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Abstract

Dehydroepiandrosterone sulphate (DHEAS) is the most abundant circulating steroid secreted by adrenal glands—yet its
function is unknown. Its serum concentration declines significantly with increasing age, which has led to speculation that a
relative DHEAS deficiency may contribute to the development of common age-related diseases or diminished longevity. We
conducted a meta-analysis of genome-wide association data with 14,846 individuals and identified eight independent
common SNPs associated with serum DHEAS concentrations. Genes at or near the identified loci include ZKSCAN5
(rs11761528; p = 3.15610236), SULT2A1 (rs2637125; p = 2.61610219), ARPC1A (rs740160; p = 1.56610216), TRIM4 (rs17277546;
p = 4.50610211), BMF (rs7181230; p = 5.44610211), HHEX (rs2497306; p = 4.6461029), BCL2L11 (rs6738028; p = 1.7261028),
and CYP2C9 (rs2185570; p = 2.2961028). These genes are associated with type 2 diabetes, lymphoma, actin filament
assembly, drug and xenobiotic metabolism, and zinc finger proteins. Several SNPs were associated with changes in gene
expression levels, and the related genes are connected to biological pathways linking DHEAS with ageing. This study
provides much needed insight into the function of DHEAS.
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Introduction

Dehydroepiandrosterone sulphate (DHEAS), mainly secreted

by the adrenal gland, is the most abundant circulating steroid in

humans. It acts as an inactive precursor which is converted initially

into DHEA and thereafter into active androgens and estrogens in

peripheral target tissues [1]. In humans the serum concentration of

circulating DHEAS is 100- to 500-fold or 1000 to 10,000 higher

than that of testosterone and estradiol respectively. Unlike DHEA,

which is swiftly cleared from the circulation and shows diurnal

variation, serum DHEAS concentrations are stable and facilitate

accurate measurement and diagnosis of pathology [2].

DHEAS is distinct from the other major adrenal steroids

(cortisol and aldosterone) in showing a significant physiological

decline after the age of 25 and diminishes about 95% by the age of

85 years [3]. This age-related decline has led to speculation that a

relative DHEAS deficiency may contribute to the development of

common age-related diseases or diminished longevity [4,5]. Low

DHEAS concentrations are possibly associated with increased

insulin resistance [6,7] and hypertension [8], but not with incident

metabolic syndrome [9]. It is strongly associated with osteoporosis

in women [10,11] but not in men [12]. Concurrent change in

DHEAS tracks with declines in gait speed, modified mini-mental

state examination score (3MSE), and digit symbol substitution test

(DSST) in very old women but not in men [13]. Low circulating

DHEAS is also strongly associated with cardiovascular disease and

mortality in men [14–18] but not in women [19]. A recent 15-year

follow-up study showed that DHEAS was negatively related to all-

cause, all cancers, and other medical mortality, whereas high

DHEAS concentrations were protective [20]. This has led to its

widespread and uncontrolled use as a controversial anti-ageing

and sexual performance supplement in the USA and other western

countries without any clear data about efficacy, potential risks or

benefits [21].

Despite these observations, the physiological function of

DHEAS and its importance in maintaining health are poorly

understood. Although previous twin [22,23] and family-based

studies [24,25] have shown that there is a substantial genetic effect

with a heritability estimate of 60% [22], no specific genes

regulating serum DHEAS concentration in healthy individuals

have been identified to date. Therefore, the current study meta-

analyzed the results of genome-wide association studies (GWAS)

performed in a total of 14,846 individuals from seven cohorts to

identify common genetic variants associated with serum DHEAS

concentrations. The findings not only advance understanding of

how serum DHEAS concentration is regulated by genes but also

provide clues as to its mechanism of action as well as Mendelian

randomisation principles [26].

