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Abstract
Uveal melanoma (UM) is the most common primary intra-
ocular tumor in adults. New diagnostic procedures and basic 
science discoveries continue to change our patient manage-
ment paradigms. A recent meeting of the European Vision 

Institute (EVI) special interest focus group was held on “Out-
come Measures of New Technologies in Uveal Melanoma,” 
addressing the latest advances in UM, starting with genetic 
developments, then moving on to imaging and treatment of 
the primary tumor, as well as to investigating the most re-
cent developments in treating metastases, and eventually 
taking care of the patient’s well-being. This review highlights 
the meeting’s presentations in the context of the published 
literature. © 2022 The Author(s).
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Introduction

Staying informed is essential for physicians who treat 
patients with cancer as new developments occur con-
tinuously. This is certainly true of ocular oncology, 
where new diagnostic procedures and basic science dis-
coveries continue to change our patient management 
paradigms [1]. The identification of a subgroup of pa-
tients with uveal melanoma (UM) who carry a germline 
pathogenic variant in the BRCA1 associated-protein 1 
(BAP1) gene in all cells has led to discussions about the 
need for genetic testing of patients and their family 
members. Diagnostic tests may help to differentiate be-
tween truly benign melanocytic fundus lesions and ear-
ly UMs, which may progress into metastasis-producing 
lesions. Early treatment of such lesions may perhaps 
prevent their outgrowth. Furthermore, advances in ocu-
lar imaging may not only help to improve diagnosis but 
may also open new paths to improve radiotherapy. 
Stratifying patients with UM into well-defined metastat-
ic risk groups may provide a more effective way for eval-
uating new drugs.

These are just a few examples of new developments in 
managing UM and an analysis of the outcomes of these 
novel approaches will help to determine their value and 
applicability. A workshop was held with clinicians and 
researchers who work at the forefront of new develop-
ments in this disease. This paper summarizes these latest 
advances, starting with genetic developments, then mov-
ing on to the realm of imaging and treatment of the pri-
mary tumor, as well as to investigating the most recent 
developments in treating metastases, and eventually tak-
ing care of UM patients’ well-being.

BAP1 Tumor Predisposition Syndrome – Detection of 
Germline BAP1 in Patients with UM and Detection of 
Other Tumors

Occasional papers in the past described familial occur-
rence of UM, sometimes associated with cutaneous mela-
noma. A decade ago, the genetically defined BAP1 tumor 
predisposition syndrome emerged (BAP1-TPDS, OMIM 
614327). This syndrome is caused by a pathogenic variant 
in the BAP1 gene, which is associated with an increased 
risk of developing UM, cutaneous melanoma, renal-cell 
carcinoma, malignant mesothelioma, meningioma, and 
benign skin tumors known as MBAITS (melanocytic 
BAP1-mutated atypical intradermal tumors) or BAP1-
inactivated melanocytic tumors [2–5].

Tero Kivelä and colleagues [6] shared their systematic 
evaluation of new patients with UM in Finland. A total of 
432 consecutive patients were screened for germline 
BAP1 variants. Pathogenic germline variants were detect-
ed in 9 of 433 (2%) patients overall and in 4 of 16 (25%) 
patients from Finnish UM families [6]. Of 21 rare vari-
ants, five were identified as likely pathogenic by their ef-
fect on splicing, nuclear localization, or deubiquitination 
activity, and four carried variants in exon 13 with no ap-
parent effect on these functions, classified as likely benign 
but pending reassessment given the many suggested roles 
of BAP1 in the cell. According to the standards of the 
American College of Medical Genetics [7], functional 
data are needed in addition to documenting a fitting phe-
notype and segregation in the family in order to define a 
variant as pathogenic. In addition to testing the effect of 
likely pathogenic coding region variants on BAP1’s deu-
biquitinating activity, the group is developing further as-
says that might more directly measure the effect of BAP1 
variants on cell proliferation and motility.

