of the the available capacity, but at time 100s, an additional load is injected. Figure 6.8 shows how the

systems quickly reacts to the surge by promoting more instances. The overall utilization of the system is also

increased - the percentile 25 of the Utilization rises significantly – but the QoS Ratio is maintained during this

adaptation process. At time 200s, the additional load is removed and the systems returns to the previous state,

demoting the instances no longer needed.
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Figure 6.8: Behavior in the peak load scenario.
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Failure scenario. In this scenario, the system is submitted to a steady workload that demands a fraction

of its capacity. At time 100s, 20% of the promoted instances fail – a correlated failure as expected in clusters.

Figure 6.9 shows how the system reacts, incorporating more instances until the system stabilizes. The utility

ratio is maintained along this process – except for a short period just after the failure – as requests are routed

to nodes in the search overlay; as a consequence, routing hops increase until all the required nodes are promoted

to the routing overlay.
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Figure 6.9: Evolution of the system behavior in the scenario of a massive failure.

6.2.3 Sensitivity Analysis

In this section we evaluate the impact of different model parameters and explore the applicability of the proposed

approach to different usage conditions.

Scale. We have found that the results are robust with respect of the scale of the system, as we could increase

the number of server from 128 to 2048 nodes and observed similar percentage of the significant metrics like

allocated demand and number of hops. Moreover, as the instances work exclusively with local information, we

expect that the results will hold for larger scale. However, we anticipate that as the scale grows, the number of

neighbors maintained for each node (exchange set) must be increased to offer adequate fan-out when balancing

requests.

Neighbor and exchange set sizes. These are the two most relevant attributes affecting the epidemic

algorithm used to maintain the overlay and disseminate information. With respect of the neighbor set size, in

all cases that the ratio between entry points and service instances equals the neighbor set size – that is, the

entry points have enough fan-out to cover all the service instances – the system exhibits similar behavior to the

base case. When this ratio is significantly lower, the number of hops increases significantly. This is indicative

that the neighbor set size is a parameter that can be adapted dynamically by measuring the number of hops

needed to allocate requests. This could be particularly important in scenarios with a significantly larger number

of instances.

With respect to the size of the exchange set, as seen in figure 6.10, contrary to the intuition, increasing
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the number of neighbors contacted on each cycle to disseminate the load information has little effect in the

performance and, in the case of the capacity based heuristic, can actually degrade it. The reason is that

contacting more neighbors on each cycle increases the chance than two nodes be contacted by the same neighbor

and therefore their local views to have more elements in common, decreasing the capacity of the system to

balance the load. On the contrary, in the Random Round Robin heuristic, the number of hops needed to

allocate requests slightly improves as the exchange set size increases. However, this improvement is not justified

by the increased communication overhead of contacting more neighbors on each cycle.
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Figure 6.10: Effect of exchange set size.

System Load We evaluated the system under loads of 75% and 125% of the maximum theoretical system

capacity. When underloaded (load of 75%) the routing hops decreased significantly, with a 75% of requests

been allocated with 2 or less hops. When overloaded (load of 125%) the system was capable of maintaining its

performance, processing the maximum service rate allowed by its capacity (figure 6.11(a)) while maintaining the

target QoS. This is possible due to the admission control function, which adjusts the acceptance of requests to

guarantee a target QoS. The main penalty comes from an increased number of hops to allocate requests (figure

6.11(b)). In other words, the system was capable of handling overload without any significant degradation, at

the expense of loosing a fraction of load.
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Figure 6.11: Sensitivity to load level.
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Background load distribution We evaluated the system with different distributions of the background load

to simulate systems with different proportions of servers with high load, as seen in figure 6.12. In the base setup

this distribution is uniform. We also evaluated the case of a skewed load, with a high proportion of overloaded

servers – adjusting the system load to match the total available system capacity. In both scenarios, results

are similar to those shown in this report. This result was somehow surprising, as we expected that for skewed

case the probabilistic heuristics would outperform more clearly a round robin, as they are basically similar to a

weighted round robin, known to fit better in heterogeneous systems.
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Figure 6.12: Different distributions of the background load in the nodes.

6.2.4 Discussion

The results of the various experiments show that the combination of the epidemic overlay with simple load

balancing heuristics and admission control function allow eUDON to met the QoS objectives, and achieve a

high level of efficiency, and adapt to a diversity of situations.

Moreover, the little differences in the result between different heuristics suggests that these properties depend

on the combination of these elements, more than on any of them individually, making the resulting adaption

process more robust and its performance more predictable.

None of these results are, when considered in isolation, significantly different from those that can be obtained

by other approaches proposed in the literature. What is remarkable is that eUDON achieves this performance

using a much simpler approach. As discussed in chapter 5, this lower complexity comes from the application of

the principles of emergent, utility driven, and model-less self-adaptation.