Results

We carried out a meta-analysis of 8,565 women and 6,281 men

of European origin from collaborating studies: TwinsUK

(n = 4,906), Framingham Heart Study (FHS) (n = 3,183), SHIP

(n = 1,832), Rotterdam Study (RS1) (n = 1,597), InCHIANTI

(n = 1,182), Health ABC (n = 1,222), and GOOD (n = 924). Serum

samples were collected either after overnight fasting or non-fasting

in each cohort and DHEAS was measured by either immunoassay

or liquid chromatography tandem mass spectrometry (LC-MS/

MS) methods (Table 1). Mean age differed across the cohorts from

19 to 74 years in men and 50 to 74 years in women and

corresponding mean DHEAS concentrations varied from 1.20 to

7.05 mmol/L (Table 1).

Each cohort performed GWA tests for log transformed DHEAS

on ,2.5 million imputed single nucleotide polymorphisms (SNPs)

in men and women separately with adjustment for age, and

additionally for age and sex for those cohorts who had data in both

men and women. Then Z-scores from each cohort were pooled for

the meta-analysis at each SNP.

In all our individual GWAS, lGC, which is defined as the

median x2 (1 degree of freedom) association statistic across SNPs

divided by its theoretical median under the null distribution [27],

ranged from 0.984 to 1.023, indicating that there was no

population stratification or it was very minor. Further, we

corrected for population stratification by applying the genomic

control method [27]; the lGC in the meta-analysis is 1.017. In

addition, the effect direction was consistent across all the cohorts

and there is no between-study heterogeneity as indicated by I2

ranging between 0 and 0.12 (Table 2).

We found 44 SNPs were associated with serum DHEAS

concentrations in men at conventional genome-wide significance

(p,561028), which are all located on chromosome 7q22.1

(Figure 1B; Table S1). All these SNPs except for three were

significant in women (Figure 1A; Table S1). In addition, 19 SNPs

located on chromosome 19q13.3 were found in women to be

associated with serum DHEAS concentrations with p,561028. In

the sex-combined meta-analysis, the significance became stronger

for all these SNPs (Figure 1C; Table S1). Further, we found 8

SNPs located on chromosome 10q23.33 which represents two

regions more than 2 MB apart, 12 SNPs on chromosome 15q15.1,

and in addition, 4 SNPs on chromosome 19q13.3 were associated

with serum DHEAS concentrations with p,561028. Together we

found a total of 87 SNPs associated with serum DHEAS

concentrations with p,561028, representing five chromosomal

regions of less than 1 Mb each (Table S1).

The most significantly associated SNPs in each of these five

regions are presented in Table 2. The minor allele of rs11761528

(p = 3.15610236) on chromosome 7q22.1, rs2637125 (p =

2.61610219) on chromosome 19q13.3, and rs2497306

(p = 4.661029) and rs2185570 (p = 2.2961028) on chromosome

10q22.33 (more than 2 Mb apart), were negatively associated with

Author Summary

Dehydroepiandrosterone sulphate (DHEAS), mainly secret-
ed by the adrenal gland, is the most abundant circulating
steroid in humans. It shows a significant physiological
decline after the age of 25 and diminishes about 95% by
the age of 85 years, which has led to speculation that a
relative DHEAS deficiency may contribute to the develop-
ment of common age-related diseases or diminished
longevity. Twin- and family-based studies have shown
that there is a substantial genetic effect with heritability
estimate of 60%, but no specific genes regulating serum
DHEAS concentration have been identified to date. Here
we take advantage of recent technical and methodological
advances to examine the effects of common genetic
variants on serum DHEAS concentrations. By examining
14,846 Caucasian individuals, we show that eight common
genetic variants are associated with serum DHEAS
concentrations. Genes at or near these genetic variants
include BCL2L11, ARPC1A, ZKSCAN5, TRIM4, HHEX, CYP2C9,
BMF, and SULT2A1. These genes have various associations
with steroid hormone metabolism—co-morbidities of
ageing including type 2 diabetes, lymphoma, actin
filament assembly, drug and xenobiotic metabolism, and
zinc finger proteins—suggesting a wider functional role
for DHEAS than previously thought.
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DHEAS concentrations. In comparison, the minor allele of

rs7181230 (p = 5.44610211) on chromosome 15q15.1 was posi-

tively associated with serum DHEAS concentrations. Based on the

HapMap3 release2 CEU data, the significant 87 SNPs from within

the five regions have low pair-wise r2, indicating potentially

multiple independent signals. To verify this, we performed a

conditional meta-analysis with adjustment for the five most

significant SNPs plus age and sex in each cohort.

