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Abstract 

Identification of metabolites in non-targeted metabolomics continues to be a bottleneck in metabolomics 

studies in large human cohorts. Unidentified metabolites frequently emerge in the results of association 

studies linking metabolite levels to, for example, clinical phenotypes. For further analyses these unknown 

metabolites must be identified. Current approaches utilize chemical information, such as spectral details 

and fragmentation characteristics to determine components of unknown metabolites. Here, we propose a 

systems biology model exploiting the internal correlation structure of metabolite levels in combination with 

existing biochemical and genetic information to characterize properties of unknown molecules. 

Levels of 758 metabolites (439 known, 319 unknown) in human blood samples of 2279 subjects were 
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measured using a non-targeted metabolomics platform (LC-MS and GC-MS). We reconstructed the structure 

of biochemical pathways that are imprinted in these metabolomics data by building an empirical network 

model based on 1040 significant partial correlations between metabolites. We further added associations of 

these metabolites to 134 genes from genome-wide association studies as well as reactions and functional 

relations to genes from the public database Recon 2 to the network model. From the local neighborhood in 

the network, we were able to predict the pathway annotation of 180 unknown metabolites. Furthermore, 

we classified 100 pairs of known and unknown and 45 pairs of unknown metabolites to 21 types of 

reactions based on their mass differences. As a proof of concept, we then looked further into the special 

case of predicted dehydrogenation reactions leading us to the selection of 39 candidate molecules for 

5 unknown metabolites. Finally, we could verify 2 of those candidates by applying LC-MS analyses of 

commercially available candidate substances. The formerly unknown metabolites X-13891 and X-13069 

were shown to be 2-dodecendioic acid and 9-tetradecenoic acid, respectively. 

Our data driven approach based on measured metabolite levels and genetic associations as well as 

information from public resources can be used alone or together with methods utilizing spectral patterns as 

a complementary, automated and powerful method to characterize unknown metabolites.  
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1 Introduction 

Non-targeted metabolomics based on liquid chromatography coupled to mass spectrometry (LC-MS) has 

emerged as an established technology to simultaneously measure the levels of a wide range of low weight 

molecules (metabolites) in biofluids and tissues [1]. While the non-targeted approach allows the discovery 
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of unexpected metabolic links in many fields of biomedical research [2], a significant fraction of the 

obtained analytical signals cannot be assigned to a chemical structure though they are stably measured in 

thousands of samples [3]. Two years ago, the Metabolite Identification Task Group of the Metabolomics 

Society accentuated the community consensus that identification of these so-called unknown metabolites 

measured by several non-targeted mass spectrometry techniques in a larger scale is one of the most 

significant current challenges in metabolomics [4,5].  

Traditional identification of unknown metabolites in wet laboratories is very expensive and time consuming. 

Consequently, the attempt of identifying metabolites in silico was started as research niche a couple of 

years ago, and is more and more becoming a hot topic in metabolomics [6]. Various current in silico 

approaches focus on fragmentation spectra of unknown metabolites. As an example, Allen et al. published a 

probabilistic model, called Competitive Fragmentation Modeling (CFM) that uses fragmentation graphs and 

machine learning techniques to reproduce the unknown fragmentation based on known spectra of known 

chemical structures or to predict and rank possible structures based on a mass spectrum [7]. Recently, 

Ruttkies et al. used in silico fragmentation (MetFrag) and calculation of the retention time to evaluate 

candidates for unknown metabolites [8]. Grapov et al. proposed a graph-based tool, called MetaMapR, that 

integrates a similarity measure based on mass spectra with database information, such as enzymatic 

transformations and metabolite structural similarity to achieve richly connected metabolic networks 

incorporating unknown metabolites [9].  

Following a different idea without using spectral features, we previously suggested a systems biology 

method for the identification of unknown metabolites that is primarily based on the (partial) correlation 

between measured concentrations of metabolites and their genetic associations determined in 

metabolomics data from large cohorts [10]. We demonstrated that the network of metabolite pairs with 

significant partial correlation, the so-called Gaussian graphical models (GGMs), reconstruct biochemical 

pathways from metabolomics data [11]. By combining GGMs with metabolite-gene associations from 

genome-wide association studies with metabolites as quantitative traits (mGWAS) in a network, we were 

able to retrieve biochemical, functional information for unknown metabolites through manual inspection of 
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the resulting network. For further manual look-up, we provided Gene Ontology terms as well as known 

biochemical reactions from metabolic databases in annotation tables for genes and measured metabolites. 

This further facilitated the characterization of unknown metabolites [10]. 

Here, we extend this idea by (i) directly augmenting the GGM- and GWAS-based network with metabolite-

metabolite and metabolite-gene links from prior knowledge on biochemical reactions as stored in public 

databases such as Recon 2 [12] to make this knowledge accessible for systematic and automated mining, 

and by (ii) providing systematic and automated downstream analysis of the final integrated network 

replacing its manual inspection. To this end, we predict the biochemical pathways of the unknown 

metabolites in the network based on their neighbors with known chemical identity. In addition, we use 

mass differences between the unknown and neighboring known metabolites to predict enzymatic reactions 

of the unknown metabolites based on its measured mass to charge ratio (m/z) as previously proposed by 

Breitling et al. [13].  

To demonstrate its applicability for metabolite identification, we apply our approach to a non-targeted 

metabolomics dataset (439 known, 319 unknown metabolites) from the blood samples of 2279 subjects 

that were analyzed in the course of the project “Surrogate markers for Micro- and Macro-vascular hard 

endpoints for Innovative diabetes Tools” (SUMMIT) using a commercial LC-MS-based metabolomics 

platform (Metabolon Inc., USA). For a selected group of predicted metabolites, for which the pure 

compounds were commercially available, we tested our predictions experimentally. 

 

2 Materials and Methods 

The procedure of our automated metabolite characterization approach consists of modules for GGM 

generation, for integration of public data, and for pathway and reaction prediction. Figure S1 shows an 

overview of the complete workflow. We demonstrated the applicability of our method using metabolomics 

data that was produced in the course of the SUMMIT project by non-targeted LC-MS analysis. 

Implementations of all modules in R are provided in Supplementary File S1 along with the data on which 



– 5 – 

the here presented analyses are based. Candidate molecules that our method predicted for selected 

unknown metabolites were confirmed (or excluded) by experimental validation. 

 

2.1 Study cohorts and metabolomics data 

Serum samples of n=2279 patients with type 2 diabetes (T2D) from seven population studies, FINRISK1997 

(n=242), FINRISK2002 (n=92), FINRISK2007 (n=28) [14], Go-DARTS (n=1200) [15], IMPROVE (n=44) [16], 

60-years-olds (n=20) [17] and SDR (n=653) [18], all participating in the SUMMIT project, were analyzed 

using the non-targeted metabolomics platform of Metabolon Inc. (Durham, USA). 1147 of the T2D patients 

were also diagnosed with cardiovascular disease (CVD) while 1132 did not suffer from CVD. Besides the T2D 

and CVD disease state of the patients, further clinical information such as age, sex, duration of 

type 2 diabetes, height, body mass index (BMI), triglyceride, HDL, LDL, DBP, SBP, smoking status, 

hemoglobin A1c, baseline estimated glomerular filtration rate, insulin status and medication information 

such as ACE inhibitors, angiotensin receptor blockers (ARB), calcium channel blockers (CCB), diuretics, 

lipid rx, blood pressure lowering drugs, beta blockers, alpha blockers and aspirin was available. 

