63 research outputs found

    Orchestrated transcription of biological processes in the marine picoeukaryote Ostreococcus exposed to light/dark cycles

    Get PDF
    Background: Picoeukaryotes represent an important, yet poorly characterized component of marine phytoplankton. The recent genome availability for two species of Ostreococcus and Micromonas has led to the emergence of picophytoplankton comparative genomics. Sequencing has revealed many unexpected features about genome structure and led to several hypotheses on Ostreococcus biology and physiology. Despite the accumulation of genomic data, little is known about gene expression in eukaryotic picophytoplankton. Results: We have conducted a genome-wide analysis of gene expression in Ostreococcus tauri cells exposed to light/dark cycles (L/D). A Bayesian Fourier Clustering method was implemented to cluster rhythmic genes according to their expression waveform. In a single L/D condition nearly all expressed genes displayed rhythmic patterns of expression. Clusters of genes were associated with the main biological processes such as transcription in the nucleus and the organelles, photosynthesis, DNA replication and mitosis. Conclusions: Light/Dark time-dependent transcription of the genes involved in the main steps leading to protein synthesis (transcription basic machinery, ribosome biogenesis, translation and aminoacid synthesis) was observed, to an unprecedented extent in eukaryotes, suggesting a major input of transcriptional regulations in Ostreococcus. We propose that the diurnal co-regulation of genes involved in photoprotection, defence against oxidative stress and DNA repair might be an efficient mechanism, which protects cells against photo-damage thereby, contributing to the ability of O. tauri to grow under a wide range of light intensities

    Iron-related transcriptomic variations in Caco-2 cells: in silico perspectives.

    No full text
    International audienceThe iron absorption by duodenal enterocytes is a key step of its homeostasis. But the control of this absorption is complex and cannot be fully explicated with present knowledge. In a global transcriptome approach, we identified 60 genes over-expressed in hemin (iron) overload in Caco-2 cells, an in vitro model of duodenal enterocytes. The challenge from there was to identify the affected molecular mechanisms and achieve a biological interpretation for that cluster. In that purpose, we built up a functional annotation method combining evidence and literature. Our method identified four pathways in the Process hierarchy of the Gene Ontology (GO): lipid metabolism, amino acid and cofactor metabolism, response to stimulus and transport. The accuracy of this functional profile is supported by the identification of known pathways associated with the iron overload (response to oxidative stress, glutathione metabolism). But our method also suggests new hypotheses on the regulation of iron uptake in Caco-2 cells. It is hypothesized that plasma membrane remodeling and vesicular recycling could be a potential modulator of iron transport proteins activities. These assumptions yet require a biological validation and they will therefore direct further research. Our functional annotation method is a valuable tool designed to help the biologist understand the biological links between the genes of a cluster, elaborate working hypotheses and direct future work. This work is also a validation 'by hand' of a biomedical text-mining system

    Combining evidence, biomedical literature and statistical dependence: new insights for functional annotation of gene sets

    Get PDF
    BACKGROUND: Large-scale genomic studies based on transcriptome technologies provide clusters of genes that need to be functionally annotated. The Gene Ontology (GO) implements a controlled vocabulary organised into three hierarchies: cellular components, molecular functions and biological processes. This terminology allows a coherent and consistent description of the knowledge about gene functions. The GO terms related to genes come primarily from semi-automatic annotations made by trained biologists (annotation based on evidence) or text-mining of the published scientific literature (literature profiling). RESULTS: We report an original functional annotation method based on a combination of evidence and literature that overcomes the weaknesses and the limitations of each approach. It relies on the Gene Ontology Annotation database (GOA Human) and the PubGene biomedical literature index. We support these annotations with statistically associated GO terms and retrieve associative relations across the three GO hierarchies to emphasise the major pathways involved by a gene cluster. Both annotation methods and associative relations were quantitatively evaluated with a reference set of 7397 genes and a multi-cluster study of 14 clusters. We also validated the biological appropriateness of our hybrid method with the annotation of a single gene (cdc2) and that of a down-regulated cluster of 37 genes identified by a transcriptome study of an in vitro enterocyte differentiation model (CaCo-2 cells). CONCLUSION: The combination of both approaches is more informative than either separate approach: literature mining can enrich an annotation based only on evidence. Text-mining of the literature can also find valuable associated MEDLINE references that confirm the relevance of the annotation. Eventually, GO terms networks can be built with associative relations in order to highlight cooperative and competitive pathways and their connected molecular functions

    Light history influences the response of the marine cyanobacterium Synechococcus sp. WH7803 to oxidative stress.

