159 research outputs found

    Temperature Induced Physiological Reaction Norms of the Coccolithophore Gephyrocapsa oceanica and Resulting Coccolith Sr/Ca and Mg/Ca Ratios

    Get PDF
    Coccolithophores are one of the major contributors to the pelagic production of calcium carbonate and their fossilized remains are a key component of the biogeochemical cycles of calcium (Ca), magnesium (Mg), and other divalent cations present in the intracellular precipitated calcitic structures (coccoliths). The geochemical signature of coccoliths (e.g., Sr/Ca and Mg/Ca ratios) is used as paleoproxy to reconstruct past environmental conditions and to understand the underlying physiological precipitation kinetics. Here, we present the elemental fractionation of Sr and Mg in calcite of the coccolithophore Gephyrocapsa oceanica from controlled laboratory experiments applying an extended temperature gradient (12 to 27°C). The physiological reaction norm of G. oceanica, in terms of growth rate, exhibited optimum behavior while the partition coefficient of Sr (DSr) was linearly correlated with temperature and DMg indicated no specific trend. Our results indicate: (1) a presumably secondary physiological control of DSr, and (2) the importance of calibrating coccolithophore-based proxies using experiments that include the full physiological reaction norms (i.e., a possible non-linear response) to environmental drivers (e.g., temperature, salinity, and pH, etc.). The presented results contribute to an improved understanding of the underlying physiological kinetics involved in regulating coccolith elemental fractionation and give additional implications for designing future laboratory experiments to calibrate and apply coccolithophore based paleoproxies on the fossil sediment record

    Level of knowledge and attitudes of patients regard of the informed consent for teaching in the department of internal medicine of a General Hospital of the Ministry of Health

    Get PDF
    Los hospitales nacionales han servido para propósitos de docencia de la Medicina, y de otras profesiones de la salud, prácticamente desde que iniciaron su funcionamiento. En los últimos años se han formulado diversos dispositivos legales y administrativos que norman los derechos de los pacientes en relación a la docencia; ellos establecen que debe constar el consentimiento escrito del paciente en la historia clínica. Se formuló una encuesta a 239 pacientes adultos internados en un hospital docente, y en el 99,5 % no se encontró el consentimiento informado en la historia clínica; el 100 no conocía sus derechos, pero sabía que en el hospital se hacía docencia; el 98,6 % manifestó que recibieron un trato respetuoso de los alumnos de las ciencias de la salud, y todos estaban dispuestos a colaborar en el entrenamiento de los estudiantes. Se hace necesario que las autoridades hospitalarias y de las universidades supervisen que los profesionales de la salud docentes informen adecuadamente a los pacientes sobre estos derechos y obtengan su consentimiento

    Phenotypic Variability in the Coccolithophore Emiliania huxleyi

    Get PDF
    Coccolithophores are a vital part of oceanic phytoplankton assemblages that produce organic matter and calcium carbonate (CaCO3) containing traces of other elements (i.e. Sr and Mg). Their associated carbon export from the euphotic zone to the oceans' interior plays a crucial role in CO2 feedback mechanisms and biogeochemical cycles. The coccolithophore Emiliania huxleyi has been widely studied as a model organism to understand physiological, biogeochemical, and ecological processes in marine sciences. Here, we show the inter-strain variability in physiological and biogeochemical traits in 13 strains of E. huxleyi from various biogeographical provinces obtained from culture collections commonly used in the literature. Our results demonstrate that inter-strain genetic variability has greater potential to induce larger phenotypic differences than the phenotypic plasticity of single strains cultured under a broad range of variable environmental conditions. The range of variation found in physiological parameters and calcite Sr:Ca highlights the need to reconsider phenotypic variability in paleoproxy calibrations and model parameterizations to adequately translate findings from single strain laboratory experiments to the real ocean

    Phenotypic variability in the coccolithophore Emiliania huxleyi

    No full text
    Coccolithophores are a vital part of oceanic phytoplankton assemblages that produce organic matter and calcium carbonate (CaCO3) containing traces of other elements (i.e. Sr and Mg). Their associated carbon export from the euphotic zone to the oceans' interior plays a crucial role in CO2 feedback mechanisms and biogeochemical cycles. The coccolithophore Emiliania huxleyi has been widely studied as a model organism to understand physiological, biogeochemical, and ecological processes in marine sciences. Here, we show the inter-strain variability in physiological and biogeochemical traits in 13 strains of E. huxleyi from various biogeographical provinces obtained from culture collections commonly used in the literature. Our results demonstrate that inter-strain genetic variability has greater potential to induce larger phenotypic differences than the phenotypic plasticity of single strains cultured under a broad range of variable environmental conditions. The range of variation found in physiological parameters and calcite Sr:Ca highlights the need to reconsider phenotypic variability in paleoproxy calibrations and model parameterizations to adequately translate findings from single strain laboratory experiments to the real ocean