After this adjustment, all other SNPs on chromosome 10, 15,

and 19 became non-significant (Figure 1D). However, on

chromosome 7, we found two independent signals; one defined

by rs11761528 and a second located 370 kb upstream in the 39

UTR of the TRIM4 and CYP3A43 genes (rs17277546,

p = 4.50610211). Furthermore, we identified two additional

significant loci associated with DHEAS, one on chromosome

2q13 (rs6738028, p = 1.7261028), and another on chromosome 7

within the ARPC1A gene (rs740160 located 161 kb downstream of

rs11761528, p = 1.56610216) (Table 2; Figure 1D). In total, we

found eight independent SNPs associated with serum DHEAS

concentrations at conventional genome-wide significant level

(p,561028) (Table 2). The effect was consistently in the same

direction across all cohorts (Table 2). No heterogeneity among

cohorts was observed (Table 2). These SNPs together explained

,4% of the total and ,7% of genetic variance of serum DHEAS

concentrations (based on TwinsUK data). To further look at

whether the magnitude of these genetic association varies with age,

Table 1. Descriptive statistics of serum levels of DHEAS (mmol/L) for each cohort.

Males

Cohort Assay Mean Age (Range) Mean SD Median Min Max Range n

RS1 Immunoassay 69 (55–98) 4.34 2.88 3.70 0.10 23.08 22.98 740

SHIP Immunoassay 51 (20–79) 1.90 1.21 1.64 0.31 8.90 8.59 1832

FHS Immunoassay 51 (25–80) 7.05 5.07 5.35 0.27 29.86 29.59 1571

GOOD MassSpec 19 (18–20) 6.31 2.33 6.04 1.27 15.10 13.83 924

InCHIANTI Immunoassay 67 (23–94) 3.16 2.98 2.25 0.02 33.06 33.04 518

HABC Immunoassay 74 (69–80) 1.58 1.12 1.40 0.00 9.93 9.93 696

n Total 6281

Females

Cohort Assay Mean Age (Range) Mean SD Median Min Max Range n

TwinsUK I Immunoassay 50 (17–82) 3.95 2.47 3.40 0.20 19.30 19.10 2541

TwinsUK II Immunoassay 50 (16–82) 4.21 2.79 3.60 0.10 22.30 22.20 2365

RS1 Immunoassay 69 (55–98) 2.65 2.03 2.11 0.01 13.61 13.60 857

FHS Immunoassay 51 (22–77) 3.84 2.96 3.02 0.30 21.01 20.71 1612

InCHIANTI Immunoassay 68 (21–95) 2.69 2.35 1.96 0.04 15.29 15.25 664

HABC Immunoassay 74 (69–80) 1.20 0.88 0.97 0.00 5.59 5.59 526

n Total 8565

doi:10.1371/journal.pgen.1002025.t001

Table 2. SNPs associated with serum DHEAS concentrations: genome-wide results of meta-analysis of men and women combined.

SNP Chr
Position in
base pair Freq

Effect
Allele Beta (SE)* P value I2 index"

Effect direction in
each study Gene

Distance to
the gene

Discovery meta-analysis

rs11761528 7 98956737 0.08 T 20.16 (0.01) 3.15610236 0.12 22222222 ZKSCAN5 intron

rs2637125 19 53093705 0.15 A 20.09(0.01) 2.61610219 0.00 22222222 SULT2A1 12 kb

rs7181230 15 38148033 0.33 G 0.05(0.01) 5.44610211 0.00 ++++++++ BMF 23 kb

rs2497306 10 94475191 0.49 C 20.04(0.01) 4.6461029 0.00 22222222 HHEX 25 kb

rs2185570 10 96741260 0.13 C 20.06(0.01) 2.2961028 0.00 22222222 CYP2C9 22 kb

Conditional analysis

rs7401601 7 98795816 0.05 T 0.15 (0.02) 1.56610216 0.02 ++++++++ ARPC1A intron

rs172775461 7 99327507 0.05 A 20.11 (0.02) 4.50610211 0.00 22222222 TRIM4;CYP3A43 39UTR

rs67380281 2 111665798 0.40 G 20.04 (0.01) 1.7261028 0.00 22222222 BCL2L11 262 kb

