115 research outputs found

    MetFrag relaunched: incorporating strategies beyond in silico fragmentation

    Get PDF
    Background: The in silico fragmenter MetFrag, launched in 2010, was one of the first approaches combining compound database searching and fragmentation prediction for small molecule identification from tandem mass spectrometry data. Since then many new approaches have evolved, as has MetFrag itself. This article details the latest developments to MetFrag and its use in small molecule identification since the original publication.Results: MetFrag has gone through algorithmic and scoring refinements. New features include the retrieval of reference, data source and patent information via ChemSpider and PubChem web services, as well as InChIKey filtering to reduce candidate redundancy due to stereoisomerism. Candidates can be filtered or scored differently based on criteria like occurence of certain elements and/or substructures prior to fragmentation, or presence in so-called “suspect lists”. Retention time information can now be calculated either within MetFrag with a sufficient amount of user-provided retention times, or incorporated separately as “user-defined scores” to be included in candidate ranking. The changes to MetFrag were evaluated on the original dataset as well as a dataset of 473 merged high resolution tandem mass spectra (HR-MS/MS) and compared with another open source in silico fragmenter, CFM-ID. Using HR-MS/MS information only, MetFrag2.2 and CFM-ID had 30 and 43 Top 1 ranks, respectively, using PubChem as a database. Including reference and retention information in MetFrag2.2 improved this to 420 and 336 Top 1 ranks with ChemSpider and PubChem (89 and 71 %), respectively, and even up to 343 Top 1 ranks (PubChem) when combining with CFM-ID. The optimal parameters and weights were verified using three additional datasets of 824 merged HR-MS/MS spectra in total. Further examples are given to demonstrate flexibility of the enhanced features.Conclusions: In many cases additional information is available from the experimental context to add to small molecule identification, which is especially useful where the mass spectrum alone is not sufficient for candidate selection from a large number of candidates. The results achieved with MetFrag2.2 clearly show the benefit of considering this additional information. The new functions greatly enhance the chance of identification success and have been incorporated into a command line interface in a flexible way designed to be integrated into high throughput workflows. Feedback on the command line version of MetFrag2.2 available at http://c-ruttkies.github.io/MetFrag/ is welcome

    A data independent acquisition all ion fragmentation mode tool for the suspect screening of natural toxins in surface water

    Get PDF
    Among natural freshwater pollutants, cyanotoxins, mycotoxins, and phytotoxins are the most important and less studied. Their identification in surface water is challenging especially cause of the lack of standards and established analytical parameters. Most target methods focus one or a single group of compounds with similar characteristics. Here we present an AIF fast method for the tentative identification of natural toxins in water. Respect to the previous method [1], it offers higher performances for the acquisition of unknown compounds at low levels for higher number of analytes.The key aspects of the method are: -The qualitative screening DIA-AIF workflow using Q Exactive Orbitrap. Both targeted and suspect screening bases have been combined with online databases and suspect list to retrieve candidates as suspect natural toxins and their metabolites or degradation products. -The in-silico analysis of mass spectrums allowed a fast structural characterization. -The workflow has been finally applied to real samples coming from the Czech Republic, Italy, and Spain allowing the determination of 17 suspect natural toxins, 4 of them confirmed. None toxin passed the limit of 1 µg/L taken from the legislation applied for microcystin LR and arbitrarily extended to all toxins

    Exploring open cheminformatics approaches for categorizing per-and polyfluoroalkyl substances (PFASs)

    Get PDF
    Per- and polyfluoroalkyl substances (PFASs) are a large and diverse class of chemicals of great interest due to their wide commercial applicability, as well as increasing public concern regarding their adverse impacts. A common terminology for PFASs was recommended in 2011, including broad categorization and detailed naming for many PFASs with rather simple molecular structures. Recent advancements in chemical analysis have enabled identification of a wide variety of PFASs that are not covered by this common terminology. The resulting inconsistency in categorizing and naming of PFASs is preventing efficient assimilation of reported information. This article explores how a combination of expert knowledge and cheminformatics approaches could help address this challenge in a systematic manner. First, the “splitPFAS” approach was developed to systematically subdivide PFASs (for eventual categorization) following a CnF2n+1–X–R pattern into their various parts, with a particular focus on 4 PFAS categories where X is CO, SO2, CH2 and CH2CH2. Then, the open, ontology-based “ClassyFire” approach was tested for potential applicability to categorizing and naming PFASs using five scenarios of original and simplified structures based on the “splitPFAS” output. This workflow was applied to a set of 770 PFASs from the latest OECD PFAS list. While splitPFAS categorized PFASs as intended, the ClassyFire results were mixed. These results reveal that open cheminformatics approaches have the potential to assist in categorizing PFASs in a consistent manner, while much development is needed for future systematic naming of PFASs. The “splitPFAS” tool and related code are publicly available, and include options to extend this proof-of-concept to encompass further PFASs in the future