Several BAP1-TPDS families have similarly been iden-
tified in the Netherlands [8]. Chau et al. [8] screened 878 
patients with UM for the presence of this syndrome. In a 
recent paper, Chau et al. [8] recommended genetic analy-
sis in patients with ≥2 BAP1-TPDS-associated tumors in 
their medical history or family history, as well as in pa-
tients diagnosed with UM under the age of 40 years, with 
skin melanoma under the age of 18 years, malignant me-
sothelioma under the age of 50 years, or renal-cell carci-
noma under 46 years of age. A study was set up to iden-
tify potential “BAP1 families.” Starting in 2016, question-
naires were provided to newly and previously treated UM 
patients, which asked for the occurrence of other malig-
nancies in the patient and their family members. A total 
of 246 patients were eligible for referral for germline test-
ing, of which 206 consented. This led to 182 genetic tests, 
through which three new BAP1 families were identified.

In addition, family members and patients with a patho-
genic BAP1 variant were offered screening for early de-

Table 1. BAP1 screening protocol as applied by the Leiden University 
Medical Center [7]

Eyes: age 15 years
Annual dilated eye exams by ophthalmologist

Skin: age 15 years
Monthly self-examination of the skin
Annual screening of the skin by a dermatologist

Kidneys, pulmonary pleurae, peritoneum: age 30 years
Annual imaging of the thorax/abdomen
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tection of other tumors. Within the first 3 years, this pro-
tocol led to the detection of two new mesotheliomas, two 
renal-cell carcinomas, and two cutaneous melanomas. 
Screening guidelines have been published by several 
groups [5, 9, 10]. Based on clinical experience, Chau et al. 
[8] made recommendations, as shown in Table 1, to per-
form yearly ophthalmological and dermatological exam-
inations, starting at age 15 years, with annual imaging of 
the thorax and abdomen added in patients ≥30 years of 
age.

Differentiating between Nevi and Melanoma

As choroidal nevi are a common finding in the healthy 
population (10–15%) and UM is rare [11], an accurate 
differentiation of nevi from UM and knowledge of pre-
dictive factors of malignant transformation are of great 
clinical importance.

Characteristic Differences on OCT
Bozena Romanowska-Dixon reported how different 

morphological features in optical coherence tomography 
(OCT) can aid in the differentiation between small (<2.5 
mm thick) choroidal nevi and melanomas. Although 
studies have shown no difference in melanoma-specific 
mortality between delayed and promptly treated small 
melanocytic fundus lesions, these lesions carry a risk of 
malignant transformation, upon which early treatment 
could be beneficial [12, 13]. However, treating a stable 
nevus might result in unnecessary loss of vision, espe-

cially for centrally located lesions. Therefore, additional 
clues to detect potential for malignant transformation 
would be valuable.

Romanowska-Dixon showed different OCT image 
features (Fig. 1), which can suggest malignant transfor-
mation, in particular, compression of the choriocapil-
laris, retinal pigment epithelial (RPE) changes, “shaggy” 
photoreceptors, and the presence of subretinal fluid [14–
17]. On OCT angiography (OCT-A), she furthermore 
showed a hyperreflectivity in the choriocapillaris in these 
patients. However, because the same features were also 
found in some apparently stable choroidal nevi, they un-
fortunately do not provide an unequivocal diagnosis. She 
therefore concluded that OCT presently could have a 
supporting role in the differentiation between a choroidal 
nevus and a small melanoma and in making the decision 
to treat or closely follow the lesion over time.

Oximetry and OCT-A of Choroidal and Iris Tumors
Niels Brouwer showed results of two new modalities 

of imaging blood vessels, oximetry (using the Oxymap 
technique) and OCT-A, for the diagnosis of choroidal 
and iris melanomas. Oximetry measures the oxygen satu-
ration of the arterial and venous blood in the retinal ves-
sels and could therefore be a potential biomarker of tu-
mor metabolism [18, 19]. In a cohort of 45 UM patients, 
an increase in oxygen consumption was found in the tu-
mor eye in comparison to the fellow eye, while in 42 pa-
tients with a choroidal nevus, no difference in oxygen 
consumption occurred between the affected and fellow 
eye [20]. Although this finding is in agreement with ear-

a b

c d

Fig. 1. OCT imaging in suspicious melano-
cytic fundus lesions. a, c show small pe-
ripheral lesions, which on US (inset) is 1.7 
mm thick, while (b, d) show a small pig-
mented midperipheral lesion which is 2.0 
mm thick. On both fundus photographs, 
lipofuscin (double arrowhead) can be seen, 
and both lesions have a low reflectivity on 
US. On OCT, RPE changes (white arrow), 
choriocapillaris compression (yellow ar-
row), and subretinal fluid (asterix) can be 
seen for both lesions. The lesion of d fur-
thermore shows “shaggy” photoreceptors 
(red arrow) and irregularities in the gan-
glion layer (green arrow).
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lier studies in showing an increased metabolic activity in 
UM [21, 22], the variation between subjects was too wide 
to use this technique to directly differentiate between a 
choroidal melanoma and nevus.

