52 research outputs found
MicroRNA expression profiling to identify and validate reference genes for relative quantification in colorectal cancer
<p>Abstract</p> <p>Background</p> <p>Advances in high-throughput technologies and bioinformatics have transformed gene expression profiling methodologies. The results of microarray experiments are often validated using reverse transcription quantitative PCR (RT-qPCR), which is the most sensitive and reproducible method to quantify gene expression. Appropriate normalisation of RT-qPCR data using stably expressed reference genes is critical to ensure accurate and reliable results. Mi(cro)RNA expression profiles have been shown to be more accurate in disease classification than mRNA expression profiles. However, few reports detailed a robust identification and validation strategy for suitable reference genes for normalisation in miRNA RT-qPCR studies.</p> <p>Methods</p> <p>We adopt and report a systematic approach to identify the most stable reference genes for miRNA expression studies by RT-qPCR in colorectal cancer (CRC). High-throughput miRNA profiling was performed on ten pairs of CRC and normal tissues. By using the mean expression value of all expressed miRNAs, we identified the most stable candidate reference genes for subsequent validation. As such the stability of a panel of miRNAs was examined on 35 tumour and 39 normal tissues. The effects of normalisers on the relative quantity of established oncogenic (<it>miR-21 </it>and <it>miR-31</it>) and tumour suppressor (<it>miR-143 </it>and <it>miR-145</it>) target miRNAs were assessed.</p> <p>Results</p> <p>In the array experiment, <it>miR-26a</it>, <it>miR-345</it>, <it>miR-425 </it>and <it>miR-454 </it>were identified as having expression profiles closest to the global mean. From a panel of six miRNAs (<it>let-7a</it>, <it>miR-16</it>, <it>miR-26a</it>, <it>miR-345</it>, <it>miR-425 </it>and <it>miR-454</it>) and two small nucleolar RNA genes (<it>RNU48 </it>and <it>Z30</it>), <it>miR-16 </it>and <it>miR-345 </it>were identified as the most stably expressed reference genes. The combined use of <it>miR-16 </it>and <it>miR-345 </it>to normalise expression data enabled detection of a significant dysregulation of all four target miRNAs between tumour and normal colorectal tissue.</p> <p>Conclusions</p> <p>Our study demonstrates that the top six most stably expressed miRNAs (<it>let-7a</it>, <it>miR-16</it>, <it>miR-26a</it>, <it>miR-345</it>, <it>miR-425 </it>and <it>miR-454</it>) described herein should be validated as suitable reference genes in both high-throughput and lower throughput RT-qPCR colorectal miRNA studies.</p
Non-invasive cardiac assessment in high risk patients (The GROUND study): rationale, objectives and design of a multi-center randomized controlled clinical trial
Background: Peripheral arterial disease (PAD) is a common disease associated with a considerably increased risk of future cardiovascular events and most of these patients will die from coronary artery disease (CAD). Screening for silent CAD has become an option with recent non-invasive developments in CT (computed tomography)-angiography and MR (magnetic resonance) stress testing. Screening in combination with more aggressive treatment may improve prognosis. Therefore we propose to study whether a cardiac imaging algorithm, using non-invasive imaging techniques followed by treatment will reduce the risk of cardiovascular disease in PAD patients free from cardiac symptoms. Design: The GROUND study is designed as a prospective, multi-center, randomized clinical trial. Patients with peripheral arterial disease, but without symptomatic cardiac disease will be asked to participate. All patients receive a proper risk factor management before randomization. Half of the recruited patients will enter the 'control group' and only undergo CT calcium scoring. The other half of the recruited patients (index group) will undergo the non invasive cardiac imaging algorithm followed by evidence-based treatment. First, patients are submitted to CT calcium scoring and CT angiography. Patients with a left main (or equivalent) coronary artery stenosis of > 50% on CT will be referred to a cardiologist without further imaging. All other patients in this group will undergo dobutamine stress magnetic resonance (DSMR) testing. Patients with a DSMR positive for ischemia will also be referred to a cardiologist. These patients are candidates for conventional coronary angiography and cardiac interventions (coronary artery bypass grafting (CABG) or percutaneous cardiac interventions (PCI)), if indicated. All participants of the trial will enter a 5 year follow up period for the occurrence of cardiovascular events. Sequential interim analysis will take place. Based on sample size calculations about 1200 patients are needed to detect a 24% reduction in primary outcome. Implications: The GROUND study will provide insight into the question whether non-invasive cardiac imaging reduces the risk of cardiovascular events in patients with peripheral arterial disease, but without symptoms of coronary artery disease. Trial registration: Clinicaltrials.gov NCT0018911
