30 research outputs found
Using phenotyped but ungenotyped relatives in genetic association tests
Thesis (Ph.D.)--Boston UniversityIn some longitudinal studies, there are individuals for whom rich phenotypic data have been collected, but who died before providing DNA for genetic studies. Genotypes of their relatives are often available. The main question we address is how and when one should incorporate phenotyped but ungenotyped relatives into genetic association tests. For genotypes missing completely at random (MCAR) and a quantitative outcome, Visscher and Duffy (2006) inferred the power increase due to the inclusion of ungenotyped individuals using information from relatives ' genotypes for the case of a single genotyped single-nucleotide polymorpherm (SNP) and a single type of relative. We derive a theoretical formula for the power gain for a dichotomous outcome. We verify and extend the theoretical result with simulations of small or moderate sized pedigrees assuming a MCAR, missing at random (MAR), or not missing at\ random (NMAR) missingness mechanism. For quantitative and binary outcomes, we observe biased effect estimates in data sets that exclude subjects with MAR genotypes and in data sets that include imputed NMAR genotypes. For most situations, power increases when ungenotyped individuals are included using imputed genotypes. The missingness mechanism, heritability, minor allele frequency, and SNP-specific heritability are important factors in the change in power for dichotomous or quantitative outcomes.
We find that the increase in the test statistic from including individuals with genotypes imputed based on relatives ' genotypes compared to omitting these individuals is about half of what could be attained using the true genotypes if they were available. Therefore, we propose a phenotypically enriched genotypic imputation (PEGI) method to impute missing genotypes using observed phenotypes in addition to genotypes. Our simulations with MCAR genotypes show that, for a SNP with moderate to strong effect on a phenotype, PEGI improves power more than imputation based solely on genotypes without excess type I errors. The effect estimate is often biased when the outcome is used for imputation while it is unbiased when a phenotype unrelated with the outcome is used. Compared to using only the observed genotypes for imputation, the PEGI method may improve power for MCAR, MAR, or NMAR genotype data
Toward a Foundation Model for Time Series Data
A foundation model is a machine learning model trained on a large and diverse
set of data, typically using self-supervised learning-based pre-training
techniques, that can be adapted to various downstream tasks. However, current
research on time series pre-training has mostly focused on models pre-trained
solely on data from a single domain, resulting in a lack of knowledge about
other types of time series. However, current research on time series
pre-training has predominantly focused on models trained exclusively on data
from a single domain. As a result, these models possess domain-specific
knowledge that may not be easily transferable to time series from other
domains. In this paper, we aim to develop an effective time series foundation
model by leveraging unlabeled samples from multiple domains. To achieve this,
we repurposed the publicly available UCR Archive and evaluated four existing
self-supervised learning-based pre-training methods, along with a novel method,
on the datasets. We tested these methods using four popular neural network
architectures for time series to understand how the pre-training methods
interact with different network designs. Our experimental results show that
pre-training improves downstream classification tasks by enhancing the
convergence of the fine-tuning process. Furthermore, we found that the proposed
pre-training method, when combined with the Transformer model, outperforms the
alternatives
An Efficient Content-based Time Series Retrieval System
A Content-based Time Series Retrieval (CTSR) system is an information
retrieval system for users to interact with time series emerged from multiple
domains, such as finance, healthcare, and manufacturing. For example, users
seeking to learn more about the source of a time series can submit the time
series as a query to the CTSR system and retrieve a list of relevant time
series with associated metadata. By analyzing the retrieved metadata, users can
gather more information about the source of the time series. Because the CTSR
system is required to work with time series data from diverse domains, it needs
a high-capacity model to effectively measure the similarity between different
time series. On top of that, the model within the CTSR system has to compute
the similarity scores in an efficient manner as the users interact with the
system in real-time. In this paper, we propose an effective and efficient CTSR
model that outperforms alternative models, while still providing reasonable