Furthermore, Brouwer shared images obtained using 
anterior segment OCT-A in ten iris melanomas and 42 
iris nevi [23]. Although this new technique is still suscep-
tible to different types of artefacts, good images were ob-
tained in 80% of the eyes. In all iris melanomas, vessels 
were observed in the tumor, whereas vessels could only 
be detected in 71% of the nevi. The vessels in both tumors 
displayed irregular patterns and a high tortuosity, which 
helped to differentiate the tumor vessels from the normal 
iris vasculature. OCT-A proved to be less suitable in pig-
mented lesions because the pigmentation absorbed the 
light from the OCT. For lightly pigmented tumors, how-
ever, it provided an elegant noninvasive method to visual-
ize the vasculature of iris lesions. This technique is cur-
rently studied in both melanocytic lesions [24], as well as 
other tumors such as ocular surface squamous neoplasia 
[25].

The TFSOM System for Predicting Growth of 
Melanocytic Choroidal Tumors
Carol Shields described the updated TFSOM-DIM (To 

Find Small Ocular Melanoma – Doing Imaging) mne-
monic for estimating the risk of growth in melanocytic 
choroidal tumors, which she considers to be an indicator 
of malignant transformation of a nevus to melanoma 
[26–29]. TFSOM-DIM stands for “Thickness >2 mm, 
Fluid under the retina, Symptoms, Orange pigment, Mel-
anoma-hollow-on-ultrasonography and Diameter >5 
mm.” She provided evidence to show that imaging identi-
fies nevi that show risk factors for growth to melanoma, 
with outcomes varying according to various combina-
tions of risk factors, increasing from 1% in the absence of 
any risk factors to 55% if five predictors are present. In 
particular, the 5-year rate of growth increased from 0.8% 
if the tumor thickness was <1 mm to 25% if the thickness 
was 2–3 mm. Importantly, race did not influence these 
rates [30].

The MOLES System for Differentiating Choroidal 
Nevi from Melanomas
Bertil Damato described the MOLES system to help 

nonexperts in estimating the likelihood of malignancy in 
melanocytic choroidal tumors and to manage patients 
accordingly [31]. The MOLES acronym stands for 
“Mushroom shape, Orange pigment, Large size, Enlarge-
ment, and Subretinal fluid.” Each of these is scored from 

0 to 2, and tumors can subsequently be categorized rang-
ing from “common nevus” and “low-risk nevus” to 
“high-risk nevus” and “probable melanoma.” The 
MOLES system was retrospectively evaluated by Harby 
et al. [32] in 222 tumors. All 81 tumors diagnosed as mel-
anoma were correctly identified as “probable melano-
ma,” with 135 of 141 diagnosed nevi having a MOLES 
score <3 (97% specificity). A similar, but larger, study by 
Roelofs et al. [31] confirmed the high sensitivity of the 
MOLES system.

Furthermore, Damato highlighted the differences be-
tween the MOLES and TFSOM-DIM systems [26, 27]. 
Although TFSOM-DIM is intended for specialists with 
access to ultrasonography, MOLES is designed for non-
specialists without such imaging. Accordingly, each item 
in the MOLES scoring system has an intermediate/uncer-
tain category. Another difference is that TFSOM-DIM 
predicts growth, whereas in MOLES, this feature is an in-
dicator of malignancy. As a result, the most important 
application of the MOLES system is the efficient and ap-
propriate referral of patients with melanocytic choroidal 
tumors to an ocular oncology specialist.

Biopsy of Small Choroidal Tumors
Heinrich Heimann reported on his experience with bi-

opsies of small, melanocytic choroidal tumors. He high-
lighted that small UM are now treated more urgently than 
before because it is with these tumors that the window of 
opportunity for preventing metastatic spread is the great-
est [33]. He suggested that early treatment improves sur-
vival, reporting several studies, including his own inves-
tigation of 132 patients with small choroidal melanomas 
detected during screening for diabetic retinopathy [34–
36].