Unexpected westward range shifts in European forest plants link to nitrogen deposition
Climate change is commonly assumed to induce species’ range shifts toward the poles. Yet, other environmental changes may affect the geographical distribution of species in unexpected ways. Here, we quantify multidecadal shifts in the distribution of European forest plants and link these shifts to key drivers of forest biodiversity change: climate change, atmospheric deposition (nitrogen and sulfur), and forest canopy dynamics. Surprisingly, westward distribution shifts were 2.6 times more likely than northward ones. Not climate change, but nitrogen-mediated colonization events, possibly facilitated by the recovery from past acidifying deposition, best explain westward movements. Biodiversity redistribution patterns appear complex and are more likely driven by the interplay among several environmental changes than due to the exclusive effects of climate change alone
A comprehensive enhancer screen identifies TRAM2 as a key and novel mediator of YAP oncogenesis
Background: Frequent activation of the co-transcriptional factor YAP is observed in a large number of solid tumors. Activated YAP associates with enhancer loci via TEAD4-DNA-binding protein and stimulates cancer aggressiveness. Although thousands of YAP/TEAD4 binding-sites are annotated, their functional importance is unknown. Here, we aim at further identification of enhancer elements that are required for YAP functions. Results: We first apply genome-wide ChIP profiling of YAP to systematically identify enhancers that are bound by YAP/TEAD4. Next, we implement a genetic approach to uncover functions of YAP/TEAD4-associated enhancers, demonstrate its robustness, and use it to reveal a network of enhancers required for YAP-mediated proliferation. We focus on EnhancerTRAM2, as its target gene TRAM2 shows the strongest expression-correlation with YAP activity in nearly all tumor types. Interestingly, TRAM2 phenocopi
Procalcitonin Is Not a Reliable Biomarker of Bacterial Coinfection in People With Coronavirus Disease 2019 Undergoing Microbiological Investigation at the Time of Hospital Admission
Abstract Admission procalcitonin measurements and microbiology results were available for 1040 hospitalized adults with coronavirus disease 2019 (from 48 902 included in the International Severe Acute Respiratory and Emerging Infections Consortium World Health Organization Clinical Characterisation Protocol UK study). Although procalcitonin was higher in bacterial coinfection, this was neither clinically significant (median [IQR], 0.33 [0.11–1.70] ng/mL vs 0.24 [0.10–0.90] ng/mL) nor diagnostically useful (area under the receiver operating characteristic curve, 0.56 [95% confidence interval, .51–.60]).</jats:p
Implementation of corticosteroids in treating COVID-19 in the ISARIC WHO Clinical Characterisation Protocol UK:prospective observational cohort study
BACKGROUND: Dexamethasone was the first intervention proven to reduce mortality in patients with COVID-19 being treated in hospital. We aimed to evaluate the adoption of corticosteroids in the treatment of COVID-19 in the UK after the RECOVERY trial publication on June 16, 2020, and to identify discrepancies in care. METHODS: We did an audit of clinical implementation of corticosteroids in a prospective, observational, cohort study in 237 UK acute care hospitals between March 16, 2020, and April 14, 2021, restricted to patients aged 18 years or older with proven or high likelihood of COVID-19, who received supplementary oxygen. The primary outcome was administration of dexamethasone, prednisolone, hydrocortisone, or methylprednisolone. This study is registered with ISRCTN, ISRCTN66726260. FINDINGS: Between June 17, 2020, and April 14, 2021, 47 795 (75·2%) of 63 525 of patients on supplementary oxygen received corticosteroids, higher among patients requiring critical care than in those who received ward care (11 185 [86·6%] of 12 909 vs 36 415 [72·4%] of 50 278). Patients 50 years or older were significantly less likely to receive corticosteroids than those younger than 50 years (adjusted odds ratio 0·79 [95% CI 0·70–0·89], p=0·0001, for 70–79 years; 0·52 [0·46–0·58], p80 years), independent of patient demographics and illness severity. 