    The last deglaciation in the Picos de Europa National Park (Cantabrian Mountains, northern Spain)

    Get PDF
    42 páginas, 8 figuras, 4 tablas.-- El PDF del artículo esta en formato pre-print.A sedimentological and geochemical study of the Lago Enol sequence (Cantabrian Mountains, northern Spain), together with detailed geomorphological mapping, provides a first record of glacier evolution and climate change over the last 40 ka in the Picos de Europa National Park. The Enol glacier retreated from its maximum extent prior to 40 ka BP as demonstrated by the onset of proglacial lacustrine sedimentation in two glaciated depressions: the Comella hollow to the north (before 40 ka BP) and the Lago Enol (before 38 ka BP). These results support previous evidence that the maximum extent of southern European glaciers occurred earlier than in northern Europe. Alternation of homogeneous and laminated proglacial sediments during the glacier retreat illustrate a dynamic glacial evolution during the Marine Isotope Stage (MIS) 3 (40–26 ka BP). A slight warming is detected at 26 ka ago with the change from proglacial sediments (in a lake located in contact to the glacier) to glaciolacustrine sedimentation (in a non-contact or distal lake). Finally, the onset of organic-rich sediments took place at 18 ka ago. This last transition occurred in two phases, similarly to the North Atlantic Last Termination, suggesting a link between North Atlantic Deep Water formation oscillations and palaeohydrological variability in the Cantabrian Mountains.This research has been funded through the projects LIMNOCLIBER (REN2003-09130-C02-02), IBERLIMNO (CGL2005-20236-E/CLI), LIMNOCAL (CGL2006-13327-C04-01) and GRACCIE (CSD2007-00067), provided by the Spanish Inter-Ministry Commission of Science and Technology (CICYT). Additional funding was provided by the Spanish National Parks Agency through the project ‘Evolución climática y ambiental del Parque Nacional de Picos de Europa desde el último máximo glaciar – ref: 53/2006’. A. Moreno acknowledges funding from the European Commission's Sixth Framework Program (Marie Curie Outgoing International Fellowships, proposal 021673-IBERABRUPT).Peer reviewe

    Carbon dynamics of the Weddell Gyre, Southern Ocean

    Get PDF
    The accumulation of carbon within the Weddell Gyre and its exchanges across the gyre boundaries are investigated with three recent full-depth oceanographic sections enclosing this climatically important region. The combination of carbonmeasurements with ocean circulation transport estimates from a box inverse analysis reveals that deepwater transports associated with Warm Deep Water (WDW) and Weddell Sea Deep Water dominate the gyre’s carbon budget, while a dual-cell vertical overturning circulation leads to both upwelling and the delivery of large quantities of carbon to the deep ocean. Historical sea surface pCO2 observations, interpolated using a neural network technique, confirm the net summertime sink of 0.044 to 0.058 ± 0.010 Pg C / yr derived from the inversion. However, a wintertime outgassing signal similar in size results in a statistically insignificant annual air-to-sea CO2 flux of 0.002± 0.007 Pg C / yr (mean 1998–2011) to 0.012 ± 0.024 Pg C/ yr (mean 2008–2010) to be diagnosed for the Weddell Gyre. A surface layer carbon balance, independently derived fromin situ biogeochemical measurements, reveals that freshwater inputs and biological drawdown decrease surface ocean inorganic carbon levels more than they are increased by WDW entrainment, resulting in an estimated annual carbon sink of 0.033 ± 0.021 Pg C / yr. Although relatively less efficient for carbon uptake than the global oceans, the summertime Weddell Gyre suppresses the winter outgassing signal, while its biological pump and deepwater formation act as key conduits for transporting natural and anthropogenic carbon to the deep ocean where they can reside for long time scales

    Influence of temperature and CO<sub>2</sub> on the strontium and magnesium composition of coccolithophore calcite