Chapter 7

Related Work

The development of self-adaptive applications has gained much attention in recent years as a way for tackling

increasing complexity. Diverse approaches and concrete implementations have been proposed. In previous

chapters we have extensively reviewed alternative approaches regarding self-adaptation in general and adaptive

web services in particular. In this chapter we aim to position the proposed solution with respect of other

relevant work that share some of our goals. In particular, middleware solutions that aim to provide adaptation

capabilities to services. We organize them with respect of the diverse salient aspects of our work to facilitate

the comparison.

7.1 Self-adaptation Frameworks

The need for proper abstractions to model and implement self-adaptive systems have been widely recognized in

the research community and multiple approaches have been proposed.

In [25] authors propose a model for the separation of concerns when building a self-organizing system.

They propose the separation of topology related protocols, which maintain the structure of the system, from

functional protocols, which perform application specific functions like aggregate information. However, they do

not address the need for a common approach in the implementation of protocols to allow replacing dynamically

one protocol without affecting others.

Behavioral skeletons [6] abstract patterns of parallel computations (which are expressed as graphs of com-

ponents). They encapsulate the assembly logic and the management logic to solve a particular problem and

achieve management goals for configuration, optimization, healing and protection. They share some goals with

the idea of a Collective and its overlay (abstract out the interaction pattern and provide self-management ca-

pabilities) but does not directly support the idea of adapting the structure of the interaction nor the protocols

used to support such interaction.

The collective communication among components if also considered in [30] by means of collective commu-

nication provider components which encapsulate communication primitives like broadcast. Those components

can be dynamically instantiated to specific implementations to adapt to different platforms. It is not clear,

however, how such components can achieve run-time adaptation to varying conditions.

67
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In [98] the authors propose the utilization of structural patterns to capture component connectivity topologies

and behavioral patterns to capture component interactions which define the temporal and control/data flow

dependencies between the components like client/server, master/slave, mobile agent/itinerary. Operators are

also provided to compose patterns (structural operators) and to control the execution of a pattern instance

(behavioral operators). However, only this high level abstractions are provided and no mapping to particular

instantiations are provided. Additionally, patterns are static and cannot adapt to changing conditions during

execution.

In [200] authors propose combining a component-based development methodology with structured overlays,

using the overlay as a routing mechanisms to facilitate the communication among components. However, the

problem of adapting the overlay to the changing conditions that must be faced by the application is not handled.

Moreover, the utilization of structured overlays limits the applicability of the approach to cases on which the

components can be mapped to an identification space.

7.2 Overlays

The concept of overlay is central to our approach. The development of generic, adaptable overlays has attracted

much attention and multiple proposals exist.

In [7] the authors explore the basic constituents of a structured overlay and describe how different overlays

can be understood under this model. The proposed model separates the identifier space, the identifier mapping

function, the structuring strategy, the routing function and the maintenance strategy.

OverGrid [29] uses a XML based declarative language for the specification of overlay routing protocols

and a component-based framework for overlay based applications. iOverlay [148] provides a high performance

messaging engine that can be used to implement overlay. Overlayweaver [191] decouples the routing algorithm

from the common routing process by designing a programming interface between them, which facilitates the

implementation of multiple routing algorithms.

GridKit [99] introduced the concept of pluggable overlay networks and focus on the communications in-

frastructure required to support multiple interaction types that are demanded by advanced applications (e.g.

publish-subscribe, media streaming, peer-to-peer interaction) in a unified, principled and extensible manner.

Closer to our work, GossipKit [153] is an middleware framework that aims to facilitate the development of

configurable and reconfigurable middleware supported by multiple (potentially collaborating) gossip protocols

that operate in parallel and can adapt to different types of networks. It follows a component-based and event-

driven model to integrate the building blocks of the protocols among them and with the application.

The main difference of our work with the frameworks mentioned above is their lack of appropriate ab-

stractions for the application specific adaptation of the overlay construction and the routing protocol, which

Collectives incorporates in the form of pluggable functions. Another important difference is that our abstrac-

tions and, more importantly, the programming interfaces, are generic enough to be used for both structured and

unstructured overlays. This feature offers a significant advantage to developers as the application is isolated

from this aspect, which is more related to the efficiency of the implementation than the functionality of the

application.
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Despite this significant differences, some of the ideas introduced by those frameworks could be integrated

into Collectives and form part of future enhancements. In particular GossipKit’s event driven interaction among

components and iOverlay’s efficient messaging mechanisms.

7.3 Request Routing

There have been different efforts to incorporate both epidemic dissemination and the utility functions for routing

requests over an overlay. However, they differ significantly in how they apply those concepts and the scenarios

on which they are applicable.

