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Plasmaspheric plumes: CRRES observations of enhanced density
beyond the plasmapause

M. B. Moldwin,! J. Howard,? J. Sanny,2 J. D. Bocchicchio,® H. K. Rassoul,’
and R. R. Anderson*®

Received 13 November 2003; revised 4 March 2004; accepted 15 March 2004; published 4 May 2004.

[11 CRRES plasma wave receiver density data were used to study the distribution and
properties of dense plasmaspheric-like plasma observed outside the plasmapause. Our
study indicates that outer plasmaspheric structure, often called plasmaspheric plumes,
blobs, tails, or detached plasma regions, can exist at all local times under all levels of
geomagnetic activity. Of the 558 CRRES orbits that had at least one clearly defined
plasmapause, 169 (or 30%) had plasmaspheric-like density structures at higher L shells
than the plasmapause. Most of the occurrences of plasmaspheric-like plasma observed by
CRRES were in the noon-to-dusk sector in the aftermath of enhanced geomagnetic activity
consistent with plasmaspheric plume models.  INDEX TERMS: 2768 Magnetospheric Physics:
Plasmasphere; 2730 Magnetospheric Physics: Magnetosphere—inner; 2760 Magnetospheric Physics: Plasma
convection; 2788 Magnetospheric Physics: Storms and substorms; KEYWORDS: plasmasphere, plasmaspheric

plumes, plasmapause, inner magnetospheric density structure
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1. Introduction

[2] Early in the development of plasmapause modeling it
was recognized that long plasmaspheric plumes would
develop because of enhanced convection sweeping the
outer layers of the plasmasphere sunward (e.g., Chen and
Wolf [1972]; Chen and Grebowsky [1978]; see also brief
review paper by Lemaire [2000]). A number of satellite
missions that had the ability to measure the thermal density
of the inner magnetosphere commonly observed dense
plasmaspheric-like plasma beyond the plasmapause [e.g.,
Taylor et al., 1970; Chappell, 1974; Higel and Lei, 1984;
Carpenter et al., 1993; Moldwin et al., 1994]. These
observations, in general, fit the simple bulge or plume
model of the plasmasphere [e.g., Chen and Wolf, 1972,
Higel and Lei, 1984] in which the duskside bulge or plume
region rotated from dusk toward noon during increasing
geomagnetic activity [e.g., Elphic et al., 1996] and rotated
toward midnight during quiet times. Figure 1 shows the
Grebowsky [1970] model results that have been used to
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explain dense plasmaspheric plasma beyond the plasma-
pause. The main question that could not be resolved from
in situ observations is whether the dense plasmaspheric
plasma is detached from the plasmasphere (blobs) or is an
extension (plumes) from the main plasmasphere. The
answer has ramifications for the generation of the kilometric
continuum [e.g., Green et al., 2002] and general plasma-
pause modeling studies [e.g., O 'Brien and Moldwin, 2003].
The International Monitor for Auroral Geomagnetic Effects
(IMAGE) EUV observations of global plasmaspheric mor-
phology routinely show the creation or presence of plasma-
spheric plumes [e.g., Sandel et al., 2001; Goldstein et al.,
2003; Garcia et al., 2003]. These observations are therefore
supportive of the connected plume picture as opposed to the
detached blob model. A significant caveat to the IMAGE
EUV observations is that because of the sensitivity of the
cameras, only relatively dense plasmaspheric plasma
regions in the outer plasmasphere are observed. It has been
estimated that the minimum density observable by IMAGE
EUV is &30 cm > [Goldstein et al., 2003; Moldwin et al.,
2003]. Therefore dense plasmaspheric plasma that exists at
L shells above 5 most often would not be observable by
IMAGE EUV except during intervals of relatively prolonged
quiet when the plasmasphere can reach saturation levels at
high L shells [e.g., Carpenter and Anderson, 1992; Sheeley
et al., 2001].

[3] Early observational studies found an absence of dense
plasmaspheric-like regions beyond the plasmapause in the
midnight-to-dawn sector [e.g., Chappell, 1974]. However,
observations at geosynchronous orbit found dense plasma-
spheric-like plasma at midnight during intervals of tail
stretching in the growth phase of substorms [Moldwin et
al., 1996] and during times of quiet geomagnetic activity
[e.g., Moldwin et al., 1994].
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Figure 1.
[1970].

