813 research outputs found

    Investigation of Pilots\u27 Visual Entropy and Eye Fixations for Simulated Flights Consisted of Multiple Take-Offs and Landings

    Get PDF
    Eye movement characteristics might provide insights on pilots\u27 mental fatigue during prolonged flight. The visual entropy, eye fixation numbers, and eye fixation durations of ten novice pilots and ten expert pilots were analyzed for a four-hour simulated flight task consisting of four consecutive flight legs. Each flight leg lasted approximately one hour and contained five flight phases: takeoff, climb, cruise, descend, and landing. The pilots maneuvered the simulated B-52 aircraft following instrument flight rules (IFR) in a moderate-fidelity Microsoft Flight Simulator environment. Our results indicate that experts’ eye movement characteristics were significantly different from those of novices. In detail, novices\u27 eye movements were more random, produced longer eye fixation durations, and had fewer eye fixation numbers on the areas of interest (AOIs) than the experts. In addition, the repetitive task (i.e., four consecutive flights) significantly impacted the eye movement characteristics for both experts and novices. Visual entropy and eye fixation duration increased, while eye fixation numbers decreased for both groups as the repetition index increased. Finally, the flight phases also affected eye movement characteristics. The results show that both experts\u27 and novices\u27 visual entropies were relatively higher during climb, cruise, and descend phases, whereas those were relatively lower during the takeoff and landing phases. The present results provide a foundation for us to better understand the similarities and dissimilarities of eye movement characteristics between the experts and novices for a prolonged flight. Lastly, potential scaffolding training methods and pilot anomaly alerting systems, derived from such eye movements, are introduced

    Development of an operational substrate for ZapA, a metalloprotease secreted by the bacterium Proteus mirabilis

    Get PDF
    The protease ZapA, secreted by Proteus mirabilis, has been considered to be a virulence factor of this opportunistic bacterium. The control of its expression requires the use of an appropriate methodology, which until now has not been developed. The present study focused on the replacement of azocasein with fluorogenic substrates, and on the definition of enzyme specificity. Eight fluorogenic substrates were tested, and the peptide Abz-Ala-Phe-Arg-Ser-Ala-Ala-Gln-EDDnp was found to be the most convenient for use as an operational substrate for ZapA. A single peptide bond (Arg-Ser) was cleaved with a Km of 4.6 ”M, a k cat of 1.73 s-1, and a catalytic efficiency of 376 (mM s)-1. Another good substrate for ZapA was peptide 6 (Abz-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg-Gln-EDDnp) which was cleaved at a single bond (Phe-Ser) with a Km of 13.6 ”M, a k cat of 3.96 s-1 and a catalytic efficiency of 291 (mM s)-1. The properties of the amino acids flanking the scissile bonds were also evaluated, and no clear requirement for the amino acid residue at P1 was found, although the enzyme seems to have a preference for a hydrophobic residue at P2.Universidade de São PauloUniversidade Federal de São Paulo (UNIFESP)Universidade Estadual de São PauloInstituto ButantanUNIFESPSciEL

    ZapA, a possible virulence factor from Proteus mirabilis exhibits broad protease substrate specificity

    Get PDF
    The opportunistic bacterium Proteus mirabilis secretes a metalloprotease, ZapA, considered to be one of its virulence factors due to its IgA-degrading activity. However, the substrate specificity of this enzyme has not yet been fully characterized. In the present study we used fluorescent peptides derived from bioactive peptides and the oxidized ß-chain of insulin to determine the enzyme specificity. The bradykinin- and dynorphin-derived peptides were cleaved at the single bonds Phe-Ser and Phe-Leu, with catalytic efficiencies of 291 and 13 mM/s, respectively. Besides confirming already published cleavage sites, a novel cleavage site was determined for the ß-chain of insulin (Val-Asn). Both the natural and the recombinant enzyme displayed the same broad specificity, demonstrated by the presence of hydrophobic, hydrophilic, charged and uncharged amino acid residues at the scissile bonds. Native IgA, however, was resistant to hydrolysis by ZapA.Universidade de SĂŁo Paulo Instituto de CiĂȘncias BiomĂ©dicas Departamento de MicrobiologiaInstituto Butantan CEPID-FAPESP Centro de Toxinologia AplicadaUniversidade Federal de SĂŁo Paulo (UNIFESP) CEPID-FAPESP Centro de Toxinologia AplicadaUniversidade Estadual Paulista CEPID-FAPESP Centro de Toxinologia AplicadaUNIFESP, CEPID-FAPESP Centro de Toxinologia AplicadaSciEL

    The E5 oncoprotein of BPV-4 does not interfere with the biosynthetic pathway of non-classical MHC class I