    Get PDF
    International audienceMarine Synechococcus undergo a wide range of environmental stressors, especially high and variable irradiance, which may induce oxidative stress through the generation of reactive oxygen species (ROS). While light and ROS could act synergistically on the impairment of photosynthesis, inducing photodamage and inhibiting photosystem II repair, acclimation to high irradiance is also thought to confer resistance to other stressors. To identify the respective roles of light and ROS in the photoinhibition process and detect a possible light-driven tolerance to oxidative stress, we compared the photophysiological and transcriptomic responses of Synechococcus sp. WH7803 acclimated to low light (LL) or high light (HL) to oxidative stress, induced by hydrogen peroxide (H₂O₂) or methylviologen. While photosynthetic activity was much more affected in HL than in LL cells, only HL cells were able to recover growth and photosynthesis after the addition of 25 μM H₂O₂. Depending upon light conditions and H₂O₂ concentration, the latter oxidizing agent induced photosystem II inactivation through both direct damage to the reaction centers and inhibition of its repair cycle. Although the global transcriptome response appeared similar in LL and HL cells, some processes were specifically induced in HL cells that seemingly helped them withstand oxidative stress, including enhancement of photoprotection and ROS detoxification, repair of ROS-driven damage, and regulation of redox state. Detection of putative LexA binding sites allowed the identification of the putative LexA regulon, which was down-regulated in HL compared with LL cells but up-regulated by oxidative stress under both growth irradiances

    Five distinct biological processes and 14 differentially expressed genes characterize TEL/AML1-positive leukemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The t(12;21)(p13;q22) translocation is found in 20 to 25% of cases of childhood B-lineage acute lymphoblastic leukemia (B-ALL). This rearrangement results in the fusion of <it>ETV6 </it>(<it>TEL</it>) and <it>RUNX1 </it>(<it>AML1</it>) genes and defines a relatively uniform category, although only some patients suffer very late relapse. <it>TEL/AML1</it>-positive patients are thus an interesting subgroup to study, and such studies should elucidate the biological processes underlying TEL/AML1 pathogenesis. We report an analysis of gene expression in 60 children with B-lineage ALL using Agilent whole genome oligo-chips (44K-G4112A) and/or real time RT-PCR.</p> <p>Results</p> <p>We compared the leukemia cell gene expression profiles of 16 <it>TEL/AML1</it>-positive ALL patients to those of 44 <it>TEL/AML1</it>-negative patients, whose blast cells did not contain any additional recurrent translocation. Microarray analyses of 26 samples allowed the identification of genes differentially expressed between the TEL/AML1-positive and negative ALL groups. Gene enrichment analysis defined five enriched GO categories: cell differentiation, cell proliferation, apoptosis, cell motility and response to wounding, associated with 14 genes -<it>RUNX1, TCFL5, TNFRSF7, CBFA2T3</it>, <it>CD9</it>, <it>SCARB1, TP53INP1, ACVR1C, PIK3C3, EGFL7</it>, <it>SEMA6A, CTGF, LSP1, TFPI </it>– highlighting the biology of the <it>TEL/AML1 </it>sub-group. These results were first confirmed by the analysis of an additional microarray data-set (7 patient samples) and second by real-time RT-PCR quantification and clustering using an independent set (27 patient samples). Over-expression of <it>RUNX1 (AML1) </it>was further investigated and in one third of the patients correlated with cytogenetic findings.</p> <p>Conclusion</p> <p>Gene expression analyses of leukemia cells from 60 children with <it>TEL/AML1</it>-positive and -negative B-lineage ALL led to the identification of five biological processes, associated with 14 validated genes characterizing and highlighting the biology of the <it>TEL/AML1</it>-positive ALL sub-group.</p

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF
    corecore