Heimann described his technique for trans-retinal tu-
mor biopsy, performed with a vitreous cutter, without 
vitrectomy, gas tamponade, or laser treatment [37]. He 
also described his technique for trans-scleral biopsy, per-
formed under a lamellar scleral flap and using tissue glue 
to seal the sclerotomy [38].

In 100 eyes with a UM with a thickness ≤2 mm, histo-
logical diagnosis was obtained in 85 and genetic typing in 
67 tumors, with monosomy 3 observed in 16% of these. 
In a cohort of 232 cases, complications were rare and in-
cluded episcleral seeding (one case), endophthalmitis 
(one case), subretinal hemorrhage (5–8%), and vitreous 
hemorrhage in 1% of 101 trans-scleral and 13% of 131 
trans-retinal biopsies [39]. Heimann predicted that tu-
mor biopsy will become mandatory when effective treat-
ment for metastatic disease becomes available.
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Imaging UM

Modern ocular imaging technologies not only aid in 
the diagnosis of UM but are also increasingly applied to 
improve treatment and to provide promising new bio-
markers to enable early assessment of the efficacy of a 
therapy.

Magnetic Resonance Imaging
Jan-Willem Beenakker presented the possibilities of 

magnetic resonance imaging (MRI) of UM, which has be-
come feasible using regular clinical imaging [40–42]. He 
showed how MR images, of which some can be seen in 
Figure 2, can accurately assess the involvement of adja-
cent structures, such as the optic nerve or ciliary body 
[43]. In terms of size measurements, the MRI-based 
prominence and basal diameter measurements showed a 
good agreement with ultrasound (US) for small- and me-
dium-sized UM, with generally <0.5 mm differences. For 
large UM, however, larger differences were found, and 
MRI was preferred over conventional US because the 

three-dimensional visualization of MRI proved to be ben-
eficial to assess an irregularly shaped UM [44]. Further-
more, he showed how MRI is being used to improve the 
target definition for proton beam therapy of UM [45, 46].

Beenakker continued with describing the two main 
functional MRI techniques: diffusion- and perfusion-
weighted imaging. Different studies have shown how dif-
fusion-weighted imaging can differentiate between vari-
ous intraocular lesions because they have a different dif-
fusivity, a biomarker for their cellularity [47–50]. 
Furthermore, perfusion-weighted imaging shows chang-
es in pharmacokinetic parameters of the tumor after ra-
diotherapy, before size changes are apparent on US, mak-
ing it a promising technique to assess treatment respons-
es early. Additionally, these biomarkers seem to be 
associated with prognostic markers, such as monosomy 3 
[43, 47]. Beenakker expected that, similar to other tumor 
sites, these functional MRI techniques will soon play a 
more prominent role in both clinical practice and oph-
thalmic research as they assess noninvasively multiple el-
ements of the biology of UM [43, 51].

a b

c

Fig. 2. MRI of UM. Contrast enhanced T1-
weighted (a) and T2-weighted MR-image 
of a UM-containing eye (b), showing an 
enhancing UM (asterix) and choroid (ar-
rowhead) compared to the native T1-
weighted image (inset). Note that the UM 
has grown through the iris (double arrow). 
c PWI showing a rapid uptake of the gado-
linium contrast agent, followed by a grad-
ual decrease. This so-called wash-out curve 
is seen in two-thirds of UM. PWI, perfu-
sion-weighted imaging.
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Requirements for Proton Beam Radiotherapy
Jens Heufelder discussed requirements for successful 

proton beam therapy, based on his experience [52–54]. 
He started his presentation by emphasizing that precise 
positioning of the eye, with an accuracy of at least 0.2 
mm, is essential during treatment. Modern treatment 
planning systems, such as Ocular Tumour Planning Util-
itieS (an inhouse-developed treatment planning software 
jointly developed by the German Cancer Research Cen-
ter and the Helmholtz-Zentrum Berlin) [55, 56] or 
RayOcular, a module within the RayStation treatment 
planning system (RaySearch Laboratories, Sweden), can 
combine information from different imaging modalities, 
including CT, MRI, ophthalmoscopy, ultrasonography, 
OCT, to complement the conventional intraoperative 
measurement of fiducial marker locations with respect to 
the tumor. Patients must be able to look steadily at the 
fixation target and must not have intraocular gas or a tu-
mor diameter exceeding that of the maximum beam 
width.

The main indications for proton beam radiotherapy in-
clude unsuitability for brachytherapy because of large tu-
mor size or a juxtapapillary location and recurrence after 
other forms of treatment. He suggested that neoadjuvant 
proton beam radiotherapy may also be useful before enu-
cleation in eyes with optic nerve invasion. Studies consis-
tently report high rates of local tumor control and ocular 
conservation so that treatment of UM with proton beam 
radiotherapy is increasing around the world [57–59].

Blue-Light Autofluorescence Imaging after Plaque 
Radiotherapy
Gregor Willerding reported on the scope of autofluo-

rescence imaging (excitation wavelength 488 nm, detec-
tion of emission >500 nm) after ruthenium-106 brachy-
therapy for choroidal melanoma [60–62]. This imaging 
allows for visualization of autofluorescence originating 
from (melano-)lipofuscin at the level of the RPE as is 
shown in Figure 3. Willerding reported results in 31 eyes 
receiving a scleral radiation dose of 390–690 Gy. Apart 

a b

c

Fig. 3. Autofluorescence imaging of UM. 
Fundus photograph (a), blue-light fundus 
autofluorescence image (b), and SD-OCT 
image (c) of a UM in a male patient, 60 
months after ruthenium-106 brachythera-
py. The initial tumor thickness was 3.5 mm, 
and the prescribed scleral dose was 480 Gy. 
Laminar autofluorescence mottling and a 
rim of increased autofluorescence visualize 
the central irradiation field. The corre-
sponding SD-OCT scan shows retinal thin-
ning with loss of the ellipsoid zone and loss 
of the external limiting membrane directly 
adjacent to the rim of increased autofluo-
rescence (orange arrows).
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from preexisting changes overlying the tumor apex, the 
irradiation field was characterized by irregular increased 
autofluorescence with spots of decreased autofluores-
cence (mottling). The margin of the irradiation field was 
defined by a rim of markedly increased autofluorescence 
corresponding to loss of the external limiting membrane 
layer and the ellipsoid zone in the presence of an intact 
pigment epithelium on SD-OCT. RPE changes like 
clumping, migration, and atrophy corresponded to areas 
with autofluorescence mottling. This imaging is useful for 
highlighting the irradiated area when this is not evidence 
ophthalmoscopically. Limitations are poor image quality 
when media are opaque and lack of quantitative autoflu-
orescence imaging in routine clinical practice. Further-
more, it is not known whether changes of the autofluo-
rescence signal indicate a tumoricidal dose of radiation.

Outcomes after Treatment

Although the various treatment options for the pri-
mary UM have high degrees of tumor control, these pa-
tients often develop complications post radiotherapy, 
some of which can be treated surgically. It is important to 
include recent insights in the patients’ quality of life after 
ocular radiotherapy in the determination of the optimal 
treatment strategy.

Local Treatment Results
Miltiadis Fiorentzis discussed outcomes after plaque 

radiotherapy, proton beam radiotherapy, and local resec-
tion, reporting high rates of local tumor control, espe-
cially with smaller tumors and those not involving the 
ciliary body. Rates of radiation-induced optic neuropathy 
increased from around 40% to almost 100% as radiation 
dose increased from <20 Gy to ≥40 Gy. Fiorentzis con-
cluded by highlighting the need for further studies to de-
termine which therapeutic modality is best for each tu-
mor and to determine whether molecular genetics should 
influence the choice of treatment.

Endoresection of Choroidal Melanoma
Antonia Joussen emphasized that endoresection can 

conserve eyes that are likely to develop “toxic tumor syn-
drome” after radiotherapy and that careful surgical plan-
ning and follow-up are necessary for obtaining the best 
results. Joussen described her surgical technique of en-
doresection, which involves neoadjuvant radiotherapy, 
total vitrectomy, tumor resection with a low cutting rate, 
use of heavy liquid and endolaser, and finally filling the 

eye with silicone oil, which is removed after 3–6 months. 
Contraindications include optic-disc and/or foveal in-
volvement and ciliary body involvement of more than 
3–4 clock hours (relative contra indication). Following 
reports of fatal air embolism, the use of air has been re-
placed by heavy liquid and any vortex veins in the quad-
rant of the tumor are now cauterized at the start of the 
operation, which may also decrease the risk of dissemina-
tion of tumor cells into the general circulation, even 
though the tumor had been completely irradiated prior to 
irradiation [63].