*Beta was expressed as natural log changes in serum DHEAS concentration in mmol/L per copy of the risk allele.
"index for between-study heterogeneity: 0.25 – low, 0.50 – moderate and 0.75 – high heterogeneity.
1pre-conditional p values were 0.612, 1.90610226, and 1.9461027 for rs740160, rs17277546, and rs6738028, respectively.
doi:10.1371/journal.pgen.1002025.t002
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we carried out an interaction analysis between age and each of

these 8 SNPs on serum DHEAS concentrations by including an

interaction term of age6SNP in the linear regression model in

each cohort and then meta-analyzed the results. We found that

there was no significant interaction between age and each of these

SNPs (all p values$0.05).

The genes at, or near the identified SNPs, include BCL2L11 on

chromosome 2, ZKSCAN5, ARPC1A, TRIM4 and CYP3A43 on

chromosome 7, HHEX and CYP2C9 on chromosome 10, BMF on

chromosome 15, and SULT2A1 on chromosome 19 (Figure 2). To

explore the potentially functional impacts and likely genetic

mechanisms, we used two resources: Genome-wide expression

data from the Multiple Tissue Human Expression Resource

(MuTHER) [28] (http://www.muther.ac.uk/) based on ,777

unselected UK twins sampled for skin, adipose tissue, and

lymphoblastoid cell lines (LCLs) (more details in Text S1); and

published gene expression data in human liver [29]. We found that

3 DHEAS-associated SNPs were clearly associated with the related

Figure 1. Manhattan plots for the genome-wide meta-analysis results. Green dots indicate the SNPs with p,561028.
doi:10.1371/journal.pgen.1002025.g001
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gene expression levels in at least one tissue after accounting for

multiple testing (Table 3). These specific transcript associations

provide further evidence for the likely functional gene at each

locus.

Further, we carried out gene ontology and pathway analyses

using a gene set enrichment analysis (GSEA) approach in

MAGENTA [30] which consists of four main steps: First, DNA

variants, e.g. SNP, are mapped onto genes. Second, each gene is

assigned a gene association score that is a function of its regional

SNP association p-values. Third, confounding effects on gene

association scores are identified and corrected for, without

requiring genotype data. Fourth, a GSEA-like statistical test is

applied to predefined biologically relevant gene sets to determine

whether any of the gene sets are enriched for highly ranked gene

association scores compared to randomly sampled gene sets of

identical size from the genome. More details of these four steps are

described in the method section. In this analysis, we identified

three pathways which passed our significance threshold (false

discovery rate (FDR),0.05); xenobiotic metabolism with

FDR = 0.001 (pathway database: KEGG and Ingenuity), retinoid

X receptor (RXR) function with FDR = 0.003 (pathway database:

Ingenuity), and linoleic acid metabolism with FDR = 0.02

(pathway database: KEGG) (Figure S1). The top significant genes

with p,5.061028 include CYP3A4, CYP3A43, CYP3A5, and

CYP3A7 on chromosome 7, and CYP2C8 and CYP2C9 on

chromosome 10 for all three pathways, and SULT2A1 for RXR

pathway. The best index SNPs are rs17277546 for CYP3A4 and

CYP3A43, rs4646450 for CYP3A5 and CYP3A7, rs2185570 for

CYP2C9, rs11572169 for CYP2C8, and rs2637125 for SULT2A1.

