2,027 research outputs found

    Importância da colaboração entre a escola e a família: um estudo qualitativo La importancia de la colaboración entre la escuela y la familia: un estudio cualitativo Importance of school-family collaboration: a qualitative study

    Get PDF
    Objetivou-se neste trabalho de investigação de caráter qualitativo, concretizado empiricamente através de seis entrevistas semiestruturadas a encarregados de educação, compreender o nível de participação na escola e a perceção dos pais, quer sobre a influência da sua participação para o sucesso dos filhos, quer sobre os obstáculos a esta mesma participação. Os resultados deste estudo indicam que os encarregados de educação valorizam a participação dos pais no desenvolvimento académico, emocional e comportamental dos alunos. É muito importante que os agentes educativos criem estratégias para que essa participação seja efetiva e habitua

    Universal amplitude ratios from numerical studies of the three-dimensional O(2) model

    Full text link
    We investigate the three-dimensional O(2) model near the critical point by Monte Carlo simulations and calculate the major universal amplitude ratios of the model. The ratio U_0=A+/A- is determined directly from the specific heat data at zero magnetic field. The data do not, however, allow to extract an accurate estimate for alpha. Instead, we establish a strong correlation of U_0 with the value of alpha used in the fit. This numerical alpha-dependence is given by A+/A- = 1 -4.20(5) alpha + O(alpha^2). For the special alpha-values used in other calculations we find full agreement with the corresponding ratio values, e. g. that of the shuttle experiment with liquid helium. On the critical isochore we obtain the ratio xi+/xi-_T=0.293(9), and on the critical line the ratio xi_T^c/xi_L^c=1.957(10) for the amplitudes of the transverse and longitudinal correlation lengths. These two ratios are independent of the used alpha or nu-values.Comment: 34 pages, 19 Ps-figures, Latex2e, revised version, to be published in J. Phys.

    Critical structure factors of bilinear fields in O(N)-vector models

    Full text link
    We compute the two-point correlation functions of general quadratic operators in the high-temperature phase of the three-dimensional O(N) vector model by using field-theoretical methods. In particular, we study the small- and large-momentum behavior of the corresponding scaling functions, and give general interpolation formulae based on a dispersive approach. Moreover, we determine the crossover exponent ϕT\phi_T associated with the traceless tensorial quadratic field, by computing and analyzing its six-loop perturbative expansion in fixed dimension. We find: ϕT=1.184(12)\phi_T=1.184(12), ϕT=1.271(21)\phi_T=1.271(21), and ϕT=1.40(4)\phi_T=1.40(4) for N=2,3,5N=2,3,5 respectively.Comment: 27 page

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    A search for the dimuon decay of the Standard Model Higgs boson with the ATLAS detector

    Get PDF
    A search for the dimuon decay of the Standard Model (SM) Higgs boson is performed using data corresponding to an integrated luminosity of 139 fb(-1) collected with the ATLAS detector in Run 2 pp collisions at root s = 13 TeV at the Large Hadron Collider. The observed (expected) significance over the background-only hypothesis for a Higgs boson with a mass of 125.09 GeV is 2.0 sigma (1.7 sigma). The observed upper limit on the cross section times branching ratio for pp -> H -> mu mu is 2.2 times the SM prediction at 95% confidence level, while the expected limit on a H -> mu mu signal assuming the absence (presence) of a SM signal is 1.1(2.0). The best-fit value of the signal strength parameter, defined as the ratio of the observed signal yield to the one expected in the SM, is mu = 1.2 +/- 0.6. (C) 2020 The Author(s). Published by Elsevier B.V