The main complications are postoperative hemor-
rhage, pressure decompensations, and angle closure by 
silicone prolapse. Long-term complications include reti-
nal detachment with proliferative vitreoretinopathy, radi-
ation-induced ocular morbidity, ciliary body insufficien-
cy, and disturbed wound healing [64–66]. As endoresec-
tion should only be performed after a complete irradiation 
of the tumor, local tumor recurrences are rare [59].

Joussen concluded by drawing attention to the lack of 
standardized procedures and perioperative management 
for tumor resection surgery, with lack of consensus re-
garding the need for a neoadjuvant radiotherapy prior to 
surgery and the optimal type of radiation. Successful local 
resection requires a highly skilled team, careful case selec-
tion, and good preparation of the patient.

Quality of Life after Treatment for UM
Bertil Damato discussed quality-of-life outcomes after 

treatment for UM, emphasizing that because ocular on-
cologists and patients expend much effort and expense to 
conserve the eye and vision with the aim of improving 
quality of life, it is essential to measure quality of life and 
factors influencing this outcome, to improve care. These 
studies should help decide which patients should under-
go eye-conserving treatment and what therapeutic mo-
dality provides the best well-being in a particular patient. 
These studies should also indicate the impact of long-
term monitoring of suspicious nevi and treated melano-
mas on quality of life.

A study of 1,596 patients treated at the Liverpool Ocu-
lar Oncology Centre investigated patient-reported out-
comes, anxiety, depression, and well-being after enucle-
ation or radiotherapy [67, 68]. Self-reported quality of life 
was generally good. Only 10% reported poor quality of 
life, with only 10% of these patients attributing this to 
their ocular tumor and its treatment. The main causes of 
loss of well-being were poor social support, poor general 
health, and unemployment/financial difficulties, which 
were beyond the control of ocular oncologists. Similarly, 
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a study in the USA identified factors within the control of 
ocular oncology teams that influenced well-being [69]. 
These included patient education on all aspects their dis-
ease, its treatment and likely outcomes and consequenc-
es, informed consent for treatment and prognostic biop-
sy, and psychological support.

Prognostication of UM

As the survival from UM varies greatly from patient to 
patient, different models have been developed to not only 
accurately estimate the patient’s life expectancy but also 
to predict metastatic death after tumor dissemination. 
This information is not only valuable for the patient but 
also clinically relevant as it can be used to determine the 
optimal screening frequency. Furthermore, this staging is 
essential in stratifying UM patients in clinical trials.

Prognostication of Primary UM
Sarah Coupland highlighted in her talk on prognosti-

cation in UM that this should be based on the combina-
tion of clinical parameters as well as histologic and ge-
netic features of the primary tumors. Such combined 
multivariable prognostication enables refined stratifica-
tion of UM patients into metastatic risk groups. This en-
ables targeted surveillance of high-risk UM patients and 
also enhanced opportunities for clinical trials and meet-
ing patients’ demands for accurate estimation of life ex-
pectancy [70, 71]. The Liverpool UM Prognosticator On-
line (LUMPO) has been implemented in clinical care for 
close to a decade at the supraregional ocular oncology 
center in Liverpool, UK, and is used by around the world. 
The latest version of LUMPO – i.e., LUMPO3 – was vali-
dated by a recent multicenter study [72].

Bespoke next-generation sequencing techniques, de-
signed for UM, have improved the detection of lethal ge-
netic aberrations in UM [73–75]. Novel technologies, 
such as digital pathology with artificial intelligence prom-
ises to detect loss of BAP1 protein expression, associated 
with high mortality, in hematoxylin-and-eosin sections 
[76]. These advances will enhance our understanding of 
UM biology, improve prognostication, and enable clini-
cal trials evaluating systemic adjuvant therapy.