The full list of the genes in each of the three pathways and the best

index SNPs for each gene are listed in Table S2. Three SNPs –

rs17277546, rs2185570, and rs2637125 are the DHEAS-associat-

ed SNPs found in our meta-analysis. Both rs4646450 and

rs11572169 were associated with DHEAS with p values of

8.8610217 and 4.861028, respectively, but become non-signifi-

cant in the conditional meta-analysis because rs4646450 is in

linkage disequilibrium (LD, r2 = 0.429) with rs11761528 which is

the most significant DHEAS-associated SNP while rs11572169 is

in high LD (r2 = 0.778) with rs2185570. Intriguingly, two pathways

- xenobiotic metabolism and linoleic acid metabolism, have been

linked to ageing in model organisms [31–36].

Discussion

This is the first meta-analysis of GWA studies on serum DHEAS

in 14,846 Caucasian subjects. We found 8 common SNPs that

implicate nearby genes that are independently associated with

serum DHEAS concentrations and provide clues to its role in

ageing.

Among the genes identified, SULT2A1, a specialized sulpho-

transferase which converts DHEA to DHEAS in the adrenal

cortex, is an obvious candidate gene [3]. SULT2A1 has a broad

substrate specificity, which includes conversion of pregnenolone,

17a-hydroxypregnenolone, and DHEA to their respective sul-

phated products [37]. Once sulphated by SULT2A1, pregnenolone

and 17a-hydroxypregnenolone are no longer available as

substrates for HSD3B2. Therefore, SULT2A1 sulphation of

pregnenolone and 17a-hydroxypregnenolone removes these

substrates from the mineralocorticoid and glucocorticoid biosyn-

thetic pathways. This suggests that high levels of SULT2A1 would

ensure the formation of DHEAS [3].

Variation in SULT2A1 expression has previously been associ-

ated with variation of DHEAS concentration [38]. The SULT2A1

gene is predominantly expressed in the adrenal cortex and to a

lesser extent in the liver. We found that rs2547231

(p = 1.76610217), located 12 kb downstream of SULT2A1, was

strongly associated with expression levels of SULT2A1 in human

liver tissues. Although this SNP is not the most strongly associated

with serum DHEAS, it is itself in strong LD with the most

significant SNP rs2637125 (r2 = 0.658). However, we did not find a

significant association with SULT2A1 expression levels in LCL,

skin, and adipose tissues, suggesting a tissue specific effect. The

SULT2B1b is also reported to play a role in sulphation of DHEA,

but in comparison, the strongest signal from that genomic region

was rs10417472 with a p = 0.06. In contrast, enzymatic removal of

the sulphate group from DHEAS to form DHEA is performed by

steroid sulphatase gene (STS), but that gene is on the X

chromosome and so was not assessed in this meta-analysis.

CYP2C9 is an important cytochrome P450 enzyme, accounts for

approximately 17–20% of the total P450 content in human liver,

and catalyzes many reactions involved in drug metabolism as well

as synthesis of cholesterol, steroids and other lipids [39]. We found

that rs2185570 located in the CYP2C9 gene region is associated

Figure 2. Regional linkage disequilibrium plots. For rs6738028 (A), rs740160 (B), rs11761528 (C), rs17277546 (D), rs2497306 (E), rs2185570 (F),
rs7181230 (G), and rs2637125 (H). Note: p values from the conditional analysis were used for (a) and (b), both of them became genome-wide
significant in the conditional analysis. Annotation key: m - framestop or splice; . - NonSynonymous; & - Synonymous or UTR; N- nothing; *-
TFBScons; -MCS44 Placental.
doi:10.1371/journal.pgen.1002025.g002

Table 3. Association between DHEAS-associated SNPs and related gene expression levels in different human tissues.

Gene Chr SNP (effect allele) Position LCL* (n = 777) Adipose tissue* (n = 776) Skin tissue* (n = 667)
Liver tissue"

(n = 427)

Beta (SE) P value Beta (SE) P value Beta (SE) P value P value

BCL2L11 2 rs6738028 (G) 111665798 0.07 (0.02) 0.0003 0.02 (0.005) 0.001 20.00004
(0.005)

0.99 Not available

TRIM4 7 rs17277546 (A) 99327507 0.15 (0.04) 0.0001 0.13(0.04) 0.002 0.10(0.04) 0.01 Not available