The non-targeted metabolomics platform comprises LC-MS (in positive and negative mode) as well as MS 

coupled to gas chromatography (GC) and has been described in detail previously [19,20]. Briefly, samples 

were thawed on ice and extracted with methanol containing internal standards to control extraction 

efficiency. Extracts were split into aliquots for positive and negative LC-MS and GC-MS mode and dried 

under nitrogen. LC-MS analyses were performed on an LTQ XL mass spectrometer (Thermo Fisher Scientific 

Inc., Waltham, MA, USA) coupled to a Waters Acquity UPLC system (Waters Corporation, Milford, MA, USA). 

For LC-MS positive (negative) ion analysis 0.1% formic acid (6.5 mM ammonium bicarbonate [pH 8.0]) in 

water was used as solvent A and 0.1% formic acid in methanol (6.5 mM ammonium bicarbonate in 95% 

methanol) as solvent B. After sample reconstitution with solvent A and injection, the column (2.1mm × 

100 mm Waters BEH C18, 1.7 µm particle-size) was developed with a gradient of 99.5% solvent A to 98% 

solvent B. The flow rate was set to 350 µL/min for a run time of 11 minutes each. The eluent was directly 

connected to the electrospray ionization source of the mass spectrometer. Full MS scans were recorded 
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from 80 to 1000 m/z, alternating with data dependent MS/MS fragmentation scans with dynamic exclusion. 

GC-MS analyses were performed on a Finnigan Trace DSQ single quadrupole mass spectrometer (Thermo 

Fisher Scientific Inc., Waltham, MA, USA) containing a GC column (20 m × 0.18 mm, 1.8 µm film phase 

consisting of 5% phenyldimethyl silicone). The gas chromatography was performed during a temperature 

gradient from 60 to 340°C with helium as carrier gas. MS scans with electron impact ionization (70 eV) and a 

50 to 750 m/z scan range were used. The metabolite identification has been semi-automated performed by 

Metabolon Inc. using a reference spectra library. Further details for the LC-MS part are also given below the 

description of the experimental validation of the selected candidates. 

In total, the levels of 758 metabolites were determined for the 2279 subjects in our cohorts. For 319 of the 

metabolites the chemical identity was not known at time of analysis. The 439 known metabolites are 

assigned to a simplified two-level metabolite ontology, consisting of 8 super pathways and 102 more precise 

sub pathways, which is similar to the ontology used by the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) [21].  

 

2.2 Public data sources 

For integrating metabolite-metabolite and metabolite-gene links based on known biochemical reactions 

into our model, we used Recon 2 [12], a community driven reconstruction of the human metabolism 

incorporating reactions between metabolites and functional gene annotations, as a representative among 

available metabolic databases including KEGG [21] or HumanCyc [22]. Furthermore, we used a published 

Gaussian graphical model (GGM) based on the population cohort KORA F4 (n=1768) [10], and metabolite-

gene associations of a published metabolomics GWAS based on KORA F4 and TwinsUK (n=6056) [23]. 

 

2.3 Data processing and integration 

Preprocessing: Metabolite concentrations were normalized by the median per metabolite and run day. 

Afterwards, metabolite concentrations were Gaussianized, meaning that values per metabolite were sorted 
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and transferred to values of a normal distribution [24].  

GGM generation: Based on the metabolomics data of the 2279 subjects of our cohorts, we created a GGM 

as backbone of our network model, since they are known to reconstruct biochemical pathways from 

measured metabolite levels [11]. First, we excluded metabolites with more than 20% and samples with 

more than 10% missing values leaving 625 metabolites for GGM generation. To generate a complete data 

matrix as required for the following analyses, we utilized the R [25] package ‘mice’ [26] with standard 

parameters to impute the remaining missing values. ‘mice’ implements algorithms for multivariate 

imputation by chained equations. The standard method ‘pmm’ (predictive mean matching) in the mice 

package estimates missing values of a variable x by applying regression models incorporating all other 

variables in the input matrix. A missing value in x is finally imputed as the value belonging to one of the 5 

cases with observed values in x, for which the value that is predicted based on the regression is closest to 

the predicted value of the case with missing data on x. To calculate partial correlations between metabolites 

in the complete data matrix, which form the basis of GGMs, we applied the R package ‘GeneNet’ [27] with 

the function ‘ggm.estimate.pcor’ and the method ‘dynamic’. The function ‘network.test.edges’ extracted 

862 significant GGM edges according to the Bonferroni corrected threshold of 0.01. To avoid biases in the 

network model related to covariates that are known or suspected to influence metabolite levels, in each 

calculation sex, age, study and the clinical phenotypes mentioned above were considered as covariates by 

incorporating them into the input data matrix for ‘ggm.estimate.pcor’.  

Data integration: We merged the edges of the newly generated GGM with 398 significant partial 

correlations of the published GGM based on the KORA F4 cohort into one model to end up with 

1040 connections between 637 known and unknown metabolites. Then we added 134 metabolite-

associated genes of a published GWAS [23]. Finally, we attached knowledge-based biochemical information 

extracted from Recon 2 [12] to the network model. To this end, we first added metabolites from Recon 2 if 

they were functionally related to at least one of the 134 genes through a reaction listed in Recon 2. 343 

Recon metabolites, of which 37 were mapped to measured metabolites and thus were already part of the 

GGM- and GWAS-based network, showed functional links to 57 genes, which were added to the network. 
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Secondly, Recon 2 reactions between metabolites annotated as ‘baseReactants’ and ‘baseProducts’ in the 

Recon data file were attached to the network if at least one of these metabolites could be mapped onto a 

measured known metabolite. Following this procedure, we found reactions for 83 measured metabolites 

and included them into the network. Thereby, 174 metabolites were added. In the final step, we 

complemented the network by incorporating edges between all metabolites in the network that were 

connected by a Recon 2 reaction. In total, the resulting (final) network includes, 1152 Recon 2 reactions 

connecting 591 metabolites. In total, the resulting (final) network incorporates  Please note that by 

integrating only main metabolites, which are annotated as ‘baseReactants’ and ‘baseProducts’ in Recon 2, 

we avoid connecting metabolites via so-called side metabolites (e.g. cofactors, water) which would lead to 

biochemically incorrect edges in the network. While Recon provides annotation concerning main and side 

metabolites making the role of metabolites in a reaction directly accessible, more sophisticated methods 

(e.g. using chemical similarity between metabolites) are needed if knowledge on biochemical reaction is 

extracted from other resources that do not include such annotations [28–30]. Please also note that, for our 

purposes, we ignored the compartment annotations provided with metabolite species in Recon 2 reactions, 

i.e., each Recon metabolite mapped or added to the GGM- and GWAS-based network is represented by a 

single node and two metabolites are connected if they are linked through a Recon 2 reaction irrespective of 

the compartment in which the reaction takes place. Reactions that are classified as ‘Transport’ or ‘Exchange’ 

in Recon2 are omitted when integrating Recon reactions into the network. The data integration process is 

schematically visualized in Figure S2. 

