408 research outputs found

    Variations in classroom ventilation during the COVID-19 pandemic: Insights from monitoring 36 naturally ventilated classrooms in the UK during 2021

    Get PDF
    Seasonal changes in the measured CO2 levels at four schools are herein presented through a set of indoor air quality metrics that were gathered during the height of the COVID-19 pandemic in the UK. Data from non-intrusive environmental monitoring units were remotely collected throughout 2021 from 36 naturally ventilated classrooms at two primary schools and two secondary schools in England. Measurements were analysed to assess the indoor CO2 concentration and temperature . Relative to UK school air quality guidance, the CO2 levels within classrooms remained relatively low during periods of warmer weather, with elevated CO2 levels being evident during the colder seasons, indicating lower levels of per person ventilation during these colder periods. However, CO2 data from the cold period during the latter part of 2021, imply that the per person classroom ventilation levels were significantly lower than those achieved during a similarly cold weather period during the early part of the year. Given that the classroom architecture and usage remained unchanged, this finding suggests that changes in the ventilation behaviours within the classrooms may have altered, and raises questions as to what may have given rise to such change, in a year when, messaging and public concerns regarding COVID-19 varied within the UK. Significant variations were observed when contrasting data, both between schools, and between classrooms within the same school building; suggesting that work is required to understand and catalogue the existing ventilation provisions and architecture within UK classrooms, and that more work is required to ascertain the effects of classroom ventilation behaviours

    Evaluation of an online Diabetes Needs Assessment Tool (DNAT) for health professionals: a randomised controlled trial

    Get PDF
    Background: Continuous medical education is traditionally reliant to a large extent on self-directed learning based on individuals' perceived learning priorities. Evidence suggests that this ability to self-assess is limited, and more so in the least competent. Therefore, it may be of benefit to utilise some form of external assessment for this purpose. Many diabetes educational programmes have been introduced, but few have been assessed for their benefit in a systematic manner. As diabetes is an increasingly prevalent disease, methods for the dissemination and understanding of clinical guidelines need to be explored for their effectiveness. This paper describes the study design of a randomised controlled trial to evaluate the effectiveness of using an interactive online Diabetes Needs Assessment Tool (DNAT), that builds a learning curriculum based on identified knowledge gaps, compared with conventional self-directed learning. The study assesses the effect of these interventions on health professionals' knowledge of diabetes management, evaluates the acceptability of this process of learning and self-reported changes in clinical practice as a result of this novel educational process. Methods: Following a baseline assessment, participants will be randomised to undergo a 4-month learning period where they will either be given access to the diabetes learning modules alone (control group) or a Diabetes Needs Assessment Tool (DNAT) plus the diabetes learning modules (intervention group). On completion of the DNAT, a personalised learning report will be created for each participant identifying needs alongside individualised recommendations of the most appropriate learning modules to meet those requirements. All participants will complete a Diabetes Knowledge Test before and immediately after the allocated learning and the primary outcome will be the state of knowledge at 4 months. Learners will also be surveyed immediately after the learning period to assess the acceptability of the learning formats and the perceived usefulness and usability of the materials. After a further month, all learners will receive a series of questions to evaluate self-reported changes in clinical practice as a result of this educational experience and asked to include specific examples of any changes in their diabetes care practice

    Evaluation of an online interactive Diabetes Needs Assessment Tool (DNAT) versus online self-directed learning: a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Methods for the dissemination, understanding and implementation of clinical guidelines need to be examined for their effectiveness to help doctors integrate guidelines into practice. The objective of this randomised controlled trial was to evaluate the effectiveness of an interactive online Diabetes Needs Assessment Tool (DNAT) (which constructs an e-learning curriculum based on individually identified knowledge gaps), compared with self-directed e-learning of diabetes guidelines.</p> <p>Methods</p> <p>Health professionals were randomised to a 4-month learning period and either given access to diabetes learning modules alone (control group) or DNAT plus learning modules (intervention group). Participants completed knowledge tests before and after learning (primary outcome), and surveys to assess the acceptability of the learning and changes to clinical practice (secondary outcomes).</p> <p>Results</p> <p>Sixty four percent (677/1054) of participants completed both knowledge tests. The proportion of nurses (5.4%) was too small for meaningful analysis so they were excluded. For the 650 doctors completing both tests, mean (SD) knowledge scores increased from 47.4% (12.6) to 66.8% (11.5) [intervention group (n = 321, 64%)] and 47.3% (12.9) to 67.8% (10.8) [control group (n = 329, 66%)], (ANCOVA p = 0.186). Both groups were satisfied with the usability and usefulness of the learning materials. Seventy seven percent (218/284) of the intervention group reported combining the DNAT with the recommended reading materials was "<it>very useful"/"useful"</it>. The majority in both groups (184/287, 64.1% intervention group and 206/299, 68.9% control group) [95% CI for the difference (-2.8 to 12.4)] reported integrating the learning into their clinical practice.</p> <p>Conclusions</p> <p>Both groups experienced a similar and significant improvement in knowledge. The learning materials were acceptable and participants incorporated the acquired knowledge into practice.</p> <p>Trial registration</p> <p>ISRCTN: <a href="http://www.controlled-trials.com/ISRCTN67215088">ISRCTN67215088</a></p