SULT2A1 19 rs2637125 (A)/
rs2547231**

53093705 0.0006 (0.007) 0.93 20.009(0.007) 0.19 0.02(0.007) 0.01 2.16610211

*from MuTHER consortium and beta (SE) were from linear regression modelling; LCL – lymphoblastoid cell lines.
"from reference 27 and effect size was not reported.
**p value in liver expression is for rs2547231, data is not available for rs2637125, but two SNPs are in strong LD (r2 = 0.658).
doi:10.1371/journal.pgen.1002025.t003
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with serum DHEAS concentrations. This SNP is in strong LD

with rs4086116 and rs4917639 (r2 = 0.67 for both) which were

found to be associated with acenocoumarol [40] and warfarin

maintenance dosage [41] respectively in recent GWAS.

Two other cytochrome P450 enzymes – CYP11A1 and

CYP17A1, are two important enzymes which are required in the

synthesis of DHEAS in the adrenal gland [3], however, the

strongest signals in the genomic region were rs2930306 with

p = 0.29 for CYP11A1 and rs4919686 with p = 0.04 for CYP17A1.

The decline in serum DHEAS concentrations with increasing

age has been proposed as a putative biomarker of ageing [21]. We

found that two putative ageing genes – BCL2L11 and BMF [42]

are associated with serum DHEAS concentrations. Both of them

encode proteins which belong to the BCL2 family and act as anti-

or pro-apoptotic regulators that are involved in a wide variety of

cellular activities. BCL2L11 has been implicated in chronic

lymphocytic leukaemia (rs17483466, P = 2.36610210) [43] and

follicular lymphoma (rs3789068, P for trend = 0.0004) [44]. The

DHEAS-associated SNP rs6738028 is not however one of the

same SNPs associated with lymphocytic leukaemia and follicular

lymphoma nor is it in LD with them. Nevertheless, rs6738028 is

strongly associated with BCL2L11 gene expression levels in both

LCL and adipose tissues, suggesting its putative regulatory role.

There is relatively little data on the human BMF gene or the

protein product, but Bmf2/2 mice show altered immune and

hematopoietic phenotypes as well as defects in uterovaginal

development. However, we were not able to detect any association

between rs7181230 and the expression levels of BMF in the tissues

we studied.

HHEX encodes a member of the homeobox family of

transcription factors, many of which are involved in developmen-

tal processes. This gene has been found to be associated with type

2 diabetes by several recent GWAS [45–51]. The risk alleles of the

diabetes-associated SNPs rs1111875 and rs5015480 are associated

with low serum DHEAS concentrations although the p values

(p = 0.0009 for both SNPs) didn’t reach to the GWAS significance

level. This is consistent with the observation in which the low

serum DHEAS concentrations were associated with insulin

resistance [6,7]. The identified DHEAS-associated SNP

rs2497306 is in moderate LD with rs1111875 and rs5015480

(r2 = 0.38). And the major allele of rs2497306 is associated with

increasing serum DHEAS concentrations. The reason for the

observed association is unknown. Studies showed that insulin

infusion increases the metabolic clearance of DHEA and DHEAS

[52,53], resulting in decreased DHEA and DHEAS concentra-

tions, and DHEA administration significantly enhances insulin

sensitivity attenuating the age-related decline in glucose tolerance

[54], partly explaining why the diabetes-associated gene is also

associated with DHEAS. Interestingly, HHEX null mice show

cardiovascular, endocrine, liver, muscle, nervous system, and

metabolic phenotypes, suggesting extensive multisystem roles for

the protein product of this gene. The findings could help dissect

causal pathways for the observed associations between DHEAS,

insulin resistance, age-related decline in glucose tolerance [54],

and other age related phenotypes [55].

Three identified DHEAS-associated SNPs on chromosome 7

(Figure S2), which were independent, and 161 kb downstream

(rs740160) and 370 kb upstream (rs17277546) apart from

rs11761528 which is located in the middle of the region, are

located in four genes - ZKSCAN5, ARPC1A, and TRIM4/CYP3A43.