    Supporting non-target identification by adding hydrogen deuterium exchange MS/MS capabilities to MetFrag

    Get PDF
    Liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) is increasingly popular for the non-targeted exploration of complex samples, where tandem mass spectrometry (MS/MS) is used to characterize the structure of unknown compounds. However, mass spectra do not always contain sufficient information to unequivocally identify the correct structure. This study investigated how much additional information can be gained using hydrogen deuterium exchange (HDX) experiments. The exchange of “easily exchangeable” hydrogen atoms (connected to heteroatoms), with predominantly [M+D]+ ions in positive mode and [M-D]− in negative mode was observed. To enable high-throughput processing, new scoring terms were incorporated into the in silico fragmenter MetFrag. These were initially developed on small datasets and then tested on 762 compounds of environmental interest. Pairs of spectra (normal and deuterated) were found for 593 of these substances (506 positive mode, 155 negative mode spectra). The new scoring terms resulted in 29 additional correct identifications (78 vs 49) for positive mode and an increase in top 10 rankings from 80 to 106 in negative mode. Compounds with dual functionality (polar head group, long apolar tail) exhibited dramatic retention time (RT) shifts of up to several minutes, compared with an average 0.04 min RT shift. For a smaller dataset of 80 metabolites, top 10 rankings improved from 13 to 24 (positive mode, 57 spectra) and from 14 to 31 (negative mode, 63 spectra) when including HDX information. The results of standard measurements were confirmed using targets and tentatively identified surfactant species in an environmental sample collected from the river Danube near Novi Sad (Serbia). The changes to MetFrag have been integrated into the command line version available at http://c-ruttkies.github.io/MetFrag and all resulting spectra and compounds are available in online resources and in the Electronic Supplementary Material (ESM)

    "MS-Ready" structures for non-targeted high-resolution mass spectrometry screening studies.

    Get PDF
    Chemical database searching has become a fixture in many non-targeted identification workflows based on high-resolution mass spectrometry (HRMS). However, the form of a chemical structure observed in HRMS does not always match the form stored in a database (e.g., the neutral form versus a salt; one component of a mixture rather than the mixture form used in a consumer product). Linking the form of a structure observed via HRMS to its related form(s) within a database will enable the return of all relevant variants of a structure, as well as the related metadata, in a single query. A Konstanz Information Miner (KNIME) workflow has been developed to produce structural representations observed using HRMS ("MS-Ready structures") and links them to those stored in a database. These MS-Ready structures, and associated mappings to the full chemical representations, are surfaced via the US EPA's Chemistry Dashboard ( https://comptox.epa.gov/dashboard/ ). This article describes the workflow for the generation and linking of ~ 700,000 MS-Ready structures (derived from ~ 760,000 original structures) as well as download, search and export capabilities to serve structure identification using HRMS. The importance of this form of structural representation for HRMS is demonstrated with several examples, including integration with the in silico fragmentation software application MetFrag. The structures, search, download and export functionality are all available through the CompTox Chemistry Dashboard, while the MetFrag implementation can be viewed at https://msbi.ipb-halle.de/MetFragBeta/

    Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics.

    Get PDF
    Novel metabolites distinct from canonical pathways can be identified through the integration of three cheminformatics tools: BinVestigate, which queries the BinBase gas chromatography-mass spectrometry (GC-MS) metabolome database to match unknowns with biological metadata across over 110,000 samples; MS-DIAL 2.0, a software tool for chromatographic deconvolution of high-resolution GC-MS or liquid chromatography-mass spectrometry (LC-MS); and MS-FINDER 2.0, a structure-elucidation program that uses a combination of 14 metabolome databases in addition to an enzyme promiscuity library. We showcase our workflow by annotating N-methyl-uridine monophosphate (UMP), lysomonogalactosyl-monopalmitin, N-methylalanine, and two propofol derivatives

    Automated pathway and reaction prediction facilitates in silico identification of unknown metabolites in human cohort studies

