840 research outputs found
Limited Options to Manage Specialty Drug Spending
Outlines rising trends in costs of and spending on specialty drugs; health plans' efforts to curb specialty drug spending, including patient cost sharing and utilization management; and efforts to integrate medical and pharmaceutical coverage
Employer-Sponsored Health Insurance: Down, But Not Out
Presents findings from twelve metropolitan areas about employers' efforts to control employee healthcare costs in response to the recession and national healthcare reform by firm size. Projects employer trends through 2014, including greater cost sharing
Baseline Features and Reasons for Nonparticipation in the Colonoscopy Versus Fecal Immunochemical Test in Reducing Mortality From Colorectal Cancer (CONFIRM) Study, a Colorectal Cancer Screening Trial.
IMPORTANCE: The Colonoscopy Versus Fecal Immunochemical Test in Reducing Mortality From Colorectal Cancer (CONFIRM) randomized clinical trial sought to recruit 50 000 adults into a study comparing colorectal cancer (CRC) mortality outcomes after randomization to either an annual fecal immunochemical test (FIT) or colonoscopy.
OBJECTIVE: To (1) describe study participant characteristics and (2) examine who declined participation because of a preference for colonoscopy or stool testing (ie, fecal occult blood test [FOBT]/FIT) and assess that preference\u27s association with geographic and temporal factors.
DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional study within CONFIRM, which completed enrollment through 46 Department of Veterans Affairs medical centers between May 22, 2012, and December 1, 2017, with follow-up planned through 2028, comprised veterans aged 50 to 75 years with an average CRC risk and due for screening. Data were analyzed between March 7 and December 5, 2022.
EXPOSURE: Case report forms were used to capture enrolled participant data and reasons for declining participation among otherwise eligible individuals.
MAIN OUTCOMES AND MEASURES: Descriptive statistics were used to characterize the cohort overall and by intervention. Among individuals declining participation, logistic regression was used to compare preference for FOBT/FIT or colonoscopy by recruitment region and year.
RESULTS: A total of 50 126 participants were recruited (mean [SD] age, 59.1 [6.9] years; 46 618 [93.0%] male and 3508 [7.0%] female). The cohort was racially and ethnically diverse, with 748 (1.5%) identifying as Asian, 12 021 (24.0%) as Black, 415 (0.8%) as Native American or Alaska Native, 34 629 (69.1%) as White, and 1877 (3.7%) as other race, including multiracial; and 5734 (11.4%) as having Hispanic ethnicity. Of the 11 109 eligible individuals who declined participation (18.0%), 4824 (43.4%) declined due to a stated preference for a specific screening test, with FOBT/FIT being the most preferred method (2820 [58.5%]) vs colonoscopy (1958 [40.6%]; P \u3c .001) or other screening tests (46 [1.0%] P \u3c .001). Preference for FOBT/FIT was strongest in the West (963 of 1472 [65.4%]) and modest elsewhere, ranging from 199 of 371 (53.6%) in the Northeast to 884 of 1543 (57.3%) in the Midwest (P = .001). Adjusting for region, the preference for FOBT/FIT increased by 19% per recruitment year (odds ratio, 1.19; 95% CI, 1.14-1.25).
CONCLUSIONS AND RELEVANCE: In this cross-sectional analysis of veterans choosing nonenrollment in the CONFIRM study, those who declined participation more often preferred FOBT or FIT over colonoscopy. This preference increased over time and was strongest in the western US and may provide insight into trends in CRC screening preferences
Potential causal association between gut microbiome and posttraumatic stress disorder
Funding Information: We thank the participants and working staff including the Psychiatric Genomics Consortium Posttraumatic Stress Disorder Working Group, the FinnGen consortium, and the MiBioGen consortium. Publisher Copyright: © 2024, The Author(s).Background: The causal effects of gut microbiome and the development of posttraumatic stress disorder (PTSD) are still unknown. This study aimed to clarify their potential causal association using mendelian randomization (MR). Methods: The summary-level statistics for gut microbiome were retrieved from a genome-wide association study (GWAS) of the MiBioGen consortium. As to PTSD, the Freeze 2 datasets were originated from the Psychiatric Genomics Consortium Posttraumatic Stress Disorder Working Group (PGC-PTSD), and the replicated datasets were obtained from FinnGen consortium. Single nucleotide polymorphisms meeting MR assumptions were selected as instrumental variables. The inverse variance weighting (IVW) method was employed as the main approach, supplemented by sensitivity analyses to evaluate potential pleiotropy and heterogeneity and ensure the robustness of the MR results. We also performed reverse MR analyses to explore PTSD’s causal effects on the relative abundances of specific features of the gut microbiome. Results: In Freeze 2 datasets from PGC-PTSD, eight bacterial traits revealed a potential causal association between gut microbiome and PTSD (IVW, all P < 0.05). In addition, Genus.Dorea and genus.Sellimonas were replicated in FinnGen datasets, in which eight bacterial traits revealed a potential causal association between gut microbiome and the occurrence of PTSD. The heterogeneity and pleiotropy analyses further supported the robustness of the IVW findings, providing additional evidence for their reliability. Conclusion: Our study provides the potential causal impact of gut microbiomes on the development of PTSD, shedding new light on the understanding of the dysfunctional gut-brain axis in this disorder. Our findings present novel evidence and call for investigations to confirm the association between their links, as well as to illuminate the underlying mechanisms.publishersversionpublishe
Enhancing Discovery of Genetic Variants for Posttraumatic Stress Disorder Through Integration of Quantitative Phenotypes and Trauma Exposure Information
Funding Information: This work was supported by the National Institute of Mental Health / U.S. Army Medical Research and Development Command (Grant No. R01MH106595 [to CMN, IL, MBS, KJRe, and KCK], National Institutes of Health (Grant No. 5U01MH109539 to the Psychiatric Genomics Consortium ), and Brain & Behavior Research Foundation (Young Investigator Grant [to KWC]). Genotyping of samples was provided in part through the Stanley Center for Psychiatric Genetics at the Broad Institute supported by Cohen Veterans Bioscience . Statistical analyses were carried out on the LISA/Genetic Cluster Computer ( https://userinfo.surfsara.nl/systems/lisa ) hosted by SURFsara. This research has been conducted using the UK Biobank resource (Application No. 41209). This work would have not been possible without the financial support provided by Cohen Veterans Bioscience, the Stanley Center for Psychiatric Genetics at the Broad Institute, and One Mind. Funding Information: MBS has in the past 3 years received consulting income from Actelion, Acadia Pharmaceuticals, Aptinyx, Bionomics, BioXcel Therapeutics, Clexio, EmpowerPharm, GW Pharmaceuticals, Janssen, Jazz Pharmaceuticals, and Roche/Genentech and has stock options in Oxeia Biopharmaceuticals and Epivario. In the past 3 years, NPD has held a part-time paid position at Cohen Veterans Bioscience, has been a consultant for Sunovion Pharmaceuticals, and is on the scientific advisory board for Sentio Solutions for unrelated work. In the past 3 years, KJRe has been a consultant for Datastat, Inc., RallyPoint Networks, Inc., Sage Pharmaceuticals, and Takeda. JLM-K has received funding and a speaking fee from COMPASS Pathways. MU has been a consultant for System Analytic. HRK is a member of the Dicerna scientific advisory board and a member of the American Society of Clinical Psychopharmacology Alcohol Clinical Trials Initiative, which during the past 3 years was supported by Alkermes, Amygdala Neurosciences, Arbor Pharmaceuticals, Dicerna, Ethypharm, Indivior, Lundbeck, Mitsubishi, and Otsuka. HRK and JG are named as inventors on Patent Cooperative Treaty patent application number 15/878,640, entitled “Genotype-guided dosing of opioid agonists,” filed January 24, 2018. RP and JG are paid for their editorial work on the journal Complex Psychiatry. OAA is a consultant to HealthLytix. All other authors report no biomedical financial interests or potential conflicts of interest. Funding Information: This work was supported by the National Institute of Mental Health/ U.S. Army Medical Research and Development Command (Grant No. R01MH106595 [to CMN, IL, MBS, KJRe, and KCK], National Institutes of Health (Grant No. 5U01MH109539 to the Psychiatric Genomics Consortium), and Brain & Behavior Research Foundation (Young Investigator Grant [to KWC]). Genotyping of samples was provided in part through the Stanley Center for Psychiatric Genetics at the Broad Institute supported by Cohen Veterans Bioscience. Statistical analyses were carried out on the LISA/Genetic Cluster Computer (https://userinfo.surfsara.nl/systems/lisa) hosted by SURFsara. This research has been conducted using the UK Biobank resource (Application No. 41209). This work would have not been possible without the financial support provided by Cohen Veterans Bioscience, the Stanley Center for Psychiatric Genetics at the Broad Institute, and One Mind. This material has been reviewed by the Walter Reed Army Institute of Research. There is no objection to its presentation and/or publication. The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting true views of the U.S. Department of the Army or the Department of Defense. We thank the investigators who comprise the PGC-PTSD working group and especially the more than 206,000 research participants worldwide who shared their life experiences and biological samples with PGC-PTSD investigators. We thank Mark Zervas for his critical input. Full acknowledgments are in Supplement 1. MBS has in the past 3 years received consulting income from Actelion, Acadia Pharmaceuticals, Aptinyx, Bionomics, BioXcel Therapeutics, Clexio, EmpowerPharm, GW Pharmaceuticals, Janssen, Jazz Pharmaceuticals, and Roche/Genentech and has stock options in Oxeia Biopharmaceuticals and Epivario. In the past 3 years, NPD has held a part-time paid position at Cohen Veterans Bioscience, has been a consultant for Sunovion Pharmaceuticals, and is on the scientific advisory board for Sentio Solutions for unrelated work. In the past 3 years, KJRe has been a consultant for Datastat, Inc. RallyPoint Networks, Inc. Sage Pharmaceuticals, and Takeda. JLM-K has received funding and a speaking fee from COMPASS Pathways. MU has been a consultant for System Analytic. HRK is a member of the Dicerna scientific advisory board and a member of the American Society of Clinical Psychopharmacology Alcohol Clinical Trials Initiative, which during the past 3 years was supported by Alkermes, Amygdala Neurosciences, Arbor Pharmaceuticals, Dicerna, Ethypharm, Indivior, Lundbeck, Mitsubishi, and Otsuka. HRK and JG are named as inventors on Patent Cooperative Treaty patent application number 15/878,640, entitled ?Genotype-guided dosing of opioid agonists,? filed January 24, 2018. RP and JG are paid for their editorial work on the journal Complex Psychiatry. OAA is a consultant to HealthLytix. All other authors report no biomedical financial interests or potential conflicts of interest. Publisher Copyright: © 2021 Society of Biological PsychiatryBackground: Posttraumatic stress disorder (PTSD) is heritable and a potential consequence of exposure to traumatic stress. Evidence suggests that a quantitative approach to PTSD phenotype measurement and incorporation of lifetime trauma exposure (LTE) information could enhance the discovery power of PTSD genome-wide association studies (GWASs). Methods: A GWAS on PTSD symptoms was performed in 51 cohorts followed by a fixed-effects meta-analysis (N = 182,199 European ancestry participants). A GWAS of LTE burden was performed in the UK Biobank cohort (N = 132,988). Genetic correlations were evaluated with linkage disequilibrium score regression. Multivariate analysis was performed using Multi-Trait Analysis of GWAS. Functional mapping and annotation of leading loci was performed with FUMA. Replication was evaluated using the Million Veteran Program GWAS of PTSD total symptoms. Results: GWASs of PTSD symptoms and LTE burden identified 5 and 6 independent genome-wide significant loci, respectively. There was a 72% genetic correlation between PTSD and LTE. PTSD and LTE showed largely similar patterns of genetic correlation with other traits, albeit with some distinctions. Adjusting PTSD for LTE reduced PTSD heritability by 31%. Multivariate analysis of PTSD and LTE increased the effective sample size of the PTSD GWAS by 20% and identified 4 additional loci. Four of these 9 PTSD loci were independently replicated in the Million Veteran Program. Conclusions: Through using a quantitative trait measure of PTSD, we identified novel risk loci not previously identified using prior case-control analyses. PTSD and LTE have a high genetic overlap that can be leveraged to increase discovery power through multivariate methods.publishersversionpublishe
Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.
Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant
Federated learning enables big data for rare cancer boundary detection.
Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing
Author Correction: Federated learning enables big data for rare cancer boundary detection.
10.1038/s41467-023-36188-7NATURE COMMUNICATIONS14
Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors
Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
Analysis of shared heritability in common disorders of the brain
ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders
- …