In [181] authors propose an utility gradient topology constructed with an epidemic style algorithm on which

each node maintains in its neighbor set those peers that have an utility close to its own utility. Over this

topology, a simple greedy routing is used to search for the first node with an utility higher than the one required

by a request. This overlay seems to be adequate when the utility of the nodes change infrequently but as we

show in our experimental results, it is less effective for frequently changing environments.

A middleware for large-scale clusters is proposed in [5] on which nodes self-organize in a per-service overlay

using an epidemic algorithm to create a random topology and flood periodically all their neighbors with an

load status. Requests are routed randomly to any non overloaded neighbor. If none is found, a random walk is

employed to find one. As shown in our experiments, eUDON outperforms the random walk.

7.4 Utility Functions

Utility functions have been extensively used in adaptation and optimization problems. In [209] each application

has a utility function that maps a given resource allocation level to the resulting business value; these functions

are used by a Global Resource Manager to optimize the allocation of resources to a set of applications.

In [188] and [45] a performance related utility function is used by a request scheduler to order the processing

of requests from multiple services classes, so that the resulting aggregate utility is maximized. The main

drawback of this approach is its dependency of a cluster level centralized load balancing, making it unpractical

to the scales of our systems of interest. Also, it requires the on-line elicitation of the resource consumption

profile for each service to adjust the resource allocation, while our approach uses a model-less adaptation.

In [4] an utility function is used by each node to decide which services to instantiate. For a set of applications

A the node utility is defined as
∑

a inA UaWa, where wa is the CPU share assigned to the application and ua

is a parameter that weights the applications.

One problem with these utility functions is that are a function of the performance of a proposed resource

allocation and therefore relies on a implicit performance model. In our work, we don’t assume any prediction

model as the utility is calculated over instantaneous measurements of the state of each instance. In that sense,

eliciting the utility function for eUDON would be much simpler.
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7.5 Load Balancing

The problem of request balancing in distributed system has been thoroughly studied in the literature, initially

in the context of job scheduling and more recently in the context of web services [43] [101] [36]. We depart

from most of the work in this area in that we use the node’s utility as load balancing information instead of

the CPU utilization or queue length, as the utility function summarizes multiple parameters into a single value,

accommodating heterogeneity and fluctuations in the node’s capacity. Additionally, we introduce the utilization

of epidemic algorithms as a means to implement randomized allocations.

In [59] authors found that when the request dispatcher does not have full control over all the load that arrives

to web servers, policies that use limited load information performed better and were more consistent that those

that use no information (round robin) or use detailed load information from the server. In our scenario, we have

seen that round robin coupled with a random overlay achieves a better performance. This is possibly due to

the adaptive admission control that prevents the overloading of service instances and the multi-hop allocation

process that allows re-trying failed allocations.

In [175] three potentially methods for load balancing in large scale Cloud systems are evaluated: a) a nature-

inspired algorithm achieving global load balancing via local server actions and a shared adverts board; b) a

biased random sampling of the system, setting a node’s connectivity accordingly with its capacity; and c) self-

organizing the system into clusters of servers with similar capacity that can delegate work to each other. Authors

concluded that there appears to be a variation in the best algorithms to use depending on the composition and

topology of the server network. One significant limitation of this work is that presented results make impossible

to measure the effectiveness or efficiency of the methods with respect to the capacity of the system.

7.6 Admission Control

Quorum [34] uses a model-less adaptive window to control the request rate to enforce QoS guarantees in a

multi-class web service. This approach has inspired the self-adaptive admission control used in eUDON. The

main difference is that Quorum is based on a single metric, response time and is derived from queuing theory

models. It is not clear that this approach can be extended to the multi-resource case. eUDON uses a utility

function that can consider multi-attributes, and its admission control is derived from the principles of bounded

rationality. Interestingly, both approaches have converged to a similar solution.

In [20] an admission control is proposed which adaptively determines the request acceptance rate based on

the deviation from a target performance and accepts requests with a probability proportional to this fraction.

One interesting property of the approach is that the definition of performance is open to the application and

multiple metrics can be used simultaneously.

One important difference of eUDON with respect of those mechanisms is that they enforce the admission

at the system entrance (the load balancer) and require information about all the servers (and the request

responses), while eUDON applies this policy on each server based only in local information, making it much

more scalable.
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7.7 Elastic Services

The elasticity in the allocation of resources to web applications has attracted significant attention from different

perspectives. One important aspect to consider in the scalability of the solution. The detailed experiments

presented in this thesis were conducted with 128 instances, and the same results where confirmed in larger

setups of up to 2048 servers. As the instances work exclusively with local information, we expect that the

results will hold for even larger scales. To the best of our knowledge, these scales are in general one or two

orders of magnitude higher that those reported in most of the literature, which generally show results for, at

most, several tens of servers (see for example [20] [33] [129]).