 

2.4 Prediction of super and sub pathways of unknown metabolites 

Each known metabolite can be annotated using one of several existing metabolite ontologies (pathway 

schemes). Estimating the assignment within the ontology for unknown metabolites helps to shrink the list 

of possible candidate molecules using the unknown metabolites’ biochemical context. Here, we are using 

the annotation that was provided with the metabolomics data, which assigns each metabolite to one of 8 

non-overlapping super pathways and a more precise sub pathway. Any other classification scheme could be 
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applied analogously within our method. While, in general, more fine-grained, and thus more specific 

pathway definitions can be expected to allow more precise predictions, they will, at the same time, produce 

more ambiguous pathway assignments for unknown metabolites, in particular in case of overlapping 

pathways where a metabolite can be annotated with various pathways.   

The idea of our approach is to capture the neighborhood of each known metabolite and to count the 

frequencies of their pathways. These frequencies can then be used to estimate the most probable pathway 

for each unknown metabolite considering the pathways of the known metabolites in its neighborhood 

(Figure 2b). To define the neighborhood for metabolites, we consider metabolites as neighbors, if they are 

connected by a GGM edge, share a common GWAS gene, if there is a gene associated to the unknown 

metabolite and this gene is functionally related to a known metabolite, or if the unknown metabolite is 

connected by a GGM edge to a known metabolite, which is connected through a reaction to a database 

metabolite (Figure 2a). 

Our approach is divided into a training phase based on known metabolites and a prediction phase, in which 

the super pathway 𝑝𝑖  is predicted for each unknown metabolite 𝑖. During the training phase we first 

determined the a priori probabilities 𝑃𝐵(𝑝) of each super pathway 𝑝 ∈ {Amino acid, Carbohydrate, Cofactor 

and vitamins, Energy, Lipid, Nucleotide, Peptide, Xenobiotics} (Formula (1)). 

𝑃𝐵(𝑝) =
∑ # neighbors of metabolites with super pathway 𝑝

2 ⋅ # neighboring metabolite pairs
 (1) 

For each super pathway 𝑝, we calculated the conditional probability 𝑃𝑁(𝑝𝑖|𝑝𝑗) based on all known 

metabolites 𝑖 with super pathway 𝑝𝑖  given metabolites 𝑗 with super pathway 𝑝𝑗  are neighbors of 𝑖 

(Formula (2). 

𝑃𝑁(𝑝𝑖|𝑝𝑗) =
𝑃(𝑝𝑖 ∩ 𝑝𝑗)

𝑃𝐵(𝑝𝑗)
=

𝑃(𝑝𝑖  and 𝑝𝑗 are neighbors)

background probability of 𝑝𝑗
 (2) 

During the prediction phase we resolve the conditional probability 𝑃𝑁(𝑝𝑖|𝑝1 ∩ … ∩ 𝑝𝑛) for each super 

pathway 𝑝𝑖  of all unknown metabolites 𝑖 given the pathways 𝑝1, … , 𝑝𝑛 of 𝑛 neighboring known metabolites 



– 10 – 

(Formula (3). The first transformation follows the Bayes’ theorem. For the second transformation we 

assumed independence of the neighbors 1, … , 𝑛. As a consequence of the approximation, a very small value 

of one conditional probability results in a very small overall probability for the specific pathway. 

𝑃𝑁(𝑝𝑖|𝑝1 ∩ … ∩ 𝑝𝑛) ⇔
𝑃𝑁(𝑝1 ∩ … ∩ 𝑝𝑛|𝑝𝑖) ⋅ 𝑃𝐵(𝑝𝑖)

𝑃𝐵(𝑝1 ∩ … ∩ 𝑝𝑛)
∼∝

𝑃𝑁(𝑝1|𝑝𝑖) ⋅ … ⋅ 𝑃𝑁(𝑝𝑛|𝑝𝑖) ⋅ 𝑃𝐵(𝑝𝑖)

𝑃𝐵(𝑝1) ⋅ … ⋅ 𝑃𝐵(𝑝𝑛)
 (3) 

For each unknown metabolite 𝑖, the predicted super pathway 𝑝𝑖  with the highest probability 

𝑚𝑎𝑥(𝑃𝑁(𝑝𝑖|𝑝1 ∩ … ∩ 𝑝𝑛)) is accepted if its probability is at least 𝑧 times higher than the super pathway 

with the second highest probability. We defined five classes of confidence and estimated respective values 

of 𝑧 empirically based on multiple 10-fold cross-validations with known metabolites: (a) very high 

confidence (correct predictions ≥ 97.5% ⟹ 𝑧 ≥ 207.0), (b) high confidence (correct predictions ≥

95% ⟹ 𝑧 ≥ 78.0), (c) medium confidence (correct predictions ≥ 90% ⟹ 𝑧 ≥ 7.1), (d) low confidence 

(correct predictions ≥ 85% ⟹ 𝑧 ≥ 2.7) and (e) very low confidence (correct predictions < 85% ⟹ 𝑧 <

2.7). For metabolites, that are neighbors of further unknown metabolites, but not of known metabolites, 

we used the super pathway with the highest a priori probability and assigned the confidence class according 

to the criteria above. 

For each unknown metabolite with a predicted super pathway, we selected the more specific sub pathway 

that is most common among neighboring known metabolites. If an equal number of neighbors own 

different sub pathways, we stored each option. 

We evaluated our approach with a series of 100 10-fold cross-validations using known metabolites with 

annotated super and sub pathways (Table S1). 

 

2.5 Prediction of reactions that connect known and unknown metabolites 

Knowledge about the reaction connecting a known and an unknown metabolite leads to the possibility of 

virtually applying this reaction to the known metabolite to select candidate molecules. Here, we focused on 

the 21 frequently occurring reaction types that are shown in Table 2. We assumed the presence of a 
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reaction between two metabolites if they were connected directly by a GGM edge or indirectly via a gene 

based on a GWAS or via a known reaction according to Recon 2 (Figure 2c). This assumption is based on the 

observation that pairs of metabolites that are connected by a GGM edge particularly tend to be reactants of 

a direct reaction [11]. Nevertheless, direct edges in the GGM might represent also multi step reactions 

between two metabolites in cases where the intermediate metabolites are not quantified. Following a 

simplified approach, we then assigned a specific reaction type to a connected pair of metabolites, if the two 

metabolites showed an m/z difference indicating a difference in molecule mass that is typical for the 

respective reaction type with Δ𝑚𝑝𝑎𝑖𝑟 = Δ𝑚𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 ± 𝑒 [13]. Here, we set 𝑒 = 0.3 to compensate the unit 

mass resolution of theMS platform, on which the presented data was collected. e can be adapted for 

metabolomics platforms with higher mass resolution to yield more specific reaction types. The predicted 

reaction can be applied to the known metabolite to manually select concrete candidate molecules for the 

connected unknown metabolite. 

We evaluated our approach based on pairs of known metabolites (Table 2).  