ZKSCAN5 encodes a zinc finger protein of the Kruppel family and is

expressed ubiquitously in adult and fetal tissues with the strongest

expression in testis [56]. rs11761528 is located in the intron of the

ZKSCAN5 gene. It is the strongest signal we found and explains 1%

of the total variance of serum DHEAS concentration alone.

ARPC1A encodes one of seven subunits of the human Arp2/3

protein complex which has been implicated in actin polymerization

and filament assembly in cells [57]. TRIM4 encodes a member of

the tripartite motif (TRIM) family whereas CYP3A43 is another

cytochrome P450 enzyme. The potential mechanisms for the

association are unknown, but we found that rs17277546 is strongly

associated with expression levels of TRIM4 not CYP3A43, suggesting

TRIM4 is the possible candidate for DHEAS. However, rs17277546

is the best index SNP for both CYP3A43 and CYP3A4 genes in the

pathway analysis, indicating a fine mapping in this region is needed

to reveal the potential mechanism for the association. Further, the

region harbours many other genes including CYP3A7 which has

been reported to increase the clearance of DHEA and DHEAS [58]

and a common haplotype polymorphism in the gene has been

associated with DHEAS [59,60]. However, none of the DHEAS-

associated SNPs are associated with its expression levels in the

tissues we studied, and the best index SNP rs4646450 for CYP3A7

found in our pathway analysis is in LD with rs11761528 and

become non-significant in the conditional analysis.

In the pathway analysis, two DHEAS-associated SNPs

(rs2185570 and rs17277546) were contained in all three pathways

we found and one SNP (rs2637125) was contained in the RXR

function pathway. Intriguingly, components of the xenobiotic

metabolism pathway have been linked to ageing in model

organisms, for example, age-associated changes in expression of

genes involved in xenobiotic metabolism have been identified in

rats [31,32], up-regulation of xenobiotic detoxification genes has

been observed in long-lived mutant mice [33], and adrenal

xenobiotic-metabolizing activities increase with ageing in guinea

pigs [34]. Furthermore, linoleic acid metabolism has also been

linked to changes with ageing in rat cardiac muscle [35] and in

human skin fibroblasts [36]. Taken together, these findings suggest

that molecular pathways involved in ageing and longevity may also

underlie DHEAS regulation, suggesting shared genetic compo-

nents in both processes and corroborating a role for DHEAS as a

marker of biological ageing.

In summary, this first GWAS identified eight independent SNPs

associated with serum DHEAS concentrations. The related genes

have various associations with steroid hormone metabolism, co-

morbidities of ageing including type 2 diabetes, lymphoma, actin

filament assembly, drug and xenobiotic metabolism, and zinc

fingers - suggesting a wider functional role for DHEAS than

previously thought.

Methods

Study population
Seven study samples contributed to this meta-analysis of GWA

studies on serum DHEAS concentrations, comprising a total of

14,846 men and women of Caucasian origin. The consortium was

made up of populations from TwinsUK (n = 4,906), Framingham

Heart Study (FHS) (n = 3,183), SHIP (n = 1,832), Rotterdam

Study (RS1) (n = 1,597), InCHIANTI (n = 1,182), Health ABC

(n = 1,222), and GOOD (n = 924). Full details can be found in

Text S1.

DHEAS methods
Blood samples were collected from each of the study

participants either after overnight fasting or non-fasting and the

serum levels of DHEAS were measured by either immunoassay or

liquid chromatography tandem mass spectrometry (LC-MS/MS)

methods (Text S1). Because the distribution of the serum DHEAS

GWAS of DHEAS
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levels was skewed, we log transformed the concentrations and the

transformed data used in the subsequent analysis.

Genotyping and imputation
Seven study populations were genotyped using a variety of

genotyping platforms including Illumina (HumanHap 317k, 550k,

610k, 1M-Duo BeadChip) and Affymetrix (array 500K, 6.0). Each

cohort followed a strict quality control on the genotyping data.