    The ATLAS fast tracKer system

    Get PDF
    The ATLAS Fast TracKer (FTK) was designed to provide full tracking for the ATLAS high-level trigger by using pattern recognition based on Associative Memory (AM) chips and fitting in high-speed field programmable gate arrays. The tracks found by the FTK are based on inputs from all modules of the pixel and silicon microstrip trackers. The as-built FTK system and components are described, as is the online software used to control them while running in the ATLAS data acquisition system. Also described is the simulation of the FTK hardware and the optimization of the AM pattern banks. An optimization for long-lived particles with large impact parameter values is included. A test of the FTK system with the data playback facility that allowed the FTK to be commissioned during the shutdown between Run 2 and Run 3 of the LHC is reported. The resulting tracks from part of the FTK system covering a limited η-ϕ region of the detector are compared with the output from the FTK simulation. It is shown that FTK performance is in good agreement with the simulation. © The ATLAS collaboratio

    Measurement of hadronic event shapes in high-p T multijet final states at √s = 13 TeV with the ATLAS detector

    Get PDF
    A measurement of event-shape variables in proton-proton collisions at large momentum transfer is presented using data collected at s = 13 TeV with the ATLAS detector at the Large Hadron Collider. Six event-shape variables calculated using hadronic jets are studied in inclusive multijet events using data corresponding to an integrated luminosity of 139 fb−1. Measurements are performed in bins of jet multiplicity and in different ranges of the scalar sum of the transverse momenta of the two leading jets, reaching scales beyond 2 TeV. These measurements are compared with predictions from Monte Carlo event generators containing leading-order or next-to-leading order matrix elements matched to parton showers simulated to leading-logarithm accuracy. At low jet multiplicities, shape discrepancies between the measurements and the Monte Carlo predictions are observed. At high jet multiplicities, the shapes are better described but discrepancies in the normalisation are observed. [Figure not available: see fulltext.

    Searches for lepton-flavour-violating decays of the Higgs boson into eτ and μτ in \sqrt{s} = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    Abstract This paper presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and H → μτ, performed using data collected with the ATLAS detector at the LHC. The searches are based on a data sample of proton-proton collisions at a centre-of-mass energy s s \sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb−1. Leptonic (τ → ℓνℓντ) and hadronic (τ → hadrons ντ) decays of the τ-lepton are considered. Two background estimation techniques are employed: the MC-template method, based on data-corrected simulation samples, and the Symmetry method, based on exploiting the symmetry between electrons and muons in the Standard Model backgrounds. No significant excess of events is observed and the results are interpreted as upper limits on lepton-flavour-violating branching ratios of the Higgs boson. The observed (expected) upper limits set on the branching ratios at 95% confidence level, B B \mathcal{B} (H → eτ) < 0.20% (0.12%) and B B \mathcal{B} (H → μτ ) < 0.18% (0.09%), are obtained with the MC-template method from a simultaneous measurement of potential H → eτ and H → μτ signals. The best-fit branching ratio difference, B B \mathcal{B} (H → μτ) → B B \mathcal{B} (H → eτ), measured with the Symmetry method in the channel where the τ-lepton decays to leptons, is (0.25 ± 0.10)%, compatible with a value of zero within 2.5σ

    Alignment of the ATLAS Inner Detector in Run 2

    Get PDF
    The performance of the ATLAS Inner Detector alignment has been studied using pp collision data at v s = 13 TeV collected by the ATLAS experiment during Run 2 (2015-2018) of the Large Hadron Collider (LHC). The goal of the detector alignment is to determine the detector geometry as accurately as possible and correct for time-dependent movements. The Inner Detector alignment is based on the minimization of track-hit residuals in a sequence of hierarchical levels, from global mechanical assembly structures to local sensors. Subsequent levels have increasing numbers of degrees of freedom; in total there are almost 750,000. The alignment determines detector geometry on both short and long timescales, where short timescales describe movementswithin anLHCfill. The performance and possible track parameter biases originating from systematic detector deformations are evaluated. Momentum biases are studied using resonances decaying to muons or to electrons. The residual sagitta bias and momentum scale bias after alignment are reduced to less than similar to 0.1 TeV-1 and 0.9 x 10(-3), respectively. Impact parameter biases are also evaluated using tracks within jets
    corecore