 

2.6 Experimental validation of candidate molecules 

For a selected set of unknown metabolites, we sought experimental confirmation of our predictions. Here, 

we focused on unknown metabolites for which the most frequently observed reaction type, 

dehydrogenation reactions, were predicted. To select the most promising candidates for experimental 

validation, we additionally filtered the list using differences in retention index as a second criterion. The 

distribution of differences in retention indices between all GGM pairs of known metabolites with correctly 

predicted dehydrogenation reaction (26 true positives) is compared to the respective distribution for 

wrongly predicted dehydrogenation reaction (8 false positives). Since both distributions do not overlap 

(Figure S3), we used the mean difference in retention time of the correct predictions plus/ minus their 

variances (Δ𝑟𝑖 < 355.9) as threshold for selecting 26 of the most promising candidates of unknown 

metabolites for experimental validation.  
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To verify or falsify these candidates of unknown metabolites we purchased all corresponding molecules that 

were commercially available as pure substances: 9-octadecenedioic acid (Anward, Kowloon, Hong Kong: 

ANW-62167, 312.23 g/mol), trans-2-nonenoic acid (Sigma-Aldrich Chemie GmbH, Steinheim, Germany: 

S354015, 156.12 g/mol), 3-nonenoic acid (Sigma-Aldrich Chemie GmbH: CDS000243, 156.12 g/mol), 8-

nonenoic acid (Sigma-Aldrich Chemie GmbH: 715433, 156.12 g/mol), cis-9-tetradecenoic acid (Sigma-

Aldrich Chemie GmbH: M3525, 226.19 g/mol), trans-2-dodecendioic acid (VWR International GmbH, 

Darmstadt, Germany: CAYM88820, 228.14 g/mol).  

Candidate substances were dissolved in water at a concentration of 1 mg/ml by ultrasonification and, where 

appropriate, by addition of several droplets of methanol and diluted with the LC running solvent A to a 

concentration of 100 ng/ml. Analyses of candidate solutions were performed with LC-MS in negative 

ionization mode on a LTQ XL mass spectrometer (Thermo Fisher Scientific GmbH, Dreieich, Germany) 

coupled to a Waters Acquity UPLC system (Waters GmbH, Eschborn, Germany) at the Helmholtz Zentrum 

München. After sample injection the column (2.1mm × 100 mm Waters BEH C18, 1.7 μm particle-size) was 

developed with a gradient of 99.5% solvent A (6.5 mM ammonium bicarbonate [pH 8.0]) to 98% solvent B 

(6.5 mM ammonium bicarbonate in 95% methanol). The flow rate was set to 350 μL/min for a run time of 

11 minutes. The eluent was directly connected to the electrospray ionization source of the mass 

spectrometer. 

For each candidate the pure substance and a spiked mixture with an extracted reference plasma sample 

was analyzed. For comparison the reference plasma containing the unknown compounds at natural 

abundance was measured as well. MS scans were recorded from 80 to 1000 m/z as well as data dependent 

MS/MS scans of the candidate masses. 

We compared the retention time of peaks in the extracted ion chromatogram (EIC) for the three 

measurements per metabolite. Especially the mixture of the pure substance and reference plasma should 

show just one peak, because two separate peaks would indicate that both substances are not identical. 

Finally, we checked if the fragment spectra of the pure substances and of the respective unknown 

metabolite in the matrix sample consisted of the same fragments with equal relative intensities. 
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3 Results  

Here, we propose a systems biology method for identification of unknown metabolites that is based on the 

investigation of the unknown metabolite’s biochemical and functional neighborhood in a metabolic 

network that is reconstructed from the metabolomics data using Gaussian Graphical Models (GGM) (see 

Materials and Methods). We further extend the network by genetic associations and prior biochemical 

knowledge from public databases and use it as a basis for automatically predicting the biochemical 

pathways and, in various cases, the reaction by which the unknown metabolite is produced from a known 

metabolite. This procedure yields concrete molecules as candidates for unknown metabolites that can then 

be tested experimentally. We applied our approach to unknown metabolites in non-targeted metabolomics 

data from blood of 2279 subjects. As a proof of principle, we tested selected predicted candidates on the 

LC-MS metabolomics platform. 

 

3.1 Data integration and construction of the network model 

The network model is the core part of our approach and the basis of analytical and predictive methods. It 

connects unknown metabolites to complementary functional information from heterogeneous data 

resources and allows automated mining of these connections for metabolite identification. As a 

consequence, edges in the network represent various types of relations, which are integrated into the 

network in separate steps using data type specific thresholds (see Methods). 637 (388 known, 249 

unknown) of the 758 measured metabolites are connected by 1040 GGM edges leading to a network model 

with one large connected component and 17 separate sub graphs with a maximum of 7 vertices. Adding 

genetic associations from published metabolomics GWAS to the network, 186 measured metabolites (136 

known, 50 unknown) are linked to 134 genes (169 metabolites directly, 73 metabolites through ratios, and 

56 through both). 175 metabolites are connected through a GGM edge as well as through GWAS edges via a 

gene, thus 648 measured metabolites (394 known, 254 unknown) of our network model are connected. We 
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then integrated 480 metabolites and mapped 139 metabolites and 57 genes of the public database Recon 2. 

591 of those metabolites are connected through 1152 reactions, of which 343 are functionally related to 57 

genes. Only a subset of 139 of our measured metabolites in the network could be directly mapped to 

metabolites in Recon 2. In the final model, 181 unknown metabolites are connected by a GGM edge (171) 

or via a gene (35) to a known metabolite. A graphml file of the network model is prepared in Supplementary 

File S2.  

The overall network (Figure 1), which shows a scale free topology, embeds unknown metabolites into their 

biochemical and functional context (Figure 1, zoom in) by connecting them to known metabolites via direct 

edges (GGM, blue) or indirect edges (GWAS, green; Recon 2, red). Thereby metabolites are connected 

neglecting the compartmentalization of biochemical processes. In contrast to networks aiming at a realistic 

reconstruction of complete human metabolism for modelling and simulation, the network generated in our 

study is supposed to capture as many functional links between metabolites as possible to provide hints for 

metabolite identification irrespective of their exchange between compartments or organs.  

 
Figure 1: Graphical representation of the network model 
The final network model embeds 254 measured unknown metabolites into their biochemical and functional context. The model was 
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constructed based on 758 measured metabolites (known: 439, unknown: 319), 2626 metabolites of the public database Recon 2 
and 1782 genes from Recon 2 and published metabolomics GWAS. Elements of Recon 2 were included only if they were either 
directly or through a gene connected to a measured metabolite. Not-connected metabolites and genes are not shown. Edge colors 
indicate the type of connection as follows: blue: GGM, green: GWAS, red: functional relation (Recon), brown: reaction (Recon). GGM 
edges are labeled with the mass difference of metabolites and the beta is shown for GWAS edges. The shape of nodes indicates the 
element type: metabolite (oval), gene (diamond) and the border color of nodes indicates if it is a measured metabolite (yellow), a 
Recon metabolite (grey), or both (red). 

 

3.2 Prediction of pathways 

Based on known metabolites in the neighborhood of unknown metabolites, we were able to automatically 

predict super pathways for 180 and sub pathways for 178 out of 183 unknown metabolites that were 

connected to at least one known metabolite either directly or indirectly via a gene or a third metabolite 

(Figure 2a and b). To 150 metabolites a clear sub pathway was assigned. For 28 metabolites two (mostly 

similar) sub pathways were suggested. Table 1 summarizes the proportion of predicted super and sub 

pathways per confidence class. 