inference runtimes. To demonstrate the capability of the proposed method in
solving business problems, we compare it against alternative models using our
in-house transaction data. Our findings reveal that the proposed model is the
most suitable solution compared to others for our transaction data problem
Eight common genetic variants associated with serum dheas levels suggest a key role in ageing mechanisms
Dehydroepiandrosterone sulphate (DHEAS) is the most abundant circulating steroid secreted by adrenal glands-yet its function is unknown. Its serum concentration declines significantly with increasing age, which has led to speculation that a relative DHEAS deficiency may contribute to the development of common age-related diseases or diminished longevity. We conducted a meta-analysis of genome-wide association data with 14,846 individuals and identified eight independent common SNPs associated with serum DHEAS concentrations. Genes at or near the identified loci include ZKSCAN5 (rs11761528; p = 3.15×10-36), SULT2A1 (rs2637125; p = 2.61×10-19), ARPC1A (rs740160; p = 1.56×10-16), TRIM4 (rs17277546; p = 4.50×10-11), BMF (rs7181230; p = 5.44×10-11), HHEX (rs2497306; p = 4.64×10-9), BCL2L11 (rs6738028; p = 1.72×10-8), and CYP2C9 (rs2185570; p = 2.29×10-8). These genes are associated with type 2 diabetes, lymphoma, actin filament assembly, drug and xenobiotic metabolism, and zinc finger proteins. Several SNPs were associated with changes in gene expression levels, and the related genes are connected to biological pathways linking DHEAS with ageing. This study provides much needed insight into the function of DHEAS
Genetic Determinants of Serum Testosterone Concentrations in Men
Testosterone concentrations in men are associated with cardiovascular morbidity, osteoporosis, and mortality and are affected by age, smoking, and obesity. Because of serum testosterone's high heritability, we performed a meta-analysis of genome-wide association data in 8,938 men from seven cohorts and followed up the genome-wide significant findings in one in silico (n = 871) and two de novo replication cohorts (n = 4,620) to identify genetic loci significantly associated with serum testosterone concentration in men. All these loci were also associated with low serum testosterone concentration defined as <300 ng/dl. Two single-nucleotide polymorphisms at the sex hormone-binding globulin (SHBG) locus (17p13-p12) were identified as independently associated with serum testosterone concentration (rs12150660, p = 1.2×10−41 and rs6258, p = 2.3×10−22). Subjects with ≥3 risk alleles of these variants had 6.5-fold higher risk of having low serum testosterone than subjects with no risk allele. The rs5934505 polymorphism near FAM9B on the X chromosome was also associated with testosterone concentrations (p = 5.6×10−16). The rs6258 polymorphism in exon 4 of SHBG affected SHBG's affinity for binding testosterone and the measured free testosterone fraction (p<0.01). Genetic variants in the SHBG locus and on the X chromosome are associated with a substantial variation in testosterone concentrations and increased risk of low testosterone. rs6258 is the first reported SHBG polymorphism, which affects testosterone binding to SHBG and the free testosterone fraction and could therefore influence the calculation of free testosterone using law-of-mass-action equation
New genetic loci link adipose and insulin biology to body fat distribution.
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.
BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700
A Genome-Wide Association Meta-Analysis of Circulating Sex Hormone-Binding Globulin Reveals Multiple Loci Implicated in Sex Steroid Hormone Regulation
WOS:000306840400020Peer reviewe
Recommended from our members
Response to Bruton's tyrosine kinase inhibitors in aggressive lymphomas linked to chronic selective autophagy.
Diffuse large B cell lymphoma (DLBCL) is an aggressive, profoundly heterogeneous cancer, presenting a challenge for precision medicine. Bruton's tyrosine kinase (BTK) inhibitors block B cell receptor (BCR) signaling and are particularly effective in certain molecular subtypes of DLBCL that rely on chronic active BCR signaling to promote oncogenic NF-κB. The MCD genetic subtype, which often acquires mutations in the BCR subunit, CD79B, and in the innate immune adapter, MYD88L265P, typically resists chemotherapy but responds exceptionally to BTK inhibitors. However, the underlying mechanisms of response to BTK inhibitors are poorly understood. Herein, we find a non-canonical form of chronic selective autophagy in MCD DLBCL that targets ubiquitinated MYD88L265P for degradation in a TBK1-dependent manner. MCD tumors acquire genetic and epigenetic alterations that attenuate this autophagic tumor suppressive pathway. In contrast, BTK inhibitors promote autophagic degradation of MYD88L265P, thus explaining their exceptional clinical benefit in MCD DLBCL