44 research outputs found

    Skyline Tensile Forces in Cable Logging: Field Observations vs. Software Calculations

    Get PDF
    Skyline tensile forces have been shown to frequently exceed the recommended safety limits during ordinary cable logging operations. Several models for skyline engineering analyses have been proposed. Although skyline tensile forces assume a dynamic behaviour, practical solutions are based on a static approach without consideration of the dynamic nature of the cable systems. The aim of this study was to compare field data of skyline tensile forces with the static calculations derived by dedicated available software such as SkylineXL. To overcome the limitation of static calculation, this work also aimed to simulate the actual response of the tensile fluctuations measured in the real environment by mean of a finite element model (FEM). Field observations of skyline tensile forces included 103 work cycles, recorded over four different cable lines in standing skyline configuration. Payload estimations, carriages positions, and time study of the logging operations were also collected in the field. The ground profiles and the cable line geometries were analysed using digital elevation models. The field data were then used to simulate the work cycles in SkylineXL. The dynamic response of six fully-suspended loads in a single-span cable line was also simulated by a dedicated FEM built through ANSYS ®. The observed data and the software calculations were then compared. SkylineXL resulted particularly reliable in the prediction of the actual tensile forces, with RMSE ranging between 7.5 and 13.5 KN, linked to an average CV(RMSE) of 7.24%. The reliability in predicting the peak tensile forces was lower, reporting CV(RMSE) of 10.12%, but still not likely resulting in a safety or performance problem. If properly set-up and used, thus, SkylineXL could be considered appropriate for operational and practical purposes. This work, however, showed that finite element models could be successfully used for detailed analysis and simulation of the skyline tensile forces, including the dynamic oscillations due to the motion of the carriage and payload along the cable line. Further developments of this technique could also lead to the physical simulation and analysis of the log-to-ground interaction and the investigation of the breakout force during lateral skidding

    The stellar and sub-stellar IMF of simple and composite populations

    Full text link
    The current knowledge on the stellar IMF is documented. It appears to become top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing metallicity and in increasingly massive early-type galaxies. It declines quite steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars having their own IMF. The most massive star of mass mmax formed in an embedded cluster with stellar mass Mecl correlates strongly with Mecl being a result of gravitation-driven but resource-limited growth and fragmentation induced starvation. There is no convincing evidence whatsoever that massive stars do form in isolation. Various methods of discretising a stellar population are introduced: optimal sampling leads to a mass distribution that perfectly represents the exact form of the desired IMF and the mmax-to-Mecl relation, while random sampling results in statistical variations of the shape of the IMF. The observed mmax-to-Mecl correlation and the small spread of IMF power-law indices together suggest that optimally sampling the IMF may be the more realistic description of star formation than random sampling from a universal IMF with a constant upper mass limit. Composite populations on galaxy scales, which are formed from many pc scale star formation events, need to be described by the integrated galactic IMF. This IGIMF varies systematically from top-light to top-heavy in dependence of galaxy type and star formation rate, with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and Galactic Structure, Vol.5, Springer. This revised version is consistent with the published version and includes additional references and minor additions to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Alignment of the CMS tracker with LHC and cosmic ray data

    Get PDF
    © CERN 2014 for the benefit of the CMS collaboration, published under the terms of the Creative Commons Attribution 3.0 License by IOP Publishing Ltd and Sissa Medialab srl. Any further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation and DOI.The central component of the CMS detector is the largest silicon tracker ever built. The precise alignment of this complex device is a formidable challenge, and only achievable with a significant extension of the technologies routinely used for tracking detectors in the past. This article describes the full-scale alignment procedure as it is used during LHC operations. Among the specific features of the method are the simultaneous determination of up to 200 000 alignment parameters with tracks, the measurement of individual sensor curvature parameters, the control of systematic misalignment effects, and the implementation of the whole procedure in a multi-processor environment for high execution speed. Overall, the achieved statistical accuracy on the module alignment is found to be significantly better than 10μm

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF

    Energy efficiency of a hybrid cable yarding system: A case study in the North-Eastern Italian Alps under real working conditions

    Get PDF
    In order to reduce greenhouse gas emissions, low emission or zero-emission technologies have been applied to light and heavy-duty vehicles by adopting electric propulsion systems and battery energy storage. Hybrid cable yarders and electrical slack-pulling carriages could represent an opportunity to increase the energy efficiency of forestry operations leading to lower impact timber harvesting and economic savings thanks to reduced fuel consumption. However, given the limited experience with hybrid-electric systems applied to cable yarding operations, these assumptions remain uncertain. This study assessed an uphill cable yarding operation using a hybrid cable yarder and an active slack-pulling electric power carriage over thirty working days. A total of 915 work cycles on four different cable lines were analysed. Longterm monitoring using Can-BUS data and direct field observations were used to evaluate the total energy efficiency, total energy efficiency (%), and fuel consumption per unit of timber extracted (L/m(3)). The use of the electric-hybrid system with a 700 V supercapacitor to store the recovered energy made it possible to reduce the running time of the engine by about 38% of the total working time. However, only 35% to 41% of the Diesel-based mechanical energy was consumed by the mainline and haulback winches. Indeed, the remaining energy was consumed by the other winches of the cable line system (skyline, strawline winches and carriage recharging or breaking during outhaul) or dissipated by the system (e.g., by the haulback blocks). With reference to all work cycles, the highest net energy consumption occurred during the inhaulunload work element with a maximum of 1.15 kWh, consuming 70% of total net energy consumption to complete a work cycle. In contrast, lower energy consumption was recorded for lateral skid and outhaul, recording a maximum of 23% and 32% of the total net energy consumption, respectively. The estimated recovered energy, on average between the four cable lines, was 2.56 kWh. Therefore, the reduced fuel need was assessed to be approximately 730 L of fuel in the 212.5 PMH15 of observation, for a total emissions reduction of 1907 kg CO2 eq, 2.08 kg CO2 eq for each work cycle
    corecore