Confidence [%] Confidence 
Prediction rate [%] 

super pathway 
Count 

super pathway 
Count (>1 option) 

sub pathway 

≥ 97.5 very high 18.3 33 33 (6) 

≥ 95 high 2.2 4 4 (0) 

≥ 90 medium 35.0 63 62 (16) 

≥ 85 low 31.1 56 55 (5) 

< 85 very low 13.3 24 24 (1) 

Table 1: Proportion of unknown metabolites with predicted pathways 
The five confidence levels that are provided for the pathway predictions were determined based on thresholds for known 
metabolites (see Materials and Methods). 

 

In general, unknown metabolites that are not well connected or belong to a cluster of other unknown 

metabolites can be predicted with only low confidence. From a methods view, the confidence class only 

counts for the super pathway prediction, but as shown in Table S1 the sub pathway prediction behaves 

similarly. Consequently, the confidence of predicted sub pathways increases with a rising confidence of 

predicted super pathways. A complete list of predicted pathways for unknown metabolites is provided in 

Table S2. Our approach is able to classify a large amount of unknown metabolites automatically. 
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Figure 2: Schema of pathway and reaction prediction 
For the prediction of pathways and reactions of unknown metabolites, (a) neighbors of each metabolite were collected based on 
direct partial correlation (GGM) edges, common genetic links by a GWAS association or functional connections via a Recon 
metabolite or gene. The statistics (b), which is calculated among the neighborhood of known metabolites, is applied to each 
unknown metabolite to predict the most probable pathway. For the prediction of reactions (c) reactions are assigned between 
neighboring metabolites based on comparison of their mass difference Δ𝑚 with a list of mass differences that are characteristic for 
specific reactions. Note, while node labels in the figure indicate unknown or known metabolites known-known neighbors are used 
for validation of the prediction approach, and unknown-unknown pairs are also analyzed in the reaction prediction.  

 

3.3 Prediction of reactions 

Prediction of reactions, such as methylation, oxidation, hydroxylation, phosphorylation, carboxylation, 

hydrogenation, etc. (Table 2), between known and unknown metabolites enables the in silico application of 

reactions to known metabolites to select concrete candidates for unknown metabolites.  

We tried the simple approach of assigning reactions to pairs of neighboring metabolites in the network 

which we assumed to be connected by a reaction (Figure 2c) based on a typical, reaction-specific change in 

mass. Thereby, we considered all pairs with mass difference Δ𝑚𝑝𝑎𝑖𝑟 within an error interval of 

Δ𝑚𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 ± 0.3 to compensate for the limited mass resolution in our metabolomics data set. As Breitling 

et al. [13] showed that the accuracy of reaction prediction significantly depends on mass resolution, this 

interval should be adjusted for platforms with better resolution to allow for improved differentiation of 

reactions. Table 2 shows a summary of pairs of known, known/unknown, and unknown metabolites with 

assigned reactions. Supplementary Table S3 contains a complete list of assigned reactions per unknown 

metabolite. We predicted reactions also between pairs of unknown metabolites as it can serve as one 
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element of metabolite characterization. Pairs among known metabolites were used for verification. With 23 

true out of 31 assigned (de)amination processes (74%) and 53 true out of 79 assigned (de)hydrogenation 

processes (67%), the simplified reaction prediction approach worked best for these two types of reactions 

in our data (Table 2).  

Reaction Δmass known-known (true*) known-unknown unknown-unknown 

total pairs  5600 899 223 

(Oxidative) deamination 1 31 (23) 6 3 

(De)hydrogenation 2 79 (53) 15 11 

(De)methylation, or Alkyl-

chain-elongation 
14 63 (37) 8 9 

Oxidation, or Hydroxylation, 

or Epoxidation 
16 75 (48) 14 4 

(De)ethylation, or Alkyl-chain-

elongation 
28 64 (37) 5 7 

Quinone, or CH3 to COOH,  

or Nitro reduction 
30 24 (5) 4 1 

Bis-oxidation 32 24 (3) 9 0 

(De)acetylation 42 29 (5) 13 2 

(De)carboxylation 44 26 (10) 13 1 

Sulfation, or Phosphatation 80 or 96 23 (9) 5 4 

Taurine Conjugation 107 2 (0) 1 1 

Cys Conjugation 121 or 119 3 (1) 3 1 

Glucuronidation 176 or 192 10 (4) 3 1 

GSH Conjugation 307 or 305 0 (0) 1 0 
*) Brackets indicate the number of formally true reactions. 

Table 2: Summary of assigned reactions based on Δmass 
Frequently occurring reactions are shown with their typical change in mass and their occurrence in the network model among pairs 
of metabolites (Δ𝑚 ± 0.3). Pairs of metabolites were built based on their neighborhood in network model via GGM, GWAS or Recon 
edges. In the column of reactions between pairs of neighboring known metabolites, the number of verified reactions among these 
pairs is indicated. 

 

3.4 Selection of candidate molecules 

For a proof of concept, we sought to test our predictions experimentally for the most frequent predicted 

reaction type, the dehydrogenation reaction. To select the best candidate, we additionally applied a second 

prediction criterion considering the retention times of the reactants. To this end, we used the distribution of 

differences in retention index between pairs of known metabolites that are connected by a 

dehydrogenation reaction compared to known metabolites with the same Δ𝑚 but connected via another 

reaction. Out of 15 pairs of connected unknown and known metabolites with Δ𝑚 = 2 ± 0.3, we classified 

12 pairs to be part of a dehydrogenation based on this additional criterion (Table S4). Beyond that, we also 

considered 11 pairs of unknown metabolites to learn about the relationship among themselves, of which 
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7 pairs were predicted to be connected by a dehydrogenation. Table 3 provides details about five pairs of 

known and unknown metabolites, classified as lipid (fatty acid: dicarboxylate, medium chain, long chain) 

with a predicted dehydrogenation reaction. 

For experimental validation we focused on the 5 unknown metabolites that were predicted to be fatty acid 

derivatives (Table 3). In case of these unknown metabolites, the double bond cannot be determined by our 

approach alone as we do not use any information from fragmentation spectra. Thus, after exclusion of 

candidate structures that are measured as known metabolites on our metabolomics platform, 39 molecules 

remained as concrete candidates for the five unknown metabolites. For 4 out of 5, at least one of the 

candidate molecules was commercially available. 

Metabolite Super 
pathway* 

Sub 
pathway* 

Reaction* Reactant* Candidate molecules Verified molecule 

X-13891 Lipid Fatty acid, 
dicarboxylate 
 

dehydrogenation dodecanedioic 
acid 

2-dodecendioic acid, 3-dodecendioic acid, 
4-dodecendioic acid, 5-dodecendioic acid, 
6-dodecendioic acid 

2-dodecendioic acid 

X-13069 Lipid Long chain 
fatty acid 

dehydrogenation 5,8-tetradecad
ienoate 

2-tetradecenoic acid, 3-tetradecenoic acid, 
4-tetradecenoic acid, 5-tetradecenoic acid, 
6-tetradecenoic acid, 7-tetradecenoic acid, 
8-tetradecenoic acid, 9-tetradecenoic acid, 
10-tetradecenoic acid, 11-tetradecenoic acid, 
12-tetradecenoic acid, 13-tetradecenoic acid 

9-tetradecenoic acid 

X-11538 Lipid Fatty acid, 
dicarboxylate 

dehydrogenation octadecanedio
ate 

2-octadecenedioic acid, 3-octadecenedioic 
acid, 4-octadecenedioic acid, 
5-octadecenedioic acid, 6-octadecenedioic 
acid, 7-octadecenedioic acid, 
8-octadecenedioic acid, 9-octadecenedioic 
acid 

 

X-11859 Lipid Medium 
chain fatty 
acid 

dehydrogenation pelargonate 2-nonenoic acid, 3-nonenoic acid, 
4-nonenoic acid, 5-nonenoic acid, 
6-nonenoic acid, 7-nonenoic acid, 
8-nonenoic acid 

 

X-11905 Lipid Fatty acid, 
dicarboxylate 

dehydrogenation hexadecanedi
oate 

2-hexadecenedioic acid, 3-hexadecenedioic 
acid, 4-hexadecenedioic acid, 
5-hexadecenedioic acid, 6-hexadecenedioic 
acid, 7-hexadecenedioic acid, 
8-hexadecenedioic acid 

 

*: automatically predicted features 

Table 3: Preselected candidate molecules 
We selected candidate molecules for 5 unknown metabolites that we predicted to be fatty acid derivatives and reactants in a 
dehydrogenation reaction. The structure of the candidate molecules per unknown metabolite basically varies in the position of the 
predicted double bond. Candidate molecules printed in bold were commercially available and forwarded to the experimental 
validation. 
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3.5 Experimental validation of predicted candidate molecules 

We bought 6 pure substances of 4 predicted candidates that were available at chemical distributors. 

Applying LC-MS negative measurements with these pure substances, we were able to verify the predicted 

identity of two unknown metabolites. 

2-dodecendioic acid and X-13891 (m/z: 227.1) share a retention time peak at 2.77 min. in their extracted 

ion chromatograms (EIC) and show the same fragments with equivalent relative intensities in their MS2 

fragmentation spectra, consequently the candidate molecule is verified (Figure 3). 

 

Figure 3: Spectra of the candidate 2-dodecendioic acid and X-13891 
The extracted ion chromatograms show the same retention time for each measurement: candidate molecule, candidate molecule + 
reference matrix (containing the unknown metabolite) and reference matrix. The MS2 fragmentation spectra of the candidate 
molecule and of the unknown metabolite show the same fragments with equal relative intensities, consequently the candidate 
molecule is verified. 

 

Furthermore, we could verify the candidate molecule 9-tetradecenoic acid for X-13069 (Figure S4). 

9-octadecenedioic acid and X-11538 show a slight shift in their retention time peaks so that this candidate 

molecule could be falsified, although both molecules show very similar fragments in their MS2 
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fragmentation spectra (Figure S5). 2-nonenoic acid, 3-noneoic acid, 8-noneoic acid and X-11859 have 

different retention time peaks in the EIC so that these candidates could also be falsified (Figure S6). A 

detailed overview of the evaluation results of all selected candidate molecules is provided in Table S5. 

 

4 Discussion 

In recent years, in silico selection of candidates for unknown metabolites became a valuable approach for 

metabolite identification in non-targeted MS-based metabolomics [5]. Here, we present a new method that 

uses biochemical and genetic links of unknown and known metabolites rather than their chemical 

properties derived from spectra to select candidate molecules. Our approach consists of three basic steps: 

First, we identify the biochemical and genetic neighborhood of unknown metabolites that is imprinted in 

the correlation and association among measured metabolite levels and between these levels and the 

genotype of subjects in large cohorts. To this end, we build networks that (i) connect measured metabolites 

if they show a significant partial correlation forming a Gaussian Graphical Model (GGM) and (ii) connect 

metabolites to genes if a significant association exists between the metabolite and genetic variation in the 

gene as derived from a genome-wide association study (GWAS). This approach was previously shown to 

reconstruct known metabolic pathways [10,23]. In a second step, we integrate substrate, product and 

genetic information on known biochemical reactions. In our approach we derived this information from 

Recon2 [12]. While in principle other metabolic databases such as KEGG [21] or HumanCyc [22] can also be 

used as resources for known biochemical reactions our method does not include parsers for these 

databases currently. In a third step, we predict pathways and reactions of unknown metabolites based on 

their neighbors in the network. To assess the quality of these predictions, we evaluated our approach based 

on the predictions that our method produced for the set of metabolite pairs with known chemical structure.  

To test the performance of our approach, we applied it to unknown metabolites from a non-targeted 

metabolomics platform that was used to determine the blood metabolomes of 2279 subjects. Out of 

319 unknown metabolites we were able to characterize 200 metabolites through their neighborhood in the 

network. For 180 and 109 metabolites we were able to predict pathways and reactions, respectively. Finally, 
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as a proof of principle, we confirmed our predicted candidates for two unknown metabolites experimentally 

(X-13891 as 2-dodecendioic acid; X-13069 as 9-tetradecenoic acid) out of four, for which we tested 

candidates.  

Our method complements existing methods in various ways. First, by focusing on the quantitative 

information across all measured samples as well as genetic and functional associations of metabolites, we 

make use of orthogonal information in the metabolomics data that is typically omitted in existing 

approaches, which rely on information from fragmentation spectra (e.g. CFM [7], MetFrag [8]), the 

calculation of retention time [8] or use networks that depict the similarity of unknown and known 

metabolites or signals in terms of detected fragments [31], measured mass-to-charge ratios [9,13] or 

elemental composition [32]. By combining the information that is imprinted in the correlation structure of 

the data as accessible through our network with information extracted from spectral features such as mass-

to-charge ratios, we were able to use mass differences between pairs of metabolites to characterize 

unknown metabolites even in our case of MS data with low mass resolution. While low mass resolution is 

insufficient to identify specific mass differences that are typical for certain reactions [13], our network 

allows pre-filtering these pairs by focusing on neighboring metabolites, which can be assumed to be linked 

functionally. Second, if metabolomics measurements were performed by companies in a fee-for-service 

manner (e.g. for large sample sizes), the in depth spectral information about unknown metabolites that is 

needed for most existing methods is usually not reported. In these cases, our method provides an 

alternative route for metabolite identification as it does not require spectral details beyond the reported 

quantities (step 1 and 2) and the mass-to-charge ratio in step 3. Finally, while in methods that do not rely on 

networks, one run of the method is needed for each unknown metabolite, network-based methods such as 

the one proposed here provide characterizations for the unknown metabolites in a metabolomics data set 

in a single run. If new data sets from the same metabolomics platform become available, these data can be 

easily integrated to an existing network to improve metabolite identification also for the previous data set.  

Limitations and future perspectives: One of the major limitations of our approach is its dependence on the 

availability of measurements for a large number of samples, while methods that focus on spectral details 
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usually only need the spectrum of the unknown metabolite from a single sample. The construction of GGMs 

requires an at least balanced number of samples and measured parameters. In addition, metabolites with 

missing values cannot be incorporated into the GGM in our method. In part, we solve this problem through 

imputation of the missing values. Nonetheless, our method cannot identify candidate molecular structures 

for unknown metabolites that show a very high number of missing values across the samples, since 

imputation is not applicable in these cases. Also, if a metabolite is not connected to any known metabolite 

or gene in our final networks, we cannot provide any further characterization for the unknown metabolite. 