84 (54·2%) of 155 pregnant women received corticosteroids. Rates of corticosteroid administration increased from 27·5% in the week before June 16, 2020, to 75–80% in January, 2021. INTERPRETATION: Implementation of corticosteroids into clinical practice in the UK for patients with COVID-19 has been successful, but not universal. Patients older than 70 years, independent of illness severity, chronic neurological disease, and dementia, were less likely to receive corticosteroids than those who were younger, as were pregnant women. This could reflect appropriate clinical decision making, but the possibility of inequitable access to life-saving care should be considered. FUNDING: UK National Institute for Health Research and UK Medical Research Council
Recommended from our members
Vitamin D insufficiency in COVID-19 and influenza A, and critical illness survivors: a cross-sectional study
Objectives: The steroid hormone vitamin D has roles in immunomodulation and bone health. Insufficiency is associated with susceptibility to respiratory infections. We report 25-hydroxy vitamin D (25(OH)D) measurements in hospitalised people with COVID-19 and influenza A and in survivors of critical illness to test the hypotheses that vitamin D insufficiency scales with illness severity and persists in survivors. Design: Cross-sectional study. Setting and participants: Plasma was obtained from 295 hospitalised people with COVID-19 (International Severe Acute Respiratory and emerging Infections Consortium (ISARIC)/WHO Clinical Characterization Protocol for Severe Emerging Infections UK study), 93 with influenza A (Mechanisms of Severe Acute Influenza Consortium (MOSAIC) study, during the 2009–2010 H1N1 pandemic) and 139 survivors of non-selected critical illness (prior to the COVID-19 pandemic). Total 25(OH)D was measured by liquid chromatography-tandem mass spectrometry. Free 25(OH)D was measured by ELISA in COVID-19 samples. Outcome measures: Receipt of invasive mechanical ventilation (IMV) and in-hospital mortality. Results: Vitamin D insufficiency (total 25(OH)D 25–50 nmol/L) and deficiency (<25 nmol/L) were prevalent in COVID-19 (29.3% and 44.4%, respectively), influenza A (47.3% and 37.6%) and critical illness survivors (30.2% and 56.8%). In COVID-19 and influenza A, total 25(OH)D measured early in illness was lower in patients who received IMV (19.6 vs 31.9 nmol/L (p<0.0001) and 22.9 vs 31.1 nmol/L (p=0.0009), respectively). In COVID-19, biologically active free 25(OH)D correlated with total 25(OH)D and was lower in patients who received IMV, but was not associated with selected circulating inflammatory mediators. Conclusions: Vitamin D deficiency/insufficiency was present in majority of hospitalised patients with COVID-19 or influenza A and correlated with severity and persisted in critical illness survivors at concentrations expected to disrupt bone metabolism. These findings support early supplementation trials to determine if insufficiency is causal in progression to severe disease, and investigation of longer-term bone health outcomes
Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015 : a systematic analysis for the Global Burden of Disease Study 2015
Background Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Methods We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography-year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, life expectancy from birth increased from 61.7 years (95% uncertainty interval 61.4-61.9) in 1980 to 71.8 years (71.5-72.2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11.3 years (3.7-17.4), to 62.6 years (56.5-70.2). Total deaths increased by 4.1% (2.6-5.6) from 2005 to 2015, rising to 55.8 million (54.9 million to 56.6 million) in 2015, but age-standardised death rates fell by 17.0% (15.8-18.1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14.1% (12.6-16.0) to 39.8 million (39.2 million to 40.5 million) in 2015, whereas age-standardised rates decreased by 13.1% (11.9-14.3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42.1%, 39.1-44.6), malaria (43.1%, 34.7-51.8), neonatal preterm birth complications (29.8%, 24.8-34.9), and maternal disorders (29.1%, 19.3-37.1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000-183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000-532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. Interpretation At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. Copyright (C) The Author(s). Published by Elsevier Ltd.Peer reviewe
- …