Some notable exceptions to this limitation are presented in [179], [4] and [89] which reach a similar scale but

differ from eUDON in several key aspects. VioCluster [179] has been evaluated with a simulated cluster of 512

CPUs. It is batch oriented, with and adaptation process running over larger periods and a coarser granularity

of tasks than eUDON. The middleware proposed in [4] for self-adaptive web services uses and epidemic overlay

and a utility driven placement process. It was evaluated on a simulated cluster of 400 nodes, but the load

processed is limited to the 75% of the theoretical capacity of the system, while eUDON achieves over 90% of

allocations. In [89] a service placement mechanism modeled after a minority game is proposed, which takes

service placement decisions based on local information. The model was simulated with up to 300 nodes. It

reaches similar allocated demand than eUDON for 100 nodes, but its performance seems to degrade quickly

above this size, while eUDON has shown a consistent performance up to 2048 nodes.

Another significant difference is that these systems base the activation and deactivation decisions using a

model from the system performance, while eUDON is model-less. For example, in [129] the dynamic placement

of the instances of multiple applications on a set of server machines is formulated as a two dimensional packaging

problem and then solving this problem has a high computational complexity, severely limiting its scalability.

Closer to our work, in [26] nodes are self-organized and sliced according to an application defined metric

and the group that represents the ”top” slice are selected to form the application’s overlay. Its main drawback

is that if attributes can change frequently, the slicing must also be continuously updated. However, this process

requires the execution of protocols that run over ”epochs” of several update cycles in the order of several seconds.

This requirement makes this approach unsuitable for the scenarios of interest. In our approach, we integrate

this process of updating the set of active nodes into the routing process, making it more responsive to changes.

Besides, there’s no empirical evidence of the actual performance of the proposed model.

We can conclude that eUDON achieves a performance competitive with existing solutions but with a lower

complexity and better scalability.





Chapter 8

Conclusions

This thesis addressed the problem of self-adaptation in large scale distributed services. We proposed a set of

guiding principles, inspired in economic self-adaptation, and realized them intoCollectives, a generic framework

for self-adaptive applications.

We applied this framework in the development of eUDON, a middleware for dynamically adapting services

deployed on large-scale infrastructures of non-dedicated servers. The resulting system exhibits the intended

properties. It can adapt to changing conditions using only local information and local decisions, while main-

taining the QoS objectives and achieving an efficient resource utilization. More importantly, the system is

highly scalable and resilient to failures, two characteristics that are critical for systems based on commodity

hardware clusters. These results prove that the modeling abstractions and the middleware framework provided

by Collectives can be effectively used to solve complex self-adaptation problems.

A salient feature of proposed solution is its model-less adaptation approach, which can be applied in scenarios

where a model to predict the QoS of a service is not available, or where applying such a model is not feasible

due to the dynamism of the environment. In this way, eUDON can be used to inject self-adaptation capabilities

into a service in a non-intrusive way and without requiring the elicititation of a performance model. This last

characteristic is very important as many service-oriented applications are used in scenarios unanticipated at

design time, and makes it a candidate to be included in the standard software stack for cloud providers.

The results we have obtained from eUDON are very encouraging and open new exciting research oppor-

tunities. For example, the fact that eUDON has a minimal overhead and converges very quickly to a stable

state, makes it a good candidate to provide self-adaptation to the increasingly important category of many-task

applications, of which the MapReduce model is a well known example.

The work presented in this thesis has some limitations. Only individual services have been evaluated,

while the motivating scenario also considers the composition of basic services. We consider that our work can

be easily extended to support service composition following the model proposed in [10]. In this model the

QoS of a composite service is defined using an utility function formed with the weighted addition of service

quality attributes like response time and availability. This utility function is then decomposed into a series

of utility functions which can be evaluated independently for each basic service. This transformation requires

the calculation of the minimum and maximum values for each quality attribute for each basic service. These

73



CHAPTER 8. CONCLUSIONS 74

extreme values can be obtained in UDON by implementing one of several epidemic aggregation algorithms

available in the literature. The resulting utility functions can then be used in UDON to drive the selection of

service instances.

Finally, as already mentioned, the continuous adaptation of the number of active instances (the activa-

tion/deactivation mechanism) is still an open issue we are actively investigating. We envision using a mecha-

nism similar to the one used for promotion/demotion but triggered at the servers to decide which services to

activate/deactivate. Taking again inspiration from the economic self-adaptation, we plan to model this process

using the same theoretical approach used to model the market entry decision problem. In such problem, a

producer must decide which of a set of alternatives markets must enter, based on the expected utility it can

obtain considering the demand for each market and the number of potential competitors. Interestingly, there are

approximations to this problem based only on a local decisions and global information which could be estimated

using epidemic protocols.

We conclude that our work proposes a solution for the requirements of self-adaptation in demanding usage

scenarios without introducing additional complexity. In that sense, we believe we make a significant contribution

towards the development of future generation service-oriented applications.
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