    Short-term stability in refractive status despite large fluctuations in glucose levels in diabetes mellitus type 1 and 2

    Get PDF
    Purpose: This work investigates how short-term changes in blood glucose concentration affect the refractive components of the diabetic eye in patients with long-term Type 1 and Type 2 diabetes. Methods: Blood glucose concentration, refractive error components (mean spherical equivalent MSE, J0, J45), central corneal thickness (CCT), anterior chamber depth (ACD), crystalline lens thickness (LT), axial length (AL) and ocular aberrations were monitored at two-hourly intervals over a 12-hour period in: 20 T1DM patients (mean age ± SD) 38±14 years, baseline HbA1c 8.6±1.9%; 21 T2DM patients (mean age ± SD) 56±11 years, HbA1c 7.5±1.8%; and in 20 control subjects (mean age ± SD) 49±23 years, HbA1c 5.5±0.5%. The refractive and biometric results were compared with the corresponding changes in blood glucose concentration. Results: Blood glucose concentration at different times was found to vary significantly within (p0.05). Minor changes of marginal statistical or optical significance were observed in some biometric parameters. Similarly there were some marginally significant differences between the baseline biometric parameters of well-controlled and poorly-controlled diabetic subjects. Conclusion: This work suggests that normal, short-term fluctuations (of up to about 6 mM/l on a timescale of a few hours) in the blood glucose levels of diabetics are not usually associated with acute changes in refractive error or ocular wavefront aberrations. It is therefore possible that factors other than refractive error fluctuations are sometimes responsible for the transient visual problems often reported by diabetic patients

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    The acute effects of plyometric and sled towing stimuli with and without caffeine ingestion on vertical jump performance in professional soccer players

    Get PDF
    Abstract Background Post-activation potentiation (PAP) is the phenomenon by which muscular performance is enhanced in response to a conditioning stimulus. PAP has typically been evidenced via improved counter movement jump (CMJ) performance. This study examined the effects of PAP, with and without prior caffeine ingestion, on CMJ performance. Methods Twelve male professional soccer players (23 ± 5 years) performed two trials of plyometric exercises and sled towing 60 min after placebo or caffeine ingestion (5 mg.kg− 1) in a randomized, counterbalanced and double-blinded design. CMJ performance was assessed at baseline and 1, 3 and 5 min after the conditioning stimulus (T1, T3 and T5, respectively). Results Two way ANOVA main effects indicated a significant difference in jump height after the PAP protocol (F[3, 11] = 14.99, P  0.05) compared to placebo. Conclusions The results of this study suggest that acute plyometric and sled towing stimuli enhances jump performance and that this potentiation is augmented by caffeine ingestion in male soccer players

    Gene selection for classification of microarray data based on the Bayes error

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With DNA microarray data, selecting a compact subset of discriminative genes from thousands of genes is a critical step for accurate classification of phenotypes for, e.g., disease diagnosis. Several widely used gene selection methods often select top-ranked genes according to their individual discriminative power in classifying samples into distinct categories, without considering correlations among genes. A limitation of these gene selection methods is that they may result in gene sets with some redundancy and yield an unnecessary large number of candidate genes for classification analyses. Some latest studies show that incorporating gene to gene correlations into gene selection can remove redundant genes and improve classification accuracy.</p> <p>Results</p> <p>In this study, we propose a new method, Based Bayes error Filter (BBF), to select relevant genes and remove redundant genes in classification analyses of microarray data. The effectiveness and accuracy of this method is demonstrated through analyses of five publicly available microarray datasets. The results show that our gene selection method is capable of achieving better accuracies than previous studies, while being able to effectively select relevant genes, remove redundant genes and obtain efficient and small gene sets for sample classification purposes.</p> <p>Conclusion</p> <p>The proposed method can effectively identify a compact set of genes with high classification accuracy. This study also indicates that application of the Bayes error is a feasible and effective wayfor removing redundant genes in gene selection.</p

    JNK Isoforms Differentially Regulate Neurite Growth and Regeneration in Dopaminergic Neurons In Vitro

    Get PDF
    Parkinson’s disease is characterized by selective and progressive loss of midbrain DAergic neurons (MDN) in the substantia nigra and degeneration of its nigrostriatal projections. Whereas the cellular pathophysiology has been closely linked to an activation of c-Jun N-terminal kinases (JNKs) and c-Jun, the involvement of JNKs in regenerative processes of the nigrostriatal pathway is controversially discussed. In our study, we utilized a mechanical scratch lesion paradigm of midbrain DAergic neurons in vitro and studied regenerative neuritic outgrowth. After a siRNA-mediated knockdown of each of the three JNK isoforms, we found that JNKs differentially regulate neurite regeneration. Knockdown of JNK3 resulted in the most prominent neurite outgrowth impairment. This effect was attenuated again by plasmid overexpression of JNK3. We also evaluated cell survival of the affected neurons at the scratch border. JNK3 was found to be also relevant for survival of MDN which were lesioned by the scratch. Our data suggest that JNK isoforms are involved in differential regulation of cell death and regeneration in MDN depending on their neurite integrity. JNK3 appears to be required for regeneration and survival in the case of an environment permissive for regeneration. Future therapeutic approaches for the DAergic system may thus require isoform specific targeting of these kinases
    corecore