156 research outputs found
Managing sedentary behavior to reduce the risk of diabetes and cardiovascular disease
Modern human environments are vastly different from those of our forebears. Rapidly advancing technology in transportation, communications, workplaces, and home entertainment confer a wealth of benefits, but increasingly come with costs to human health. Sedentary behavior—too much sitting as distinct from too little physical activity—contributes adversely to cardiometabolic health outcomes and premature mortality. Findings from observational epidemiology have been synthesized in meta-analyses, and evidence is now shifting into the realm of experimental trials with the aim of identifying novel mechanisms and potential causal relationships. We discuss recent observational and experimental evidence that makes a compelling case for reducing and breaking up prolonged sitting time in both the primary prevention and disease management contexts. We also highlight future research needs, the opportunities for developing targeted interventions, and the potential of population-wide initiatives designed to address too much sitting as a health risk
“Keeping Moving”: factors associated with sedentary behaviour among older people recruited to an exercise promotion trial in general practice
Background
Sedentary behaviour is detrimental to health, even in those who achieve recommended levels of physical activity. Efforts to increase physical activity in older people so that they reach beneficial levels have been disappointing. Reducing sedentary behaviour may improve health and be less demanding of older people, but it is not clear how to achieve this. We explored the characteristics of sedentary older people enrolled into an exercise promotion trial to gain insights about those who were sedentary but wanted to increase activity.
Method
Participants in the ProAct65+ trial (2009–2013) were categorised as sedentary or not using a self-report questionnaire. Demographic data, health status, self-rated function and physical test performance were examined for each group. 1104 participants aged 65 & over were included in the secondary analysis of trial data from older people recruited via general practice. Results were analysed using logistic regression with stepwise backward elimination.
Results
Three hundred eighty seven (35 %) of the study sample were characterised as sedentary. The likelihood of being categorised as sedentary increased with an abnormal BMI (25 kg/m2) (Odds Ratio 1.740, CI 1.248–2.425), ever smoking (OR 1.420, CI 1.042–1.934) and with every additional medication prescribed (OR 1.069, CI 1.016–1.124). Participants reporting better self-rated physical health (SF-12) were less likely to be sedentary; (OR 0.961, 0.936–0.987). Participants’ sedentary behaviour was not associated with gender, age, income, education, falls, functional fitness, quality of life or number of co-morbidities.
Conclusion
Some sedentary older adults will respond positively to an invitation to join an exercise study. Those who did so in this study had poor self-rated health, abnormal BMI, a history of smoking, and multiple medication use, and are therefore likely to benefit from an exercise intervention
Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants
BACKGROUND: One of the global targets for non-communicable diseases is to halt, by 2025, the rise in the age-standardised adult prevalence of diabetes at its 2010 levels. We aimed to estimate worldwide trends in diabetes, how likely it is for countries to achieve the global target, and how changes in prevalence, together with population growth and ageing, are affecting the number of adults with diabetes. METHODS: We pooled data from population-based studies that had collected data on diabetes through measurement of its biomarkers. We used a Bayesian hierarchical model to estimate trends in diabetes prevalence—defined as fasting plasma glucose of 7·0 mmol/L or higher, or history of diagnosis with diabetes, or use of insulin or oral hypoglycaemic drugs—in 200 countries and territories in 21 regions, by sex and from 1980 to 2014. We also calculated the posterior probability of meeting the global diabetes target if post-2000 trends continue. FINDINGS: We used data from 751 studies including 4 372 000 adults from 146 of the 200 countries we make estimates for. Global age-standardised diabetes prevalence increased from 4·3% (95% credible interval 2·4–7·0) in 1980 to 9·0% (7·2–11·1) in 2014 in men, and from 