More details on the quality control and filtering criteria can be

found in Text S1. In order to increase genomic coverage and allow

the evaluation of the same SNPs across as many study populations

as possible, each study imputed genotype data based on the

HapMap CEU Build 36. Algorithms were used to infer

unobserved genotypes in a probabilistic manner in either MACH

(http://www.sph.umich.edu/csg/abecasis/MACH), or IMPUTE

[61]. We exclude non-genotyped SNPs with an imputation quality

score ,0.2 and SNPs with allele frequency ,0.01 from meta-

analysis.

Statistical method
Each study performed genome-wide association testing for

serum concentrations of DHEAS across approximately 2.5 million

SNPs under an additive genetic model separately in men and

women (Text S1). The analyses were adjusted for age. In addition,

the association testing was performed in the combined men and

women data with adjustment for age and sex. Studies used

PLINK, GenABEL, SNPTEST, QUICKTEST, or MERLIN for

the association testing. The summary results from each cohort

were meta-analyzed by Z-score pooling method implemented in

Metal (http://www.sph.umich.edu/csg/abecasis/metal/). We

chose this method to minimize the impact of the different assays

used for serum DHEAS measurements. Specifically, for each

study, we converted the two-sided P value after adjustment for

population stratification by the genomic control method to a Z

statistic that was signed to reflect the direction of the association

given the reference allele. Each Z score was then weighted; the

squared weights were chosen to sum to 1, and each sample-specific

weight was proportional to the square root of the effective number

of individuals in the sample. We summed the weighted Z statistics

across studies and converted the summary Z score to a two-sided P

value. We also used I2 index to assess between-study heterogeneity

and the inverse variance weighted method to estimate the effect

size. Genome-wide significance was defined as p,561028. The

association between the DHEAS-associated SNPs and the related

gene expression levels in MuTHER data were examined by mixed

linear regression modelling which takes both family structure and

batch effects into account. The significance was defined as

p,0.006 after accounting for multiple testing (Bonferroni method,

correcting 9 independent tests).

Pathway analysis. Meta-Analysis Gene-set Enrichment of

variaNT Associations (MAGENTA) was used to explore pathway-

based associations in the full GWAS dataset. MAGENTA

implements a gene set enrichment analysis (GSEA) based

approach, the methodology of which is described in Segrè et al

[30]. Briefly, each gene in the genome is mapped to a single index

SNP with the lowest P-value within a 110 kb upstream, 40 kb

downstream window. This P-value, representing a gene score, is

then corrected for confounding factors such as gene size, SNP

density and LD-related properties in a regression model. Genes

within the HLA-region were excluded from analysis due to

difficulties in accounting for gene density and LD patterns. Each

mapped gene in the genome is then ranked by its adjusted gene

score. At a given significance threshold (95th and 75th percentiles

of all gene scores), the observed number of gene scores in a given

pathway, with a ranked score above the specified threshold

percentile, is calculated. This observed statistic is then compared

to 1,000,000 randomly permuted pathways of identical size. This

generates an empirical GSEA P-value for each pathway.

Significance was determined when an individual pathway

reached a false discovery rate (FDR),0.05 in either analysis. In

total, 2529 pathways from Gene Ontology, PANTHER, KEGG

and Ingenuity were tested for enrichment of multiple modest

associations with serum DHEAS levels.

Ethics statement
All studies were approved by local ethics committees and all

participants provided written informed consent as stated in Text

S1.

Supporting Information

Figure S1 Three pathways which were associated with DHEAS.

The genes which are near the DHEAS-associated SNPs are

highlighted by red circles. a. Xenobiotic metabolism pathway; b.

Retinoid X receptor (RXR) function pathway; c. Linoleic acid

metabolism pathway; d. Legends for the pathway figures. The

pathway figures were made using MetaCore from GeneGo

(http://www.genego.com/metacore.php).

(TIF)

Figure S2 Regional linkage disequilibrium plots for three SNPs

on chromosome 7 in one plot.

(TIF)

Table S1 87 SNPs associated with DHEAS in men, women, and

combined meta-analysis with p,561028.

(XLS)

Table S2 Pathway analysis results – list of all pathways,

significant pathways, and significant genes with the best index

SNPs.

(XLS)

Text S1 Supplementary Note.

(DOC)
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