    Get PDF
    Identification of metabolites in non-targeted metabolomics continues to be a bottleneck in metabolomics studies in large human cohorts. Unidentified metabolites frequently emerge in the results of association studies linking metabolite levels to, for example, clinical phenotypes. For further analyses these unknown metabolites must be identified. Current approaches utilize chemical information, such as spectral details and fragmentation characteristics to determine components of unknown metabolites. Here, we propose a systems biology model exploiting the internal correlation structure of metabolite levels in combination with existing biochemical and genetic information to characterize properties of unknown molecules. Levels of 758 metabolites (439 known, 319 unknown) in human blood samples of 2279 subjects were measured using a non-targeted metabolomics platform (LC-MS and GC-MS). We reconstructed the structure of biochemical pathways that are imprinted in these metabolomics data by building an empirical network model based on 1040 significant partial correlations between metabolites. We further added associations of these metabolites to 134 genes from genome-wide association studies as well as reactions and functional relations to genes from the public database Recon 2 to the network model. From the local neighborhood in the network, we were able to predict the pathway annotation of 180 unknown metabolites. Furthermore, we classified 100 pairs of known and unknown and 45 pairs of unknown metabolites to 21 types of reactions based on their mass differences. As a proof of concept, we then looked further into the special case of predicted dehydrogenation reactions leading us to the selection of 39 candidate molecules for 5 unknown metabolites. Finally, we could verify 2 of those candidates by applying LC-MS analyses of commercially available candidate substances. The formerly unknown metabolites X-13891 and X-13069 were shown to be 2-dodecendioic acid and 9-tetradecenoic acid, respectively. Our data-driven approach based on measured metabolite levels and genetic associations as well as information from public resources can be used alone or together with methods utilizing spectral patterns as a complementary, automated and powerful method to characterize unknown metabolites

    Interoperable and scalable data analysis with microservices: applications in metabolomics.

    Get PDF
    Developing a robust and performant data analysis workflow that integrates all necessary components whilst still being able to scale over multiple compute nodes is a challenging task. We introduce a generic method based on the microservice architecture, where software tools are encapsulated as Docker containers that can be connected into scientific workflows and executed using the Kubernetes container orchestrator. We developed a Virtual Research Environment (VRE) which facilitates rapid integration of new tools and developing scalable and interoperable workflows for performing metabolomics data analysis. The environment can be launched on-demand on cloud resources and desktop computers. IT-expertise requirements on the user side are kept to a minimum, and workflows can be re-used effortlessly by any novice user. We validate our method in the field of metabolomics on two mass spectrometry, one nuclear magnetic resonance spectroscopy and one fluxomics study. We showed that the method scales dynamically with increasing availability of computational resources. We demonstrated that the method facilitates interoperability using integration of the major software suites resulting in a turn-key workflow encompassing all steps for mass-spectrometry-based metabolomics including preprocessing, statistics and identification. Microservices is a generic methodology that can serve any scientific discipline and opens up for new types of large-scale integrative science. The PhenoMeNal consortium maintains a web portal (https://portal.phenomenal-h2020.eu) providing a GUI for launching the Virtual Research Environment. The GitHub repository https://github.com/phnmnl/ hosts the source code of all projects. Supplementary data are available at Bioinformatics online

    Towards a comprehensive characterisation of the human internal chemical exposome: Challenges and perspectives

    Get PDF
    The holistic characterisation of the human internal chemical exposome using high-resolution mass spectrometry (HRMS) would be a step forward to investigate the environmental AE tiology of chronic diseases with an unprecedented precision. HRMS-based methods are currently operational to reproducibly profile thousands of endogenous metabolites as well as externally-derived chemicals and their biotransformation products in a large number of biological samples from human cohorts. These approaches provide a solid ground for the discovery of unrecognised biomarkers of exposure and metabolic effects associated with many chronic diseases. Nevertheless, some limitations remain and have to be overcome so that chemical exposomics can provide unbiased detection of chemical exposures affecting disease susceptibility in epidemiological studies. Some of these limitations include (i) the lack of versatility of analytical techniques to capture the wide diversity of chemicals; (ii) the lack of analytical sensitivity that prevents the detection of exogenous (and endogenous) chemicals occurring at (ultra) trace levels from restricted sample amounts, and (iii) the lack of automation of the annotation/identification process. In this article, we discuss a number of technological and methodological limitations hindering applications of HRMS-based methods and propose initial steps to push towards a more comprehensive characterisation of the internal chemical exposome. We also discuss other challenges including the need for harmonisation and the difficulty inherent in assessing the dynamic nature of the internal chemical exposome, as well as the need for establishing a strong international collaboration, high level networking, and sustainable research infrastructure. A great amount of research, technological development and innovative bio-informatics tools are still needed to profile and characterise the "invisible" (not profiled), "hidden" (not detected) and "dark" (not annotated) components of the internal chemical exposome and concerted efforts across numerous research fields are paramount
    corecore