[4] Therefore some of the outstanding questions in outer
plasmaspheric structure that can be addressed by in situ
observations are: How often are there plasmaspheric plumes?
What is the density structure of plasmaspheric plumes? What
is the formation process of plasmaspheric plumes? The
answers to these questions are important since recent studies
using the IMAGE and Los Alamos National Laboratory
geosynchronous spacecraft have indicated that plasma-
spheric plumes play a crucial role in midlatitude ionospheric
density enhancements [Foster et al., 2002] and polar ioniza-
tion patches [Su et al., 2001] and are strongly correlated with
the loss of ring current ions [Brandt et al., 2002].

[s] The purpose of this study is to determine the proper-
ties of plasmaspheric-like plasma beyond the inner plasma-
pause using the CRRES plasma wave receiver data set. The
CRRES spacecraft provides the most extensive database of
in situ observations of plasmaspheric density structure and
dynamics to date. We use the database of plasmapause
locations identified by Moldwin et al. [2002] and the
empirical plasmaspheric and trough density models devel-
oped by Sheeley et al. [2001]. Both of these studies used the
CRRES plasma wave receiver density database that this
study utilizes. These regions will be referred to as plumes
for simplicity even though in situ observations cannot
determine if the high-density regions beyond the inner
plasmasphere are detached (blobs) or connected (plumes).

2. Methodology
2.1. Instrumentation and Description of Data

[6] This study used plasma density data inferred by the
plasma wave instrument on the CRRES satellite. This data
set spanned 20 August 1990 to 12 October 1991. CRRES
had a geosynchronous transfer orbit (an elliptical orbit with
a perigee of 1.05 Ry and an apogee of 6.26 R with respect
to the center of the Earth), with an inclination of 18.15°.
Because of the inclination, CRRES was able to sample L
shells up to 8 on occasion. The apogee of CRRES precessed
from 1000 to 1400 LT through midnight before its failure.

MOLDWIN ET AL.: CRRES OBSERVATIONS OF PLASMASPHERIC PLUMES
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DISTURBANCE

Plume formation modeled with a time-varying convection electric field. From Grebowsky

Because of the upper frequency limit of the instrument the
maximum plasma density that could be measured was
~2000 cm . This limited the usable data to L shells
generally above 2 [e.g., Anderson et al., 1992; Sheeley et
al., 2001]. Because of the early failure of CRRES, not all
local times and all L shells were covered. Most importantly,
the high-L shell dayside outer plasmasphere was not sam-
pled. In addition, significant data gaps exist in the midnight
local time sector.

2.2. Plasmapause Selection

[7] This study used the database of plasmapause locations
identified by Moldwin et al. [2002]. Briefly, that study
identified the innermost steep density gradient in the density
profile as the plasmapause. A factor of 5 drop within halfan L
shell was required. Of the 1328 CRRES inbound and out-
bound orbit trajectories that had data coverage, 969 (73%)
had a plasmapause identified. For this study, the CRRES
plasmapause database is examined in terms of complete
orbits (i.e., CRRES orbits in which there was data coverage
for both the inbound and outbound trajectories). This was
done to clearly identify plasmaspheric-like density regions
“outside” the main plasmasphere. Organized in this way, of
the 1006 total CRRES orbits, 558 had complete data coverage
and at least 1 plasmapause per orbit. This database was used
to quantitatively identify regions of dense plasmaspheric
plasma that were located outside the main plasmapause.

2.3. Plume Interval Selection

[8] The selection of the regions of plasmaspheric-like
plasma beyond the plasmapause was made using the em-
pirical models of Sheeley et al. [2001]. These models, which
are based on the CRRES data set, describe the plasmasphere
and the trough number densities in the region 3 < L < 7 as a
function of L shell and magnetic local time.

[0] In the plasmasphere model the average number den-
sity (in cm™ ") as a function of L shell is given by

np = 1390(3/L)*** + 440(3/L)**, (1)

2 0f 8
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Figure 2. Examples of the plume selection methodology. The thick curve shows the scaled Sheeley et
al. [2001] trough or plasmasphere model used to identify intervals. The vertical lines show the location of
the plasmapause as determined by Moldwin et al. [2002]. Figure 2d shows an example where there was
no clear plasmapause identified. These cases were not included in this survey.

where 1390 cm * is the average number density of the

plasmasphere at L = 3, which falls off at a rate of L~**. The
standard deviation at L = 3 is ~440 cm °, and this falls off
at a rate of L%,

[10] In the trough model the average number density is
given by

n, =124(3/L)*"+ 36(3/L)*° cos({LT - {7.7(3/L)2-°+12} }/12)

+ {78(3/L)‘”2+ 17(3/L)* cos|(LT — 22)/12]}, )

where 124 cm ™ is the average number density of the trough
at L = 3, which falls off at a rate of L~*° The CRRES data
indicate that there is a sinusoidal variation of the trough
density as a function of local time, and this is also included
in equation (2).

[11] In this study, we use L of 3 as a dividing line for
whether to use the plasmasphere or trough model in select-
ing the plasmaspheric intervals located outside the plasma-
pause. If the plasmapause is located earthward of L of 3, we
define plasmaspheric plume intervals to be those whose
density exceeds the trough plus 1o density of the Sheeley et
al. [2001] model. If the plasmapause is located outside of L
of 3, we define plasmaspheric plumes to be those whose
density exceeds the Sheeley et al. plasmaspheric model.
These models are scaled to each orbit to account for the
wide variability in the plasmaspheric density from day to
day. The average density of the two points of each orbit at
L =3 is used as the scaling factor for equations (1) and (2)
(i.e., instead of using 1390 or 124 cm > as the leading term,
the average density at L = 3 observed during the actual orbit
is used). If the orbit had only one clearly identified
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a Local Time vs.L-Shell

Figure 3.

plasmapause (observed during either the outbound or the
inbound portion of the orbit), the scaling factor was the
density at L of 3 on the portion of the orbit where the plas-
mapause was observed.

[12] The criterion used to select a plume was that the
interval’s density had to exceed the model value of the
plasmasphere (or trough plus 1o) density over a minimum
of eight consecutive observations (a duration of ~1 min).
Furthermore, two adjacent plumes were considered to be
separate intervals if they were separated by at least eight
observations in which the trough density fell below the
model plasmasphere density. Figure 2a shows an example
of an orbit with two plasmapause observations, both beyond
L = 3. The model plasmasphere density is indicated by the
thick curve, and the vertical lines show the locations of
the plasmapauses. Figure 2b is an example of an orbit with

MOLDWIN ET AL.: CRRES OBSERVATIONS OF PLASMASPHERIC PLUMES
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(a) Location of density data points within a plume interval as a function of local time and L
shell. (b) Total duration of plume intervals (in minutes) in 0.5 L shell by 1 hour of LT bins. (¢) Total
amount of time CRRES observed trough densities in the same format as Figure 3b. Most trough intervals
were observed on the nightside. (d) Normalized occurrence frequency of the plume intervals normalized
to the total time of trough observations in 0.5 L shell by 1 hour of LT bins. Note the relatively high
occurrence frequency of plumes in the noon-to-dusk sector.

the plasmapauses located earthward of L of 3, while
Figure 2c is an example of an orbit with only one plasma-
pause clearly identified.

[13] The absence of a plasmapause may indicate that
either CRRES remained within the plasmasphere through-
out the entire orbit or no clear sharp density gradient was
observed. These orbits were excluded from our study. An
example of such an orbit is shown in Figure 2d.

3. Results
3.1. Occurrence of Plumes

[14] This study found that 169 of the 558 (30%) complete
orbits with at least one identifiable plasmapause exhibited
plasmaspheric-like plasma density structures beyond the
plasmapause. There were 788 plume intervals during the

4 0of 8
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Figure 4. (a) Distribution of the duration of plasmaspheric

plume intervals as observed by CRRES. Note that most
intervals are <10 min in duration. (b) Median duration (in
minutes) of the plasmaspheric plumes as a function of
local time. Error bars show the upper and lower quartiles.
(c) Median duration (in minutes) of the plasmaspheric
plumes as a function of the maximum Kp in the previous
12 hours. Error bars show the upper and lower quartiles.

169 orbits with high-density structures. On 55 (or 33%) of
the orbits with plumes, plumes appeared in consecutive
orbits, whereas the remaining orbits that contained plumes
did not have a plume observation during the previous or
next orbit.

3.2. Location of Plumes in L Shell and LT

[15] Each density record beyond the innermost plasma-
pause from the CRRES mission was compared with the
appropriately scaled Sheeley et al. [2001] trough or plasma-
sphere model as described in section 2.3. Figure 3a shows
the local time and L shell location of the dense plasma-

MOLDWIN ET AL.: CRRES OBSERVATIONS OF PLASMASPHERIC PLUMES
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spheric plasma intervals selected in this study. Figure 3b
shows the total time that CRRES observed plume intervals
in 0.5 L shell by 1 hour of LT bins in minutes. Figure 3c
shows the total amount of time CRRES observed trough
intervals in the same format as Figure 3b. Figure 3d shows
the normalized (by the amount of time of trough observa-
tions in that bin, i.e., total time outside the main plasma-
pause) occurrence frequency of dense plasmaspheric plasma
beyond the main plasmapause in 0.5 L shell by 1 hour of LT
bins. Note that plasmaspheric plumes can occur at essen-
tially all local times, though they occur most often in the
noon-to-dusk sector.

3.3. Average and Median Duration of Plumes

[16] The distribution of the duration of the plume inter-
vals is shown in Figure 4a. The duration of a plume interval
is determined by the length of time the density exceeded the
model plasmasphere threshold during a single orbit. The
average duration is 15.24 + 32.46 min, with a maximum
duration of 4 hours and 53 min. However, as can be seen in
Figure 4a, most intervals had durations of <10 min. The
Figure 4a inset shows the same data as in the larger
histogram but binned at a finer resolution. This shows that
the median value of duration is 4.1 min. The median
duration of the plumes as a function of local time is
examined in Figure 4b. Most intervals had an average
duration of a4 min, and there is no significant variation
of the mean as a function of local time. Figure 4c examines
the median duration as a function of geomagnetic activity as
indicated by maximum Kp in the previous 12 hours. Note
that there is a statistically significant dependence on geo-
magnetic activity for the duration of each plume event, with
the longer durations for the lowest levels of geomagnetic
activity.

3.4. Average Density

[17] Figure 5a shows the density of each point identified
as part of a plume as a function of L shell. Overlaid on these
data are the model curves from the unscaled Sheeley et al.
[2001] plasmasphere model. Figure Sb examines the differ-
ence in density of each selected plume interval compared
with the model “plasmaspheric-like” density (either the
Sheeley et al. trough plus 1o or the plasmasphere model,
depending on the location of the plasmapause) as a function
of local time. These delta densities show that most plume
intervals are significantly higher than the selection criterion,
particularly in the nightside trough region. An inspection of
the individual events found that most of the density gra-
dients between the plumes and the background trough are
plasmapause-like (see, e.g., Figures 2a, 2b, and 2c¢).

3.5. Occurrence Frequency as a Function of
Geomagnetic Activity

[18] Figure 6a shows the distribution of geomagnetic
activity as indicated by maximum Kp in the previous
12 hours for the plume intervals. Also plotted is the
distribution of Kp maximum in any given 12-hour interval
during the entire CRRES interval (note the different scale
for the two distributions). The two distributions are offset,
with the plume intervals appearing during times of en-
hanced geomagnetic activity. To emphasize this trend,
Figure 6b examines the normalized occurrence frequency
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Figure 5a. Density of the plume intervals as a function of L shell. The unscaled Sheeley et al. [2001]

plasmasphere and +1o curves and the Chappell [1974] density criteria are also shown. Note that the
actual selection criteria used scaled values of these curves as well as the trough model that had a local

time dependency (not shown).

of the plumes as a function of the overall maximum Kp.
Note that plume intervals are observed over 50% of the time
when Kp is high. Figure 7 shows the minimum Ds? in the
previous 24 hours for the plume intervals. A majority of the
plume intervals occur when Dst does not go below —50 nT,
though the most probable minimum Ds? is between —25 and
—50 nT, indicating possible dependence on weak geomag-
netic storms.

[19] Plumes occur during periods of moderate to disturbed
intervals but often persist well into the recovery phase. A
storm (as indicated by Dst < —50 nT) is not needed to create a
plume, but enhanced convection (as indicated by Kp > 3)
does seem to be sufficient to generate plumes.

[20] Figure 8 shows three consecutive inbound orbits of
CRRES following a storm on 9 September 1991. A storm
sudden commencement (SSC) occurred between the plas-
mapause crossings observed on orbits 990 and 991. Note
prior to the SSC (orbit 990) the absence of plasmaspheric
plumes, while during orbits 991 and 992, dense plasma-
spheric plumes appear at high L beyond the plasmapause.
These three orbits are separated in time by ~10 hours (the
CRRES orbital period). The SSC occurs at the very end of
orbit 990 and =7 hours before the beginning of the
outbound leg of orbit 991. Therefore the structure appeared
in this example within 7 hours after the SSC and persisted
through orbit 993 (not shown), nearly 24 hours after the first
appearance of the plume. The local time location of apogee
from orbit to orbit changes by <15 min; therefore the orbit-
to-orbit changes observed are due to plasmapause and
plume structure evolution, not motion through a different

local time sector. It should be noted that this example shows
that the innermost plasmapause moves outward in response
to the storm. This is opposite to the classic plasmapause
motion picture. However, this example is in the dusk sector
following a storm, and Moldwin et al. [2003] found that
plasmapause motion in response to storms is highly local
time-dependent. The dusk sector shows highly variable
plasmapause motion, including both radial inward and
outward motion. Only in the nightside and dawn sectors

e e S
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Figure Sb. Difference in density of the plasmaspheric
plume compared with the appropriate Sheeley et al. [2001]
plasmasphere or trough model as a function of local time.
Error bars are the normalized standard deviation (o/y/n).
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of plumes versus the distribution of geomagnetic activity as
indicated by maximum Kp in the previous 12 hours for the
entire CRRES mission. Note the different scale for the two
different distributions. (b) Normalized occurrence of plume
intervals as a function of maximum Kp during the previous
12 hours.
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value given on the axis (i.e., the first bin on the left contains
all plume intervals that had a minimum Dst¢ of 0 nT or
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maspheric plasma that extends beyond the main plasma-
sphere. This plasma most often appears in the noon-to-dusk
sector in the aftermath of enhanced geomagnetic activity,
but density structure is observed at other local times as well.
This finding is in contrast to the study of Chappell [1974]
that examined OGO 5 data and found an absence of dense
plasmaspheric plasma beyond the plasmapause in the mid-
night-to-dawn sector.

[22] An examination of our data set using the Chappell
[1974] selection criteria of having the density exceed a level
of 100 cm > at an L of 4 falling off as L~ found that 86%
of our data points meet this criterioa. (The Chappell density
criterion model curve is shown in Figure 5a.) The 14% of
the points in our study that did not exceed the Chappell
[1974] criteria were distributed in local time similarly to the
overall population. The OGO 5 measurements were made
using a light ion mass spectrometer, and the H' density was
examined by Chappell [1974]. The CRRES data set is from
the plasma wave receiver’s measurement of either the
electron plasma frequency (f,.) or the upper hybrid reso-
nance frequency (fupr = \/fpe + fee, Where f.. is the electron
cyclotron frequency), which yields the total electron number
density independent of spacecraft potential. We suggest that
the difference in our results is due to incomplete counting of
the total electron density of OGO 5’s mass spectrometer
results due to spacecraft potential effects in the low-density
nightside trough and/or the presence of heavy ions.

[23] Observations from IMAGE EUV and the Radio
Plasma Imager show that plumes have extensive longitudi-
nal extent [Garcia et al., 2003]. As Figure 8 shows, plumes
can be long-lived, with dense plasma being observed over
several 10-hour orbits (with the assumption that the plume
intervals observed from orbit to orbit are the same plume
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structures). We find that plumes can appear quickly in the
aftermath of enhanced activity and persist for over a day.
The rapidity of the formation of the plume is consistent
with the =1-hour response time of the motion of the
location of the plasmapause following an SSC. This was
found in a superposed epoch study of CRRES plasmapause
dynamics [Moldwin et al., 2003].

5. Conclusions

[24] We found that plasmaspheric plumes are a common
feature of the inner magnetosphere and tend to appear in the
aftermath of enhanced geomagnetic activity. The density of
the plumes is such that they have plasmaspheric-like density
gradients between the surrounding trough.

[25] Though in situ observations cannot uniquely discrim-
inate between plumes and detached blobs, most of the
observations are consistent with the plume formation model.
This model predicts that most observations should be in the
noon-to-dusk sector in the aftermath of enhanced geomag-
netic activity. Observations in the midnight and dawn sides
are not clearly explained by this model, though some
modeling studies [Ober et al., 1997] suggest that plumes
can corotate to the nightside. In addition, recent IMAGE
EUV observations [Spasojevic et al., 2003] have shown tails
or plumes wrapping around midnight during the recovery
phase of a storm. Since ring current loss through direct
Coloumb interaction and the enhancement of wave scatter-
ing is important for understanding storm development and
ring current modeling, this study suggests that models need
to incorporate the presence of plasmaspheric plumes in
order to properly understand the inner magnetosphere.
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