25 research outputs found

    Improved interchangeability with different corneal specular microscopes for quantitative endothelial cell analysis

    Get PDF
    Introduction: During our clinical practice and research, we encountered an interchangeability problem when using the SP-2000P and SP-3000P TopCon corneal specular microscopes (CSMs) (TopCon Medical Systems, Tokyo, Japan) regarding the endothelial cell count (ECC). We describe a method to improve interchangeability between these CSMs. Methods: Five consecutive good-quality endothelial cell photographs were obtained in 22 eyes of 11 subjects. An ECC comparison between the two CSMs was performed after (I) gauging and calibration by the manufacturer, (II) adjustment of the magnification, (III) correction after external horizontal and vertical calibration. Results: There was a statistically significant difference between the ECC of the SP-2000P and SP-3000P at the start. The SP-2000P counted an average of 500 cells/mm2 more than the SP-3000P (p=0.00). After correction for magnification and determining a correction factor based on external calibration, the difference between the ECC of the SP-2000P and the SP-3000P was then found to be 0.4 cells/mm2 and was not statistically significant (p=0.98). Discussion: We propose a method for improving interchangeability, which involves checking magnification settings, re-checking magnification calibration with external calibration devices, and then calculating correction factors. This method can be applied to various specular or confocal microscopes and their associated endothelial cell analysis software packages to be able to keep performing precise endothelial cell counts and to enable comparison of ECCs when a CSM needs to be replaced or when results from different microscopes need to be compared

    Proximity effects and Andreev reflection in mesoscopic SNS junction with perfect NS interfaces

    Full text link
    Low temperature transport measurements on superconducting film - normal metal wire - superconducting film (SNS) junctions fabricated on the basis of 6 nm thick superconducting polycrystalline PtSi films are reported. The structures with the normal metal wires of two different lengths L=1.5 μ\mum and L=6μ\mum and the same widths W=0.3μ\mum are studied. Zero bias resistance dip related to pair current proximity effect is observed for all junctions whereas the subharmonic energy gap structure originating from phase coherent multiple Andreev reflections have occurs only in the SNS junctions with short wires.Comment: ReVTex, 4 pages, 4 eps figures include

    ThermoElectric Transport Properties of a Chain of Quantum Dots with Self-Consistent Reservoirs

    Full text link
    We introduce a model for charge and heat transport based on the Landauer-Buttiker scattering approach. The system consists of a chain of NN quantum dots, each of them being coupled to a particle reservoir. Additionally, the left and right ends of the chain are coupled to two particle reservoirs. All these reservoirs are independent and can be described by any of the standard physical distributions: Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein. In the linear response regime, and under some assumptions, we first describe the general transport properties of the system. Then we impose the self-consistency condition, i.e. we fix the boundary values (T_L,\mu_L) and (T_R,mu_R), and adjust the parameters (T_i,mu_i), for i = 1,...,N, so that the net average electric and heat currents into all the intermediate reservoirs vanish. This condition leads to expressions for the temperature and chemical potential profiles along the system, which turn out to be independent of the distribution describing the reservoirs. We also determine the average electric and heat currents flowing through the system and present some numerical results, using random matrix theory, showing that these currents are typically governed by Ohm and Fourier laws.Comment: Minor changes (45 pages

    Outcome Measures of New Technologies in Uveal Melanoma Review from the European Vision Institute Special Interest Focus Group Meeting

    Get PDF
    Uveal melanoma UM is the most common primary intraocular tumor in adults. New diagnostic procedures and basic science discoveries continue to change our patient management paradigms. A recent meeting of the European Vision Institute EVI special interest focus group was held on Outcome Measures of New Technologies in Uveal Melanoma, addressing the latest advances in UM, starting with genetic developments, then moving on to imaging and treatment of the primary tumor, as well as to investigating the most recent developments in treating metastases, and eventually taking care of the patient s well being. This review highlights the meeting s presentations in the context of the published literatur

    Search for pair production of the scalar top quark in the electron-muon final state

    Get PDF
    We report the result of a search for the pair production of the lightest supersymmetric partner of the top quark (t~1\tilde{t}_1) in ppˉp\bar{p} collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider corresponding to an integrated luminosity of 5.4 fb1^{-1}. The scalar top quarks are assumed to decay into a bb quark, a charged lepton, and a scalar neutrino (ν~\tilde{\nu}), and the search is performed in the electron plus muon final state. No significant excess of events above the standard model prediction is detected, and improved exclusion limits at the 95% C.L. are set in the the (Mt~1M_{\tilde{t}_1},Mν~M_{\tilde{\nu}}) mass plane

    Search for pair production of the scalar top quark in muon+tau final states

    Get PDF
    We present a search for the pair production of scalar top quarks (t~1\tilde{t}_{1}), the lightest supersymmetric partners of the top quarks, in ppˉp\bar{p} collisions at a center-of-mass energy of 1.96 TeV, using data corresponding to an integrated luminosity of {7.3 fb1fb^{-1}} collected with the \dzero experiment at the Fermilab Tevatron Collider. Each scalar top quark is assumed to decay into a bb quark, a charged lepton, and a scalar neutrino (ν~\tilde{\nu}). We investigate final states arising from t~1t~1ˉbbˉμτν~ν~\tilde{t}_{1} \bar{\tilde{t}_{1}} \rightarrow b\bar{b}\mu\tau \tilde{\nu} \tilde{\nu} and t~1t~1ˉbbˉττν~ν~\tilde{t}_{1} \bar{\tilde{t}_{1}} \rightarrow b\bar{b}\tau\tau \tilde{\nu} \tilde{\nu}. With no significant excess of events observed above the background expected from the standard model, we set exclusion limits on this production process in the (mt~1m_{\tilde{t}_{1}},mν~m_{\tilde{\nu}}) plane.Comment: Submitted to Phys. Lett.

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Standard Model backgrounds to supersymmetry searches

    Full text link
    This work presents a review of the Standard Model sources of backgrounds to the search of supersymmetry signals. Depending on the specific model, typical signals may include jets, leptons, and missing transverse energy due to the escaping lightest supersymmetric particle. We focus on the simplest case of multijets and missing energy, since this allows us to expose most of the issues common to other more complex cases. The review is not exhaustive, and is aimed at collecting a series of general comments and observations, to serve as guideline for the process that will lead to a complete experimental determination of size and features of such SM processes.Comment: To appear in the J. Wess memorial volume, "Supersymmetry on the Eve of the LHC", to be published in European Physical Journal

    Collider aspects of flavour physics at high Q

    Get PDF
    This review presents flavour related issues in the production and decays of heavy states at LHC, both from the experimental side and from the theoretical side. We review top quark physics and discuss flavour aspects of several extensions of the Standard Model, such as supersymmetry, little Higgs model or models with extra dimensions. This includes discovery aspects as well as measurement of several properties of these heavy states. We also present public available computational tools related to this topic.Comment: Report of Working Group 1 of the CERN Workshop ``Flavour in the era of the LHC'', Geneva, Switzerland, November 2005 -- March 200
    corecore