5·0% (2·9–7·9) to 7·9% (6·4–9·7) in women. The number of adults with diabetes in the world increased from 108 million in 1980 to 422 million in 2014 (28·5% due to the rise in prevalence, 39·7% due to population growth and ageing, and 31·8% due to interaction of these two factors). Age-standardised adult diabetes prevalence in 2014 was lowest in northwestern Europe, and highest in Polynesia and Micronesia, at nearly 25%, followed by Melanesia and the Middle East and north Africa. Between 1980 and 2014 there was little change in age-standardised diabetes prevalence in adult women in continental western Europe, although crude prevalence rose because of ageing of the population. By contrast, age-standardised adult prevalence rose by 15 percentage points in men and women in Polynesia and Micronesia. In 2014, American Samoa had the highest national prevalence of diabetes (>30% in both sexes), with age-standardised adult prevalence also higher than 25% in some other islands in Polynesia and Micronesia. If post-2000 trends continue, the probability of meeting the global target of halting the rise in the prevalence of diabetes by 2025 at the 2010 level worldwide is lower than 1% for men and is 1% for women. Only nine countries for men and 29 countries for women, mostly in western Europe, have a 50% or higher probability of meeting the global target. INTERPRETATION: Since 1980, age-standardised diabetes prevalence in adults has increased, or at best remained unchanged, in every country. Together with population growth and ageing, this rise has led to a near quadrupling of the number of adults with diabetes worldwide. The burden of diabetes, both in terms of prevalence and number of adults affected, has increased faster in low-income and middle-income countries than in high-income countries. FUNDING: Wellcome Trust
Sedentary time among spouses: a cross-sectional study exploring associations in sedentary time and behaviour in parents of 5 and 6 year old children
Diminishing benefits of urban living for children and adolescents’ growth and development
Optimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was <1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified
General and abdominal adiposity and hypertension in eight world regions: a pooled analysis of 837 population-based studies with 7•5 million participants
Background: Adiposity can be measured using BMI (which is based on weight and height) as well as indices of abdominal adiposity. We examined the association between BMI and waist-to-height ratio (WHtR) within and across populations of different world regions and quantified how well these two metrics discriminate between people with and without hypertension. Methods: We used data from studies carried out from 1990 to 2023 on BMI, WHtR and hypertension in people aged 20–64 years in representative samples of the general population in eight world regions. We graphically compared the regional distributions of BMI and WHtR, and calculated Pearson's correlation coefficients between BMI and WHtR within each region. We used mixed-effects linear regression to estimate the extent to which WHtR varies across regions at the same BMI. We graphically examined the prevalence of hypertension and the distribution of people who have hypertension both in relation to BMI and WHtR, and we assessed how closely BMI and WHtR discriminate between participants with and without hypertension using C-statistic and net reclassification improvement (NRI). Findings: The correlation between BMI and WHtR ranged from 0·76 to 0·89 within different regions. After adjusting for age and BMI, mean WHtR was highest in south Asia for both sexes, followed by Latin America and the Caribbean and the region of central Asia, Middle East and north Africa. Mean WHtR was lowest in central and eastern Europe for both sexes, in the high-income western region for women, and in Oceania for men. Conversely, to achieve an equivalent WHtR, the BMI of the population of south Asia would need to be, on average, 2·79 kg/m2 (95% CI 2·31–3·28) lower for women and 1·28 kg/m2 (1·02–1·54) lower for men than in the high-income western region. In every region, hypertension prevalence increased with both BMI and WHtR. Models with either of these two adiposity metrics had virtually identical C-statistics and NRIs for every region and sex, with C-statistics ranging from 0·72 to 0·81 and NRIs ranging from 0·34 to 0·57 in different region and sex combinations. When both BMI and WHtR were used, performance improved only slightly compared with using either adiposity measure alone. Interpretation: BMI can distinguish young and middle-aged adults with higher versus lower amounts of abdominal adiposity with moderate-to-high accuracy, and both BMI and WHtR distinguish people with or without hypertension. However, at the same BMI level, people in south Asia, Latin America and the Caribbean, and the region of central Asia, Middle East and north Africa, have higher WHtR than in the other regions. Funding: UK Medical Research Council and UK Research and Innovation (Innovate UK)
Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants
AbstractBackground: Raised blood pressure is an important risk factor for cardiovascular diseases and chronic kidney disease. We estimated worldwide trends in mean systolic and mean diastolic blood pressure, and the prevalence of, and number of people with, raised blood pressure, defined as systolic blood pressure of 140 mm Hg or higher or diastolic blood pressure of 90 mm Hg or higher.Methods: For this analysis, we pooled national, subnational, or community population-based studies that had measured blood pressure in adults aged 18 years and older. We used a Bayesian hierarchical model to estimate trends from 1975 to 2015 in mean systolic and mean diastolic blood pressure, and the prevalence of raised blood pressure for 200 countries. We calculated the contributions of changes in prevalence versus population growth and ageing to the increase in the number of adults with raised blood pressure.Findings: We pooled 1479 studies that had measured the blood pressures of 19.1 million adults. Global age-standardised mean systolic blood pressure in 2015 was 127.0 mm Hg (95% credible interval 125.7–128.3) in men and 122.3 mm Hg (121.0–123.6) in women; age-standardised mean diastolic blood pressure was 78.7 mm Hg (77.9–79.5) for men and 76.7 mm Hg (75.9–77.6) for women. Global age-standardised prevalence of raised blood pressure was 24.1% (21.4–27.1) in men and 20.1% (17.8–22.5) in women in 2015. Mean systolic and mean diastolic blood pressure decreased substantially from 1975 to 2015 in high-income western and Asia Pacific countries, moving these countries from having some of the highest worldwide blood pressure in 1975 to the lowest in 2015. Mean blood pressure also decreased in women in central and eastern Europe, Latin America and the Caribbean, and, more recently, central Asia, Middle East, and north Africa, but the estimated trends in these super-regions had larger uncertainty than in high-income super-regions. By contrast, mean blood pressure might have increased in east and southeast Asia, south Asia, Oceania, and sub-Saharan Africa. In 2015, central and eastern Europe, sub-Saharan Africa, and south Asia had the highest blood pressure levels. Prevalence of raised blood pressure decreased in high-income and some middle-income countries; it remained unchanged elsewhere. The number of adults with raised blood pressure increased from 594 million in 1975 to 1.13 billion in 2015, with the increase largely in low-income and middle-income countries. The global increase in the number of adults with raised blood pressure is a net effect of increase due to population growth and ageing, and decrease due to declining age-specific prevalence.Interpretation: During the past four decades, the highest worldwide blood pressure levels have shifted from high-income countries to low-income countries in south Asia and sub-Saharan Africa due to opposite trends, while blood pressure has been persistently high in central and eastern Europe.Abstract
Background: Raised blood pressure is an important risk factor for cardiovascular diseases and chronic kidney disease. We estimated worldwide trends in mean systolic and mean diastolic blood pressure, and the prevalence of, and number of people with, raised blood pressure, defined as systolic blood pressure of 140 mm Hg or higher or diastolic blood pressure of 90 mm Hg or higher.
Methods: For this analysis, we pooled national, subnational, or community population-based studies that had measured blood pressure in adults aged 18 years and older. We used a Bayesian hierarchical model to estimate trends from 1975 to 2015 in mean systolic and mean diastolic blood pressure, and the prevalence of raised blood pressure for 200 countries. We calculated the contributions of changes in prevalence versus population growth and ageing to the increase in the number of adults with raised blood pressure.
Findings: We pooled 1479 studies that had measured the blood pressures of 19.1 million adults. Global age-standardised mean systolic blood pressure in 2015 was 127.0 mm Hg (95% credible interval 125.7–128.3) in men and 122.3 mm Hg (121.0–123.6) in women; age-standardised mean diastolic blood pressure was 78.7 mm Hg (77.9–79.5) for men and 76.7 mm Hg (75.9–77.6) for women. Global age-standardised prevalence of raised blood pressure was 24.1% (21.4–27.1) in men and 20.1% (17.8–22.5) in women in 2015. Mean systolic and mean diastolic blood pressure decreased substantially from 1975 to 2015 in high-income western and Asia Pacific countries, moving these countries from having some of the highest worldwide blood pressure in 1975 to the lowest in 2015. Mean blood pressure also decreased in women in central and eastern Europe, Latin America and the Caribbean, and, more recently, central Asia, Middle East, and north Africa, but the estimated trends in these super-regions had larger uncertainty than in high-income super-regions. By contrast, mean blood pressure might have increased in east and southeast Asia, south Asia, Oceania, and sub-Saharan Africa. In 2015, central and eastern Europe, sub-Saharan Africa, and south Asia had the highest blood pressure levels. Prevalence of raised blood pressure decreased in high-income and some middle-income countries; it remained unchanged elsewhere. The number of adults with raised blood pressure increased from 594 million in 1975 to 1.13 billion in 2015, with the increase largely in low-income and middle-income countries. The global increase in the number of adults with raised blood pressure is a net effect of increase due to population growth and ageing, and decrease due to declining age-specific prevalence.
Interpretation: During the past four decades, the highest worldwide blood pressure levels have shifted from high-income countries to low-income countries in south Asia and sub-Saharan Africa due to opposite trends, while blood pressure has been persistently high in central and eastern Europe
Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants
Background Underweight and severe and morbid obesity are associated with highly elevated risks of adverse health outcomes. We estimated trends in mean body-mass index (BMI), which characterises its population distribution, and in the prevalences of a complete set of BMI categories for adults in all countries. Methods We analysed, with use of a consistent protocol, population-based studies that had measured height and weight in adults aged 18 years and older. We applied a Bayesian hierarchical model to these data to estimate trends from 1975 to 2014 in mean BMI and in the prevalences of BMI categories (<18.5 kg/m(2) [underweight], 18.5 kg/m(2) to <20 kg/m(2), 20 kg/m(2) to <25 kg/m(2), 25 kg/m(2) to <30 kg/m(2), 30 kg/m(2) to <35 kg/m(2), 35 kg/m(2) to <40 kg/m(2), = 40 kg/m(2) [morbid obesity]), by sex in 200 countries and territories, organised in 21 regions. We calculated the posterior probability of meeting the target of halting by 2025 the rise in obesity at its 2010 levels, if post-2000 trends continue. Findings We used 1698 population-based data sources, with more than 19.2 million adult participants (9.9 million men and 9.3 million women) in 186 of 200 countries for which estimates were made. Global age-standardised mean BMI increased from 21.7 kg/m(2) (95% credible interval 21.3-22.1) in 1975 to 24.2 kg/m(2) (24.0-24.4) in 2014 in men, and from 22.1 kg/m(2) (21.7-22.5) in 1975 to 24.4 kg/m(2) (24.2-24.6) in 2014 in women. Regional mean BMIs in 2014 for men ranged from 21.4 kg/m(2) in central Africa and south Asia to 29.2 kg/m(2) (28.6-29.8) in Polynesia and Micronesia; for women the range was from 21.8 kg/m(2) (21.4-22.3) in south Asia to 32.2 kg/m(2) (31.5-32.8) in Polynesia and Micronesia. Over these four decades, age-standardised global prevalence of underweight decreased from 13.8% (10.5-17.4) to 8.8% (7.4-10.3) in men and from 14.6% (11.6-17.9) to 9.7% (8.3-11.1) in women. South Asia had the highest prevalence of underweight in 2014, 23.4% (17.8-29.2) in men and 24.0% (18.9-29.3) in women. Age-standardised prevalence of obesity increased from 3.2% (2.4-4.1) in 1975 to 10.8% (9.7-12.0) in 2014 in men, and from 6.4% (5.1-7.8) to 14.9% (13.6-16.1) in women. 2.3% (2.0-2.7) of the world's men and 5.0% (4.4-5.6) of women were severely obese (ie, have BMI = 35 kg/m(2)). Globally, prevalence of morbid obesity was 0.64% (0.46-0.86) in men and 1.6% (1.3-1.9) in women. Interpretation If post-2000 trends continue, the probability of meeting the global obesity target is virtually zero. Rather, if these trends continue, by 2025, global obesity prevalence will reach 18% in men and surpass 21% in women; severe obesity will surpass 6% in men and 9% in women. Nonetheless, underweight remains prevalent in the world's poorest regions, especially in south Asia.Wellcome Trust, Grand Challenges Canada
Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: a pooled analysis of 1108 population-representative studies with 141 million participants
Background: Diabetes can be detected at the primary health-care level, and effective treatments lower the risk of complications. There are insufficient data on the coverage of treatment for diabetes and how it has changed. We estimated trends from 1990 to 2022 in diabetes prevalence and treatment for 200 countries and territories. Methods: We used data from 1108 population-representative studies with 141 million participants aged 18 years and older with measurements of fasting glucose and glycated haemoglobin (HbA1c), and information on diabetes treatment. We defined diabetes as having a fasting plasma glucose (FPG) of 7·0 mmol/L or higher, having an HbA1c of 6·5% or higher, or taking medication for diabetes. We defined diabetes treatment as the proportion of people with diabetes who were taking medication for diabetes. We analysed the data in a Bayesian hierarchical meta-regression model to estimate diabetes prevalence and treatment. Findings: In 2022, an estimated 828 million (95% credible interval [CrI] 757–908) adults (those aged 18 years and older) had diabetes, an increase of 630 million (554–713) from 1990. From 1990 to 2022, the age-standardised prevalence of diabetes increased in 131 countries for women and in 155 countries for men with a posterior probability of more than 0·80. The largest increases were in low-income and middle-income countries in southeast Asia (eg, Malaysia), south Asia (eg, Pakistan), the Middle East and north Africa (eg, Egypt), and Latin America and the Caribbean (eg, Jamaica, Trinidad and Tobago, and Costa Rica). Age-standardised prevalence neither increased nor decreased with a posterior probability of more than 0·80 in some countries in western and central Europe, sub-Saharan Africa, east Asia and the Pacific, Canada, and some Pacific island nations where prevalence was already high in 1990; it decreased with a posterior probability of more than 0·80 in women in Japan, Spain, and France, and in men in Nauru. The lowest prevalence in the world in 2022 was in western Europe and east Africa for both sexes, and in Japan and Canada for women, and the highest prevalence in the world in 2022 was in countries in Polynesia and Micronesia, some countries in the Caribbean and the Middle East and north Africa, as well as Pakistan and Malaysia. In 2022, 445 million (95% CrI 401–496) adults aged 30 years or older with diabetes did not receive treatment (59% of adults aged 30 years or older with diabetes), 3·5 times the number in 1990. From 1990 to 2022, diabetes treatment coverage increased in 118 countries for women and 98 countries for men with a posterior probability of more than 0·80. The largest improvement in treatment coverage was in some countries from central and western Europe and Latin America (Mexico, Colombia, Chile, and Costa Rica), Canada, South Korea, Russia, Seychelles, and Jordan. There was no increase in treatment coverage in most countries in sub-Saharan Africa; the Caribbean; Pacific island nations; and south, southeast, and central Asia. In 2022, age-standardised treatment coverage was lowest in countries in sub-Saharan Africa and south Asia, and treatment coverage was less than 10% in some African countries. Treatment coverage was 55% or higher in South Korea, many high-income western countries, and some countries in central and eastern Europe (eg, Poland, Czechia, and Russia), Latin America (eg, Costa Rica, Chile, and Mexico), and the Middle East and north Africa (eg, Jordan, Qatar, and Kuwait). Interpretation: In most countries, especially in low-income and middle-income countries, diabetes treatment has not increased at all or has not increased sufficiently in comparison with the rise in prevalence. The burden of diabetes and untreated diabetes is increasingly borne by low-income and middle-income countries. The expansion of health insurance and primary health care should be accompanied with diabetes programmes that realign and resource health services to enhance the early detection and effective treatment of diabetes. Funding: UK Medical Research Council, UK Research and Innovation (Research England), and US Centers for Disease Control and Prevention
Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: a pooled analysis of 1108 population-representative studies with 141 million participants
Background: Diabetes can be detected at the primary health-care level, and effective treatments lower the risk of complications. There are insufficient data on the coverage of treatment for diabetes and how it has changed. We estimated trends from 1990 to 2022 in diabetes prevalence and treatment for 200 countries and territories. Methods: We used data from 1108 population-representative studies with 141 million participants aged 18 years and older with measurements of fasting glucose and glycated haemoglobin (HbA1c), and information on diabetes treatment. We defined diabetes as having a fasting plasma glucose (FPG) of 7·0 mmol/L or higher, having an HbA1c of 6·5% or higher, or taking medication for diabetes. We defined diabetes treatment as the proportion of people with diabetes who were taking medication for diabetes. We analysed the data in a Bayesian hierarchical meta-regression model to estimate diabetes prevalence and treatment. Findings: In 2022, an estimated 828 million (95% credible interval [CrI] 757-908) adults (those aged 18 years and older) had diabetes, an increase of 630 million (554-713) from 1990. From 1990 to 2022, the age-standardised prevalence of diabetes increased in 131 countries for women and in 155 countries for men with a posterior probability of more than 0·80. The largest increases were in low-income and middle-income countries in southeast Asia (eg, Malaysia), south Asia (eg, Pakistan), the Middle East and north Africa (eg, Egypt), and Latin America and the Caribbean (eg, Jamaica, Trinidad and Tobago, and Costa Rica). Age-standardised prevalence neither increased nor decreased with a posterior probability of more than 0·80 in some countries in western and central Europe, sub-Saharan Africa, east Asia and the Pacific, Canada, and some Pacific island nations where prevalence was already high in 1990; it decreased with a posterior probability of more than 0·80 in women in Japan, Spain, and France, and in men in Nauru. The lowest prevalence in the world in 2022 was in western Europe and east Africa for both sexes, and in Japan and Canada for women, and the highest prevalence in the world in 2022 was in countries in Polynesia and Micronesia, some countries in the Caribbean and the Middle East and north Africa, as well as Pakistan and Malaysia. In 2022, 445 million (95% CrI 401-496) adults aged 30 years or older with diabetes did not receive treatment (59% of adults aged 30 years or older with diabetes), 3·5 times the number in 1990. From 1990 to 2022, diabetes treatment coverage increased in 118 countries for women and 98 countries for men with a posterior probability of more than 0·80. The largest improvement in treatment coverage was in some countries from central and western Europe and Latin America (Mexico, Colombia, Chile, and Costa Rica), Canada, South Korea, Russia, Seychelles, and Jordan. There was no increase in treatment coverage in most countries in sub-Saharan Africa; the Caribbean; Pacific island nations; and south, southeast, and central Asia. In 2022, age-standardised treatment coverage was lowest in countries in sub-Saharan Africa and south Asia, and treatment coverage was less than 10% in some African countries. Treatment coverage was 55% or higher in South Korea, many high-income western countries, and some countries in central and eastern Europe (eg, Poland, Czechia, and Russia), Latin America (eg, Costa Rica, Chile, and Mexico), and the Middle East and north Africa (eg, Jordan, Qatar, and Kuwait). Interpretation: In most countries, especially in low-income and middle-income countries, diabetes treatment has not increased at all or has not increased sufficiently in comparison with the rise in prevalence. The burden of diabetes and untreated diabetes is increasingly borne by low-income and middle-income countries. The expansion of health insurance and primary health care should be accompanied with diabetes programmes that realign and resource health services to enhance the early detection and effective treatment of diabetes
- …
