258 research outputs found

    Global profiles of compressional ultralow frequency wave power at geosynchronous orbit and their response to the solar wind

    Get PDF
    We investigate the global local-time profiles of compressional wave power in three ultralow frequency (ULF) bands corresponding to Pc3, Pc4, and Pc5 pulsations using magnetic field data from the geosynchronous GOES satellites. The global power profiles of the three frequency bands are studied for low, moderate, and high levels of geomagnetic activity based on the Dst index. We also consider the seasonal variation of the ULF power profiles, as well as the effects of solar wind and interplanetary magnetic field (IMF) parameters. For high geomagnetic activity, we find that the greatest power is associated with compressional Pc5 pulsations in the afternoon sector; for low geomagnetic activity, ULF power levels are consistently highest in the tail region. A summer power minimum in all three frequency bands is observed in our study of seasonal variation, while higher power levels occur around local midnight throughout the year. The enhancement of ULF power by high solar wind velocity and pressure is greater for the lower-frequency waves. Furthermore, solar wind plasma parameters have a significantly greater influence on ULF wave power than IMF parameters like cone angle and northward/southward orientation

    The occurrence of ionospheric signatures of plasmaspheric plumes over different longitudinal sectors

    Get PDF
    Plasmaspheric plumes have ionospheric signatures and are observed as storm-enhanced density (SED) in global positioning system (GPS) total electron content (TEC). These ionospheric signatures have been primarily observed over the American sector and in a few limited examples over the European sector. This study examines the longitudinal occurrence frequency of plasmaspheric plumes. We analyzed all images from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) Extreme Ultraviolet Imager (EUV) databases for the first half of 2001 and identified a total of 31 distinct plume intervals observed during different storm events. Out of the total IMAGE EUV plumes that we identified, 12 were projected over North America, 10 over Asia, and the remaining 9 were over Europe and the Atlantic Ocean. Using ground-based GPS TEC from MIT\u27s Madrigal database, we searched for corresponding SED/TEC plumes at different longitudinal sector and found 12 ionospheric SED plume signatures over North America, 4 over Europe, and 2 over Asia. This indicates that the observation probability of an ionospheric SED plume when a plasmaspheric plume is seen is 100% in the American sector, 50% in the European sector, and 20% in the Asian sector. This could be due to the fact that the plumes may be either positioned beyond the limit of the ground-based GPS field of view, which happens mainly when there is less plasmaspheric erosion, or are too weak to be detected by the sparse number of GPS receivers over Asia. The in situ plasma densities from the available coincident defense metrological satellite program (DMSP) satellites were also used to study the characteristics of SED/TEC plume at DMSP orbiting altitude (i.e., ∌870 km). The TOPographic EXplorer (TOPEX) altimeter TEC also is used to identify the conjugate SED/plume signature over the Southern Hemisphere

    Plasmaspheric Plumes: Crres Observations Of Enhanced Density Beyond The Plasmapause

    Get PDF
    CRRES plasma wave receiver density data were used to study the distribution and properties of dense plasmaspheric-like plasma observed outside the plasmapause. Our study indicates that outer plasmaspheric structure, often called plasmaspheric plumes, blobs, tails, or detached plasma regions, can exist at all local times under all levels of geomagnetic activity. Of the 558 CRRES orbits that had at least one clearly defined plasmapause, 169 (or 30%) had plasmaspheric-like density structures at higher L shells than the plasmapause. Most of the occurrences of plasmaspheric-like plasma observed by CRRES were in the noon-to-dusk sector in the aftermath of enhanced geomagnetic activity consistent with plasmaspheric plume models

    Standalone vertex ïŹnding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ Îł, H → Z Z∗ →4l and H →W W∗ →lÎœlÎœ. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined ïŹts probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the top quark pair cross section with ATLAS in pp collisions at √s=7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton

    Get PDF
    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb -1. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, σtt-=186±13(stat.)±20(syst.)±7(lumi.) pb, is in good agreement with the Standard Model prediction

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon Ό\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, ΌΌ\mu\mu or eΌe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore