35 research outputs found

    Stress-induced TRAILR2 expression overcomes TRAIL resistance in cancer cell spheroids

    Get PDF
    The influence of 3D microenvironments on apoptosis susceptibility remains poorly understood. Here, we studied the susceptibility of cancer cell spheroids, grown to the size of micrometastases, to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Interestingly, pronounced, spatially coordinated response heterogeneities manifest within spheroidal microenvironments: In spheroids grown from genetically identical cells, TRAIL-resistant subpopulations enclose, and protect TRAIL-hypersensitive cells, thereby increasing overall treatment resistance. TRAIL-resistant layers form at the interface of proliferating and quiescent cells and lack both TRAILR1 and TRAILR2 protein expression. In contrast, oxygen, and nutrient deprivation promote high amounts of TRAILR2 expression in TRAIL-hypersensitive cells in inner spheroid layers. COX-II inhibitor celecoxib further enhanced TRAILR2 expression in spheroids, likely resulting from increased ER stress, and thereby re-sensitized TRAIL-resistant cell layers to treatment. Our analyses explain how TRAIL response heterogeneities manifest within well-defined multicellular environments, and how spatial barriers of TRAIL resistance can be minimized and eliminated

    Erratum: Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Interpretation: By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning

    Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk–outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk–outcome pairs, and new data on risk exposure levels and risk–outcome associations. Methods We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk–outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017. Findings In 2017, 34·1 million (95% uncertainty interval [UI] 33·3–35·0) deaths and 1·21 billion (1·14–1·28) DALYs were attributable to GBD risk factors. Globally, 61·0% (59·6–62·4) of deaths and 48·3% (46·3–50·2) of DALYs were attributed to the GBD 2017 risk factors. When ranked by risk-attributable DALYs, high systolic blood pressure (SBP) was the leading risk factor, accounting for 10·4 million (9·39–11·5) deaths and 218 million (198–237) DALYs, followed by smoking (7·10 million [6·83–7·37] deaths and 182 million [173–193] DALYs), high fasting plasma glucose (6·53 million [5·23–8·23] deaths and 171 million [144–201] DALYs), high body-mass index (BMI; 4·72 million [2·99–6·70] deaths and 148 million [98·6–202] DALYs), and short gestation for birthweight (1·43 million [1·36–1·51] deaths and 139 million [131–147] DALYs). In total, risk-attributable DALYs declined by 4·9% (3·3–6·5) between 2007 and 2017. In the absence of demographic changes (ie, population growth and ageing), changes in risk exposure and risk-deleted DALYs would have led to a 23·5% decline in DALYs during that period. Conversely, in the absence of changes in risk exposure and risk-deleted DALYs, demographic changes would have led to an 18·6% increase in DALYs during that period. The ratios of observed risk exposure levels to exposure levels expected based on SDI (O/E ratios) increased globally for unsafe drinking water and household air pollution between 1990 and 2017. This result suggests that development is occurring more rapidly than are changes in the underlying risk structure in a population. Conversely, nearly universal declines in O/E ratios for smoking and alcohol use indicate that, for a given SDI, exposure to these risks is declining. In 2017, the leading Level 4 risk factor for age-standardised DALY rates was high SBP in four super-regions: central Europe, eastern Europe, and central Asia; north Africa and Middle East; south Asia; and southeast Asia, east Asia, and Oceania. The leading risk factor in the high-income super-region was smoking, in Latin America and Caribbean was high BMI, and in sub-Saharan Africa was unsafe sex. O/E ratios for unsafe sex in sub-Saharan Africa were notably high, and those for alcohol use in north Africa and the Middle East were notably low. Interpretation By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Forouzanfar MH, Afshin A, Alexander LT, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. LANCET. 2016;388(10053):1659-1724.Background The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors-the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57.8% (95% CI 56.6-58.8) of global deaths and 41.2% (39.8-42.8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211.8 million [192.7 million to 231.1 million] global DALYs), smoking (148.6 million [134.2 million to 163.1 million]), high fasting plasma glucose (143.1 million [125.1 million to 163.5 million]), high BMI (120.1 million [83.8 million to 158.4 million]), childhood undernutrition (113.3 million [103.9 million to 123.4 million]), ambient particulate matter (103.1 million [90.8 million to 115.1 million]), high total cholesterol (88.7 million [74.6 million to 105.7 million]), household air pollution (85.6 million [66.7 million to 106.1 million]), alcohol use (85.0 million [77.2 million to 93.0 million]), and diets high in sodium (83.0 million [49.3 million to 127.5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Copyright (C) The Author(s). Published by Elsevier Ltd

    Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.

    Get PDF
    BACKGROUND: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk-outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk-outcome pairs, and new data on risk exposure levels and risk-outcome associations. METHODS: We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk-outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017

    Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Stanaway JD, Afshin A, Gakidou E, et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1923-1994.Background The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk outcome pairs, and new data on risk exposure levels and risk outcome associations. Methods We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017. Findings In 2017,34.1 million (95% uncertainty interval [UI] 33.3-35.0) deaths and 121 billion (144-1.28) DALYs were attributable to GBD risk factors. Globally, 61.0% (59.6-62.4) of deaths and 48.3% (46.3-50.2) of DALYs were attributed to the GBD 2017 risk factors. When ranked by risk-attributable DALYs, high systolic blood pressure (SBP) was the leading risk factor, accounting for 10.4 million (9.39-11.5) deaths and 218 million (198-237) DALYs, followed by smoking (7.10 million [6.83-7.37] deaths and 182 million [173-193] DALYs), high fasting plasma glucose (6.53 million [5.23-8.23] deaths and 171 million [144-201] DALYs), high body-mass index (BMI; 4.72 million [2.99-6.70] deaths and 148 million [98.6-202] DALYs), and short gestation for birthweight (1.43 million [1.36-1.51] deaths and 139 million [131-147] DALYs). In total, risk-attributable DALYs declined by 4.9% (3.3-6.5) between 2007 and 2017. In the absence of demographic changes (ie, population growth and ageing), changes in risk exposure and risk-deleted DALYs would have led to a 23.5% decline in DALYs during that period. Conversely, in the absence of changes in risk exposure and risk-deleted DALYs, demographic changes would have led to an 18.6% increase in DALYs during that period. The ratios of observed risk exposure levels to exposure levels expected based on SDI (O/E ratios) increased globally for unsafe drinking water and household air pollution between 1990 and 2017. This result suggests that development is occurring more rapidly than are changes in the underlying risk structure in a population. Conversely, nearly universal declines in O/E ratios for smoking and alcohol use indicate that, for a given SDI, exposure to these risks is declining. In 2017, the leading Level 4 risk factor for age-standardised DALY rates was high SBP in four super-regions: central Europe, eastern Europe, and central Asia; north Africa and Middle East; south Asia; and southeast Asia, east Asia, and Oceania. The leading risk factor in the high-income super-region was smoking, in Latin America and Caribbean was high BMI, and in sub-Saharan Africa was unsafe sex. O/E ratios for unsafe sex in sub-Saharan Africa were notably high, and those for alcohol use in north Africa and the Middle East were notably low. Interpretation By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning. Copyright (C) 2018 The Author(s). Published by Elsevier Ltd

    Biochemical and molecular biological investigation on metabolization of ammonium and glutamine in Corynebacterium glutamicum

    No full text
    Corynebacterium glutamicum kann eine Vielzahl von Stickstoffquellen nutzen, darunter Ammonium und Glutamin. Die Assimilation dieser Stickstoffquellen wurde in dieser Arbeit durch die Charakterisierung verschiedener Deletionsmutanten untersucht. Mit Ammonium, der bevorzugten Stickstoffquelle von C. glutamicum, erhielt die Glutamatdehydrogenase (GDH) eine hohe Glutamatkonzentration aufrecht und garantierte ein schnelles Wachstum des Bakteriums. Durch Deletion des für die GDH kodierenden gdh-Gens wurde eine Stickstoffmangelantwort ausgelöst, wie es auch schon früher gezeigt wurde, und der Glutamatpool sank. Die Glutamatsynthase (GOGAT), die unter diesen Bedingungen synthetisiert wurde, übernahm in Abwesenheit der GDH zum Teil die Glutamatbildung. Waren weder GDH noch GOGAT vorhanden, so konnte auch ein Einfluss der Glutaminase auf den Glutamatpool beobachtet werden. Die Assimilation von Glutamin als Stickstoffquelle führte in allen Stämmen zu einer Stickstoffmangelantwort, was die Expression des für die GOGAT kodierenden gltBD-Operons auslöste. Die GOGAT war dabei gleichzeitig für ein schnelles Wachstum und die Aufrechterhaltung einer hohen Glutamatkonzentration verantwortlich. Die Deletion des gltBD-Operons führte zu einer starken Reduktion des Glutamatpools, und die Glutamatbildung wurde zum Teil durch die Glutaminase und wahrscheinlich auch durch die GDH übernommen. In Abwesenheit der GDH und der GOGAT war außerdem die Glutamin-abhängige Amidotransferase LtsA an der Glutamatsynthese mit Glutamin als Stickstoffquelle beteiligt. Insgesamt wurde festgestellt, dass C. glutamicum in der Lage ist, unabhängig von der eingesetzten Stickstoffquelle, in Abwesenheit entscheidend an der Glutamatbildung beteiligter Enzyme eine bestimmte Glutamatkonzentration durch verschiedene Regulationsmechanismen aufrechtzuerhalten. Dabei zeigte sich auch, dass ein hoher Glutamatpool für ein schnelles Wachstum von C. glutamicum sehr wichtig ist. Weiterhin konnte in dieser Arbeit gezeigt werden, dass Glutamin von C. glutamicum auch als Kohlenstoffquelle genutzt werden kann, wobei es eine im Vergleich zu Glukose schlechte Kohlenstoff- und Energiequelle darstellt. An der Verstoffwechselung ist die Glutaminase entscheidend beteiligt, wie durch Wachstumsanalysen und Messung der intrazellulären Glutamat- und Glutaminkonzentrationen gezeigt wurde. Bisher wurde der Indikator des Stickstoffstatus in C. glutamicum nicht eindeutig identifiziert. In dieser Arbeit wurde festgestellt, dass eine durch das Wachstum mit Glutamin, Glutamat oder Kreatinin als Stickstoffquelle ausgelöste Stickstoffmangelantwort durch einen Ammoniumpuls innerhalb weniger Minuten unterdrückt wird. Dadurch konnte die Vermutung, dass u.a. Ammonium den Stickstoffstatus der Zelle signalisiert, weiter bekräftigt werden. Da die Kultivierung mit Harnstoff zu einer Repression Stickstoff-regulierter Gene führte, wird vermutlich die intrazelluläre Ammoniumkonzentration wahrgenommen. Glutamat und Glutamin konnten als mögliche Indikatoren ausgeschlossen werden. In einem letzten Teil der Arbeit wurde die Stellung der Glutaminsynthetase (GS) und die der GS-Aktivität regulierenden Adenylyltransferase GlnE in der Stickstoffkontrolle untersucht. Zu Beginn der Arbeit gab es Hinweise, dass Deletionen der Gene glnA und glnE, die für die GS bzw. GlnE kodieren, schon unter guter Stickstoffversorgung zu einer Stickstoffmangelantwort führen, was in dieser Arbeit bestätigt wurde. Proteininteraktionsexperimente anhand von Pulldown-Analysen mit gereinigter GS und C. glutamicum-Zellextrakt bzw. mit gereinigtem GlnE und C. glutamicum-Zellextrakt konnten eine Interaktion von GS und GlnE bestätigen. Eine mögliche Interaktion des PII-Signaltransduktionsproteins GlnK mit der GS oder mit GlnE konnte nicht nachgewiesen werden.Corynebacterium glutamicum is able to use a variety of nitrogen sources including ammonium and glutamine. The assimilation of these nitrogen sources was investigated in this study by characterization of different deletion mutants. When ammonium, the preferred nitrogen source, was used, the glutamate dehydrogenase (GDH) was supporting fast growth and maintaining a high glutamate concentration. Deletion of the gdh gene encoding GDH led to the induction of the nitrogen starvation response, as it has also been shown recently, and internal glutamate decreased significantly. Glutamate synthase (GOGAT), which was synthesized under these conditions, took over glutamate formation. The absence of both, GDH and GOGAT, led to an influence of the glutaminase on glutamate formation. Assimilation of glutamine as nitrogen source resulted in the induction of the nitrogen starvation response in all strains, leading to the synthesis of the GOGAT, which was critical for fast growth and a high glutamate concentration. When the gltBD operon encoding GOGAT was deleted, a dramatic drop of the glutamate pool was detected and the intracellular glutamate concentration could only partially be maintained by glutaminase and most likely also by GDH. In the abscence of GOGAT and GDH, the glutamine-dependent amidotransferase LtsA was involved in glutamate synthesis with glutamine as nitrogen source. Altogether, it was shown that the cell is able to maintain a certain glutamate pool in the abscence of enzymes that are crucially involved in glutamate formation by means of different regulatory mechanisms, independent of the nitrogen source used. Moreover, it emerged that a high glutamate pool is important to support fast growth of C. glutamicum. Further work focused on the use of glutamine as carbon source in C. glutamicum. It was shown that glutamine is an extremely poor carbon and energy source in comparison to glucose. The glutaminase is critical for metabolizing glutamine as carbon source as it was stated by growth analyses as well as by determination of intracellular glutamate and glutamine pools. Until now, the indicator of the nitrogen status in C. glutamicum has not definitely been identified. In this study, it was shown that induced transcription of nitrogen-controlled genes by growth with either glutamine, glutamate or creatinine as nitrogen source was suppressed only within a few minutes upon addition of ammonium to the cultures. These results further supported the hypothesis that amongst others ammonium represents the nitrogen status of the cell. Since cultivation with urea as nitrogen source did not lead to the expression of nitrogen-controlled genes, rather internal than external ammonium seems to be sensed. Glutamate and glutamine could be excluded as possible indicators of nitrogen starvation within this work. The last part of this study dealt with the investigation of the role of the glutamine synthetase (GS) and the GS activity regulating adenylyltransferase GlnE within the nitrogen control scheme. Indications that deletion of the GS encoding glnA gene as well as of the GlnE encoding glnE gene result in the induction of the nitrogen starvation response even under good nitrogen supply could be confirmed within this work. Protein interaction studies by means of pulldown assays using either purified GS and C. glutamicum cell extract or purified GlnE and C. glutamicum cell extract confirmed the interaction of GS and GlnE. A possible interaction of the PII type signal transduction protein GlnK with either GS or GlnE could not be detected

    Destabilized eYFP variants for dynamic gene expression studies in Corynebacterium glutamicum

    Get PDF
    Fluorescent reporter proteins are widely used for the non-invasive monitoring of gene expression patterns, but dynamic measurements are hampered by the extremely high stability of GFP and homologue proteins. In this study, we used SsrA-mediated peptide tagging for the construction of unstable variants of the GFP derivative eYFP (enhanced yellow fluorescent protein) and applied those for transient gene expression analysis in the industrial platform organism Corynebacterium glutamicum

    Prevalence and characteristics of substance use among Chinese and South Asians in Canada

    No full text
    This study examines Canadian Alcohol and Drug Use Monitoring Survey data to assess substance use prevalence among Chinese (n = 254), South Asians (n = 245), and Caucasians (n = 14,943). South Asians and Chinese reported less current drinking than Caucasians, and South Asians reported less current drinking than Chinese. South Asians and Chinese reported less cannabis use and any illicit drug use than Caucasians. Compared to Caucasians, Chinese reported less cigarette smoking and South Asians reported less use of any pain relievers. Additional research focusing on immigration and acculturation is warranted to further explore substance use patterns of South Asian and Chinese populations in Canada.Non UBCUnreviewedFacultyResearcherPostdoctora

    Sample-based modeling reveals bidirectional interplay between cell cycle progression and extrinsic apoptosis.

    No full text
    Apoptotic cell death can be initiated through the extrinsic and intrinsic signaling pathways. While cell cycle progression promotes the responsiveness to intrinsic apoptosis induced by genotoxic stress or spindle poisons, this has not yet been studied conclusively for extrinsic apoptosis. Here, we combined fluorescence-based time-lapse monitoring of cell cycle progression and cell death execution by long-term time-lapse microscopy with sampling-based mathematical modeling to study cell cycle dependency of TRAIL-induced extrinsic apoptosis in NCI-H460/geminin cells. In particular, we investigated the interaction of cell death timing and progression of cell cycle states. We not only found that TRAIL prolongs cycle progression, but in reverse also that cell cycle progression affects the kinetics of TRAIL-induced apoptosis: Cells exposed to TRAIL in G1 died significantly faster than cells stimulated in S/G2/M. The connection between cell cycle state and apoptosis progression was captured by developing a mathematical model, for which parameter estimation revealed that apoptosis progression decelerates in the second half of the cell cycle. Similar results were also obtained when studying HCT-116 cells. Our results therefore reject the null hypothesis of independence between cell cycle progression and extrinsic apoptosis and, supported by simulations and experiments of synchronized cell populations, suggest that unwanted escape from TRAIL-induced apoptosis can be reduced by enriching the fraction of cells in G1 phase. Besides novel insight into the interrelation of cell cycle progression and extrinsic apoptosis signaling kinetics, our findings are therefore also relevant for optimizing future TRAIL-based treatment strategies
    corecore