    Get PDF
    Marine calcareous sediments provide a fundamental basis for paleoceanographic studies aiming to reconstruct past oceanic conditions and understand key biogeochemical element cycles. Calcifying unicellular phytoplankton (coccolithophores) are a major contributor to both carbon and calcium cycling by photosynthesis and the production of calcite (coccoliths) in the euphotic zone and the subsequent long-term deposition and burial into marine sediments. Here we present data from controlled laboratory experiments on four coccolithophore species and elucidate the relation between the divalent cation (Sr, Mg and Ca) partitioning in coccoliths and cellular physiology (growth, calcification and photosynthesis). Coccolithophores were cultured under different seawater temperature and carbonate chemistry conditions. The partition coefficient of strontium (DSr) was positively correlated with both carbon dioxide (pCO2) and temperature but displayed no coherent relation to particulate organic and inorganic carbon production rates. Furthermore, DSr correlated positively with cellular growth rates when driven by temperature but no correlation was present when changes in growth rates were pCO2-induced. The results demonstrate the complex interaction between environmental forcing and physiological control on the strontium partitioning in coccolithophore calcite. The partition coefficient of magnesium (DMg) displayed species-specific differences and elevated values under nutrient limitation. No conclusive correlation between coccolith DMg and temperature was observed but pCO2 induced a rising trend in coccolith DMg. Interestingly, the best correlation was found between coccolith DMg and chlorophyll a production suggesting that chlorophyll a and calcite associated Mg originate from the same intracellular pool. These results give an extended insight into the driving factors that lead to variations in the coccolith Mg / Ca ratio and can be used for Sr / Ca and Mg / Ca paleoproxy calibration

    Systematic Association Mapping Identifies NELL1 as a Novel IBD Disease Gene

    Get PDF
    Crohn disease (CD), a sub-entity of inflammatory bowel disease (IBD), is a complex polygenic disorder. Although recent studies have successfully identified CD-associated genetic variants, these susceptibility loci explain only a fraction of the heritability of the disease. Here, we report on a multi-stage genome-wide scan of 393 German CD cases and 399 controls. Among the 116,161 single-nucleotide polymorphisms tested, an association with the known CD susceptibility gene NOD2, the 5q31 haplotype, and the recently reported CD locus at 5p13.1 was confirmed. In addition, SNP rs1793004 in the gene encoding nel-like 1 precursor (NELL1, chromosome 11p15.1) showed a consistent disease-association in independent German population- and family-based samples (942 cases, 1082 controls, 375 trios). Subsequent fine mapping and replication in an independent sample of 454 French/Canadian CD trios supported the authenticity of the NELL1 association. Further confirmation in a large German ulcerative colitis (UC) sample indicated that NELL1 is a ubiquitous IBD susceptibility locus (combined p<10−6; OR = 1.66, 95% CI: 1.30–2.11). The novel 5p13.1 locus was also replicated in the French/Canadian sample and in an independent UK CD patient panel (453 cases, 521 controls, combined p<10−6 for SNP rs1992660). Several associations were replicated in at least one independent sample, point to an involvement of ITGB6 (upstream), GRM8 (downstream), OR5V1 (downstream), PPP3R2 (downstream), NM_152575 (upstream) and HNF4G (intron)

    Calmodulin-dependent kinase IV links Toll-like receptor 4 signaling with survival pathway of activated dendritic cells.

    Get PDF
    Microbial products, including lipopolysaccharide (LPS), an agonist of Toll-like receptor 4 (TLR4), regulate the lifespan of dendritic cells (DCs) by largely undefined mechanisms. Here, we identify a role for calcium-calmodulin–dependent kinase IV (CaMKIV) in this survival program. The pharmacologic inhibition of CaMKs as well as ectopic expression of kinase-inactive CaMKIV decrease the viability of monocyte-derived DCs exposed to bacterial LPS. The defect in TLR4 signaling includes a failure to accumulate the phosphorylated form of the cAMP response element-binding protein (pCREB), Bcl-2, and Bcl-xL. CaMKIV null mice have a decreased number of DCs in lymphoid tissues and fail to accumulate mature DCs in spleen on in vivo exposure to LPS. Although isolated Camk4(−/−) DCs are able to acquire the phenotype typical of mature cells and release normal amounts of cytokines in response to LPS, they fail to accumulate pCREB, Bcl-2, and Bcl-xL and therefore do not survive. The transgenic expression of Bcl-2 in CaMKIV null mice results in full recovery of DC survival in response to LPS. These results reveal a novel link between TLR4 and a calcium-dependent signaling cascade comprising CaMKIV-CREB-Bcl-2 that is essential for DC survival
    • …
    corecore