    Get PDF
    The major histocompatibility complex (MHC) class I region in mammals contains both classical and non-classical MHC class I genes. Classical MHC class I molecules present antigenic peptides to cytotoxic T lymphocytes, whereas non-classical MHC class I molecules have a variety of functions. Both classical and non-classical MHC molecules interact with natural killer cell receptors and may under some circumstances prevent cell death by natural killer cytotoxicity. The E5 oncoprotein of BPV-4 down-regulates the expression of classical MHC class I on the cell surface and retains the complex in the Golgi apparatus. The inhibition of classical MHC class I to the cell surface results from both the impaired acidification of the Golgi, due to the interaction of E5 with subunit c of the H+ V-ATPase, and to the physical binding of E5 to the heavy chain of MHC class I. Despite the profound effect of E5 on classical MHC class I, E5 does not retain a non-classical MHC class I in the Golgi, does not inhibit its transport to the cell surface and does not bind its heavy chain. We conclude that, as is the case for HPV-16 E5, BPV-4 E5 does not down-regulate certain non-classical MHC class I, potentially providing a mechanism for the escape of the infected cell from attack by both cytotoxic T lymphocytes and NK cells

    Encoded Recoupling and Decoupling: An Alternative to Quantum Error Correcting Codes, Applied to Trapped Ion Quantum Computation

    Get PDF
    A recently developed theory for eliminating decoherence and design constraints in quantum computers, ``encoded recoupling and decoupling'', is shown to be fully compatible with a promising proposal for an architecture enabling scalable ion-trap quantum computation [D. Kielpinski et al., Nature 417, 709 (2002)]. Logical qubits are encoded into pairs of ions. Logic gates are implemented using the Sorensen-Molmer (SM) scheme applied to pairs of ions at a time. The encoding offers continuous protection against collective dephasing. Decoupling pulses, that are also implemented using the SM scheme directly to the encoded qubits, are capable of further reducing various other sources of qubit decoherence, such as due to differential dephasing and due to decohered vibrational modes. The feasibility of using the relatively slow SM pulses in a decoupling scheme quenching the latter source of decoherence follows from the observed 1/f spectrum of the vibrational bath.Comment: 12 pages, no figure

    Quantitative Treatment of Decoherence

    Full text link
    We outline different approaches to define and quantify decoherence. We argue that a measure based on a properly defined norm of deviation of the density matrix is appropriate for quantifying decoherence in quantum registers. For a semiconductor double quantum dot qubit, evaluation of this measure is reviewed. For a general class of decoherence processes, including those occurring in semiconductor qubits, we argue that this measure is additive: It scales linearly with the number of qubits.Comment: Revised version, 26 pages, in LaTeX, 3 EPS figure

    Constraints on Dark Matter Annihilation in Clusters of Galaxies with the Fermi Large Area Telescope

    Full text link
    Nearby clusters and groups of galaxies are potentially bright sources of high-energy gamma-ray emission resulting from the pair-annihilation of dark matter particles. However, no significant gamma-ray emission has been detected so far from clusters in the first 11 months of observations with the Fermi Large Area Telescope. We interpret this non-detection in terms of constraints on dark matter particle properties. In particular for leptonic annihilation final states and particle masses greater than ~200 GeV, gamma-ray emission from inverse Compton scattering of CMB photons is expected to dominate the dark matter annihilation signal from clusters, and our gamma-ray limits exclude large regions of the parameter space that would give a good fit to the recent anomalous Pamela and Fermi-LAT electron-positron measurements. We also present constraints on the annihilation of more standard dark matter candidates, such as the lightest neutralino of supersymmetric models. The constraints are particularly strong when including the fact that clusters are known to contain substructure at least on galaxy scales, increasing the expected gamma-ray flux by a factor of ~5 over a smooth-halo assumption. We also explore the effect of uncertainties in cluster dark matter density profiles, finding a systematic uncertainty in the constraints of roughly a factor of two, but similar overall conclusions. In this work, we focus on deriving limits on dark matter models; a more general consideration of the Fermi-LAT data on clusters and clusters as gamma-ray sources is forthcoming.Comment: accepted to JCAP, Corresponding authors: T.E. Jeltema and S. Profumo, minor revisions to be consistent with accepted versio

    Search for supersymmetry with a dominant R-parity violating LQDbar couplings in e+e- collisions at centre-of-mass energies of 130GeV to 172 GeV

    Full text link
    A search for pair-production of supersymmetric particles under the assumption that R-parity is violated via a dominant LQDbar coupling has been performed using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV. The observed candidate events in the data are in agreement with the Standard Model expectation. This result is translated into lower limits on the masses of charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81 GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the 95% confidence level for any generation structure of the LQDbar coupling.Comment: 32 pages, 30 figure

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore