242 research outputs found

    A New Spectroscopic and Photometric Analysis of the Transiting Planet Systems TrES-3 and TrES-4

    Get PDF
    We report new spectroscopic and photometric observations of the parent stars of the recently discovered transiting planets TrES-3 and TrES-4. A detailed abundance analysis based on high-resolution spectra yields [Fe/H] = –0.19 ± 0.08, T_(eff) = 5650 ± 75 K, and log g = 4.4 ± 0.1 for TrES-3, and [Fe/H] = +0.14 ± 0.09, T_(eff) = 6200 ± 75 K, and log g = 4.0 ± 0.1 for TrES-4. The accuracy of the effective temperatures is supported by a number of independent consistency checks. The spectroscopic orbital solution for TrES-3 is improved with our new radial velocity measurements of that system, as are the light-curve parameters for both systems based on newly acquired photometry for TrES-3 and a reanalysis of existing photometry for TrES-4. We have redetermined the stellar parameters taking advantage of the strong constraint provided by the light curves in the form of the normalized separation a/R_* (related to the stellar density) in conjunction with our new temperatures and metallicities. The masses and radii we derive are M_* = 0.928^(+0.028)_(–0.048) M_⊙, R_* = 0.829^(+0.015)_(–0.022) R_⊙, and M_* = 1.404^(+0.066)_(–0.134) M_⊙, R_* = 1.846^(+0.096)_(–0.087) R_⊙ for TrES-3 and TrES-4, respectively. With these revised stellar parameters, we obtain improved values for the planetary masses and radii. We find M_p = 1.910^(+0.075)_(–0.080) M_(Jup), R_p = 1.336^(+0.031)_(–0.036) R_(Jup) for TrES-3, and M_p = 0.925 ± 0.082 M_(Jup), R_p = 1.783^(+0.093)_(–0.086) R_(Jup) for TrES-4. We confirm TrES-4 as the planet with the largest radius among the currently known transiting hot Jupiters

    TrES-3: A Nearby, Massive, Transiting Hot Jupiter in a 31-Hour Orbit

    Get PDF
    We describe the discovery of a massive transiting hot Jupiter with a very short orbital period (1.30619 d), which we name TrES-3. From spectroscopy of the host star GSC 03089-00929, we measure T_eff = 5720 +- 150 K, logg=4.6 +- 0.3, and vsini < 2 km/s, and derive a stellar mass of 0.90 +- 0.15 M_sun. We estimate a planetary mass of 1.92 +- 0.23 M_Jup, based on the sinusoidal variation of our high-precision radial velocity measurements. This variation has a period and phase consistent with our transit photometry. Our spectra show no evidence of line bisector variations that would indicate a blended eclipsing binary star. From detailed modeling of our B and z photometry of the 2.5%-deep transits, we determine a stellar radius 0.802 +- 0.046 R_sun and a planetary radius 1.295 +- 0.081 R_Jup. TrES-3 has one of the shortest orbital periods of the known transiting exoplanets, facilitating studies of orbital decay and mass loss due to evaporation, and making it an excellent target for future studies of infrared emission and reflected starlight.Comment: v1. 14 pages, 2 figures, 3 tables. Submitted to ApJL 27 April 2007. Accepted for publication in ApJL 14 May 200

    Combined Measurement of the Higgs Boson Mass in pp Collisions at √s = 7 and 8 TeV with the ATLAS and CMS Experiments

    Get PDF
    A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H → γγ and H → ZZ → 4` decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experi- ments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is mH = 125.09 ± 0.21 (stat.) ± 0.11 (syst.) GeV

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV

    Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Measurement of the top quark mass using charged particles in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Centrality and pseudorapidity dependence of the transverse energy flow in pPb collisions at sNN=5.02 TeV

    Get PDF
    The almost hermetic coverage of CMS is used to measure the distribution of transverse energy as a function of pseudo- rapidity for pPb collisions at √sNN = 5.02 TeV. For minimum bias collisions (1/N) dET /dη reaches 23 GeV which implies an ET per participant pair comparable to that of peripheral PbPb collisions at √sNN = 2.76 TeV. The centrality dependence of transverse energy production has been studied using centrality measures defined in three different angular regions. There is a strong auto-correlation between (1/N) dET /dη and the η range used to define centrality for data and the EPOS-LHC and HIJING event generators. The centrality dependence of the data is much stronger for η values on the lead side than the proton side and shows significant differences from that predicted by either event generator
    corecore