In general, our approach presupposes a similar behavior of unknown and known metabolites, which ignores 

potential biases in the distribution of unknown metabolites (e.g. if complete classes of metabolites are 

unknown). Moreover, in cases where the number of unknown metabolites by far exceeds the number of 

known metabolites the probability that an unknown metabolite is connected to a known metabolite is low. 

Thus, a transfer of pathway and reaction information to the unknown molecule is not possible. Although 

our approach relies on probabilistic graphical models (GGMs), it is not fully probabilistic in the aspects 

concerning data integration and predictions. A future statistically rigorous extension of our method could 

incorporate information about the previously identified edges by setting informative priors on GGM 

structures (using, for example, efficient Bayesian methods for GGMs [33]), or by setting penalties in a 

regularization-based approach [34]; the latter method could also potentially be used for exclusion of hubs 

or unknown confounders. Future inference of the sub- and super-pathways can potentially be based on less 

stringent independence assumptions. A further limitation of our approach is the current usage of a very 

simplified method for reaction prediction by solely relying on mass differences. In addition, the currently 

tested list of possible enzymatic reactions is not complete. This step can be improved by applying 

chemometric methods for in silico reaction prediction that take functional groups of the known metabolite 

into account [35]. 
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5 Conclusion 

Metabolite identification for non-targeted MS-based platforms is one of the major bottlenecks of 

metabolomics approaches today [5]. Here we described a method that uses biochemical and genetic 

information as imprinted in the correlation structure of the measured metabolite levels and genotype-

metabotype links from genome-wide association studies to select candidate molecules for unknown 

metabolites. Integration of these metabolite-metabolite and metabolite-gene pairs with functional data 

from known enzymatic reactions into a network embeds unknown metabolites into their context of 

metabolic pathways. Predicting pathways and reactions of unknown metabolites based on their 

neighborhood to known metabolites in the network thereby allows identification of possible candidates. 

Combining our approach with methods that use orthogonal chemical information on unknown metabolites 

such as fragmentation or isotope patterns will largely improve metabolite identification in future studies. 
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Supplementary material 

 

Figure S1: Workflow of the complete procedure 
The schematic workflow shows all steps of our procedure to characterize unknown metabolites. The shape of each element 
indicates the respective part consisting of an automated in silico procedure or existing data or manual or wet laboratory work. 
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Confidence1 Total Correct Similar False Ff2 None 

very high 10797 8354 (77.4%) 953 (8.8%) 1317 (12.1%) 183 (1.7%) 0 (0.0%) 

high 1278 682 (53.4%) 0 (0.0%) 533 (41.7%) 63 (4.9%) 0 (0.0%) 

medium 9914 5932 (59.8%) 1302 (13.1%) 1781 (18.0%) 899 (9.1%) 0 (0.0%) 

low 5308 1957 (36.9%) 93 (1.8%) 1941 (36.6%) 1218 (22.9%) 99 (1.9%) 

very low 2985 827 (27.7%) 305 (10.2%) 691 (23.1%) 1162 (38.9%) 0 (0.0%) 

1: Confidence of super pathway prediction, 2) false because of wrong super pathway prediction 

Table S1: Cross validation of the pathway prediction module 
A 10-fold cross validation was applied for 100 times to get the total count of predicted super pathways per confidence level. The 
following columns refer to the number of accompanying predicted sub pathways. For the sub pathway prediction, we distinguished 
between correct, similar (e.g. long-chain fatty acids versus medium-chain fatty acids), false, false because of wrong super pathway, 
or no prediction.  

 

Name Predicted super pathway Confidence Predicted sub pathway Fraction1 

X-11805 peptide very high dipeptide 0.8 

X-13429 lipid very high sterol, steroid 0.4 

X-12063 lipid very high sterol, steroid 0.4 

X-11440 lipid very high sterol, steroid 0.6 

X-12456 lipid very high sterol, steroid 0.5 

X-11792 peptide very high dipeptide 0.8 

X-12850 lipid very high sterol, steroid 0.6 

X-14086 peptide very high dipeptide 1 

X-11441 cofactors and vitamins very high hemoglobin and porphyrin metabolism 1 

X-11442 cofactors and vitamins very high hemoglobin and porphyrin metabolism 1 

X-11530 cofactors and vitamins very high hemoglobin and porphyrin metabolism 1 

X-17174 peptide very high dipeptide 0.7 

X-18601 lipid very high sterol, steroid 0.8 

X-08988 amino acid very high glycine, serine and threonine metabolism 0.6 

X-11381 lipid very high carnitine metabolism 0.6 

X-11438 lipid very high fatty acid, dicarboxylate, or long chain fatty acid 0.4 

X-11491 lipid very high fatty acid, dicarboxylate, or lysolipid 0.3 

X-11538 lipid very high fatty acid, dicarboxylate 0.5 

X-11469 lipid very high sterol, steroid 0.5 

X-12644 lipid very high lysolipid 0.8 

X-11529 lipid very high fatty acid, dicarboxylate, or lysolipid 0.4 

X-14626 lipid very high fatty acid, dicarboxylate, or lysolipid 0.4 

X-02249 lipid very high essential fatty acid, or fatty acid, dicarboxylate, or long chain 
fatty acid 

0.3 

X-11421 lipid very high carnitine metabolism 0.7 

X-11470 lipid very high sterol/steroid 0.7 

X-17269 lipid very high medium chain fatty acid 1 

X-14192 peptide very high dipeptide 1 

X-14272 peptide very high dipeptide, or gamma-glutamyl amino acid 0.5 

X-16123 peptide very high dipeptide 1 

X-16128 peptide very high dipeptide 1 
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X-16132 peptide very high dipeptide 1 

X-16134 peptide very high fibrinogen cleavage peptide 1 

X-12556 amino acid very high glycine, serine and threonine metabolism 0.8 

X-11422 nucleotide high purine metabolism, (hypo)xanthine/inosine containing 0.7 

X-13435 lipid high carnitine metabolism 1 

X-11261 lipid high carnitine metabolism 0.4 

X-12798 lipid high carnitine metabolism 0.7 

X-02269 lipid medium fatty acid, dicarboxylate, or long chain fatty acid 0.5 

X-08402 lipid medium sphingolipid, or sterol/steroid 0.5 

X-10510 lipid medium sphingolipid, or sterol/steroid 0.5 

X-11244 lipid medium sterol, steroid 1 

X-11443 lipid medium sterol, steroid 1 

X-11820 lipid medium carnitine metabolism, or sterol/steroid 0.5 

X-11905 lipid medium fatty acid, dicarboxylate 1 

X-12450 lipid medium essential fatty acid, or fatty acid, monohydroxy 0.5 

X-12465 lipid medium carnitine metabolism, or ketone bodies 0.5 

X-12627 lipid medium essential fatty acid, or long chain fatty acid 0.5 

X-13891 lipid medium fatty acid, dicarboxylate 1 

X-14632 lipid medium bile acid metabolism, or sterol/steroid 0.5 

X-14658 lipid medium bile acid metabolism 1 

X-16654 lipid medium bile acid metabolism 1 

X-17443 lipid medium fatty acid, monohydroxy 1 

X-11522 cofactors and vitamins medium hemoglobin and porphyrin metabolism 1 

X-04495 amino acid medium butanoate metabolism, or creatine metabolism, or cysteine, 
methionine, sam, taurine metabolism 