Algorithms Combining Genetic Data with AJCC 
Staging
Jens Folke Kiilgaard presented data showing how mor-

tality from metastases increases with higher stages of the 
Tumor, Node, Metastasis (TNM) American Joint Com-

mittee on Cancer (AJCC) system and with chromosome 
3 and 8 aberrations [77, 78]. It has been known for a long 
time that these aberrations are associated with develop-
ment of metastases from UM, but these chromosomal 
markers specifically indicate the potential to develop me-
tastases not the survival time. The AJCC stages are built 
up by combining the anatomic extent of the tumor (thick-
ness, largest basal diameter, involvement of the ciliary 
body, and extraocular extension), with the presence of 
lymph node metastases (hardly ever seen in UM), and the 
presence of distant metastases [77]. Combining informa-
tion on chromosome aberrations with the anatomical 
AJCC stage predicted metastatic death differently in pa-
tients whose tumor had or did not have abnormal chro-
mosome 3 and/or 8 (Fig. 4) [79]. A nomogram developed 
by Bagger et al. [64, 80] estimates one-year and five-year 
survival probability according to AJCC stage and chro-
mosome 3 and 8 status.

Predicting Metastatic Death (after Dissemination)
Kivelä and colleagues [81] explained the importance of 

an accurate prediction model for survival of patients al-
ready known to have clinical metastases. Because UM is 
a rare cancer, a randomized trial to compare treatments 
is difficult to conduct. Staging to allow a meaningful com-
parison of nonrandomized studies and stratification in 
trials are essential [81]. Different management approach-
es are otherwise hard to compare: palliative care, system-
ic therapy, and local treatment are all being used but se-
lection of patients to each of them differ, making results 
without staging essentially impossible to compare. The 
Helsinki University Hospital Working Formulation 
(HUH-WF) showed that the performance index (such as 
the Karnofsky or WHO score), the largest dimension of 
the largest metastasis, and serum alkaline phosphatase 
levels provide independent strong predictors of survival 
[82]. A subsequent multicenter validation of this staging 
method successfully separated a cohort of 249 patients 
into three stages with distinct survival times (an online 
calculator is available at http://www.prognomics.org/
huhwf.aspx) [83]. Two other staging systems created by 
an Italia-American team and a French team can also be 
considered [84, 85].

Rantala et al. [86] subsequently showed how the HUH 
WF differentiates by overall survival also patients man-
aged with best supportive care (BSC) and that using these 
data, the effectiveness of systemic treatments, and local 
treatments, such as liver surgery, could be compared 
[87]. This example clearly showed the importance of 
stratification, given that the effect of treatment depended 
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strongly on stage, e.g., compared to BSC, and only surgi-
cal resection for stage IVa disease provided longer overall 
survival in the Finnish national cohort. This means that 
a stage-specific comparison of novel treatments against 
BSC data is informative because the results would other-
wise strongly depend on patient selection and case mix 

[88, 89]. Selecting only patients in the best prognostic 
stage would lead to biased conclusion as regards out-
comes of treatments. She emphasized that the HUH-WF 
and other staging systems must continue to evolve, e.g., 
by including metastasis-free survival time in the model 
[85, 90].
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Treatment of Metastases
Piperno-Neumann et al. [91] mentioned the collabo-

ration within the International Rare Cancers Initiative 
(IRCI) and the European Reference Network for Rare 
Adult Cancers (ERN-EURACAN), which stimulate mul-
ticenter worldwide trials in collaboration with patient as-
sociation groups within a reasonable timescale. A meta-
analysis of trial data provided an overview of overall sur-
vival and progression-free survival of patients treated for 
metastases of UM with local and systemic treatments and 
may be used as a benchmark to select patients for future 
studies [92]. Objectives and endpoints need to be clearly 
defined in a practice-changing perspective, and adaptive 
or alternative designs should be considered to optimize 
the study duration and the sample size [93]. Basket trials 
based on molecular screening are ongoing, targeting pa-
tients with GNAQ/11 mutated tumors (NCT03947385) 
[87].

Adjuvant trials have stimulated great interest because 
prediction of metastatic disease is now quite accurate. In 
such trials, the tumor mutation status should be taken 
into account because it not only affects survival but po-
tentially also the effectiveness of the treatment. The best 
outcome parameters are yet to be determined, e.g., overall 
or metastasis-free survival. Furthermore, given that UM 
is a rare disease, one may ask what level of evidence is 
needed to get regulatory approval for a drug.

Conclusion

This workshop, which was supported by the European 
Vision Institute (EVI), featured numerous new technolo-
gies for outcome measures for UM. With the advance-
ment of diagnostic tests, new genetic and imaging bio-
markers, and especially potential treatments of metastat-
ic disease, exciting new strategies to improve the care for 
patients with UM are being developed and integrated into 
clinical practice.
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