0.3 

X-09706 amino acid medium urea cycle; arginine-, proline-, metabolism, or valine, leucine and 
isoleucine metabolism 

0.5 

X-11478 amino acid medium phenylalanine & tyrosine metabolism, or tryptophan 
metabolism 

0.5 

X-11837 amino acid medium phenylalanine & tyrosine metabolism 1 

X-12216 amino acid medium phenylalanine & tyrosine metabolism 1 

X-14352 amino acid medium urea cycle; arginine-, proline-, metabolism, or valine, leucine and 
isoleucine metabolism 

0.5 

X-11838 xenobiotics medium drug 1 

X-12039 xenobiotics medium food component/plant, or xanthine metabolism 0.5 

X-14374 xenobiotics medium benzoate metabolism, or xanthine metabolism 0.5 

X-11429 nucleotide medium purine metabolism, (hypo)xanthine/inosine containing, or 
pyrimidine metabolism, uracil containing 

0.5 

X-16674 lipid medium fatty acid, monohydroxy 1 

X-03094 lipid medium sterol/steroid 1 

X-10419 lipid medium sterol/steroid 1 

X-10500 lipid medium sterol/steroid 1 

X-11247 lipid medium long chain fatty acid 1 

X-11317 lipid medium lysolipid 1 

X-11327 lipid medium carnitine metabolism 1 
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X-11450 lipid medium sterol, steroid 1 

X-11508 lipid medium fatty acid, monohydroxy 1 

X-11521 lipid medium essential fatty acid 1 

X-11533 lipid medium medium chain fatty acid 1 

X-11537 lipid medium glycerolipid metabolism 1 

X-11540 lipid medium glycerolipid metabolism 1 

X-11550 lipid medium medium chain fatty acid 1 

X-11552 lipid medium fatty acid, amide 1 

X-11859 lipid medium medium chain fatty acid 1 

X-12051 lipid medium lysolipid 1 

X-13069 lipid medium long chain fatty acid 1 

X-14662 lipid medium bile acid metabolism 1 

X-14939 lipid medium medium chain fatty acid 1 

X-15222 lipid medium medium chain fatty acid 1 

X-15492 lipid medium sterol/steroid 1 

X-16578 lipid medium medium chain fatty acid 1 

X-16943 lipid medium medium chain fatty acid 1 

X-16947 lipid medium inositol metabolism 1 

X-17254 lipid medium lysolipid 1 

X-17299 lipid medium carnitine metabolism 1 

X-17438 lipid medium fatty acid, dicarboxylate 1 

X-06307 peptide medium dipeptide 1 

X-12038 peptide medium polypeptide 1 

X-16130 peptide medium dipeptide 1 

X-16135 peptide medium fibrinogen cleavage peptide 1 

X-16137 peptide medium polypeptide 1 

X-17189 peptide medium dipeptide 1 

X-17441 peptide medium fibrinogen cleavage peptide 1 

X-14095 amino acid medium   

X-11333 amino acid medium amino fatty acid, or lysine metabolism, or urea cycle; arginine-, 
proline-, metabolism 

0.3 

X-11809 cofactors and vitamins low hemoglobin and porphyrin metabolism 1 

X-12206 cofactors and vitamins low ascorbate and aldarate metabolism 1 

X-14056 cofactors and vitamins low hemoglobin and porphyrin metabolism 1 

X-16124 cofactors and vitamins low hemoglobin and porphyrin metabolism 1 

X-16946 cofactors and vitamins low hemoglobin and porphyrin metabolism 1 

X-17162 cofactors and vitamins low hemoglobin and porphyrin metabolism 1 

X-17612 cofactors and vitamins low hemoglobin and porphyrin metabolism 1 

X-16480 lipid low essential fatty acid, or fatty acid, dicarboxylate 0.5 

X-12093 amino acid low amino fatty acid, or urea cycle; arginine-, proline-, metabolism 0.5 

X-12511 amino acid low amino fatty acid, or urea cycle; arginine-, proline-, metabolism 0.5 

X-13477 amino acid low amino fatty acid, or urea cycle; arginine-, proline-, metabolism 0.5 

X-03088 amino acid low urea cycle; arginine-, proline-, metabolism 1 

X-05491 amino acid low butanoate metabolism 1 
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X-06126 amino acid low phenylalanine & tyrosine metabolism 1 

X-06246 amino acid low alanine and aspartate metabolism 1 

X-06267 amino acid low urea cycle; arginine-, proline-, metabolism 1 

X-11334 amino acid low lysine metabolism 1 

X-11818 amino acid low amino fatty acid 1 

X-12405 amino acid low tryptophan metabolism 1 

X-12734 amino acid low phenylalanine & tyrosine metabolism 1 

X-12749 amino acid low phenylalanine & tyrosine metabolism 1 

X-12786 amino acid low alanine and aspartate metabolism 1 

X-12802 amino acid low valine, leucine and isoleucine metabolism 1 

X-13619 amino acid low urea cycle; arginine-, proline-, metabolism 1 

X-13835 amino acid low histidine metabolism 1 

X-14588 amino acid low lysine metabolism 1 

X-15461 amino acid low phenylalanine & tyrosine metabolism 1 

X-15667 amino acid low tryptophan metabolism 1 

X-16071 amino acid low tryptophan metabolism 1 

X-17138 amino acid low valine, leucine and isoleucine metabolism 1 

X-17685 amino acid low phenylalanine & tyrosine metabolism 1 

X-12543 amino acid low phenylalanine & tyrosine metabolism 1 

X-14625 amino acid low glutamate metabolism, or glutathione metabolism 0.5 

X-13848 amino acid low   

X-10810 nucleotide low purine metabolism, (hypo)xanthine/inosine containing 1 

X-12094 nucleotide low nad metabolism 1 

X-12844 nucleotide low nad metabolism 1 

X-11452 xenobiotics low food component/plant 1 

X-12040 xenobiotics low food component, plant 1 

X-12217 xenobiotics low benzoate metabolism 1 

X-12230 xenobiotics low benzoate metabolism 1 

X-12231 xenobiotics low food component/plant 1 

X-12329 xenobiotics low food component/plant 1 

X-12407 xenobiotics low food component/plant 1 

X-12730 xenobiotics low food component/plant 1 

X-12816 xenobiotics low food component/plant 1 

X-12830 xenobiotics low food component/plant 1 

X-12847 xenobiotics low food component/plant 1 

X-13728 xenobiotics low xanthine metabolism 1 

X-15497 xenobiotics low drug 1 

X-15728 xenobiotics low benzoate metabolism 1 

X-16564 xenobiotics low benzoate metabolism 1 

X-16940 xenobiotics low benzoate metabolism 1 

X-17150 xenobiotics low food component/plant 1 

X-17185 xenobiotics low benzoate metabolism 1 

X-17314 xenobiotics low benzoate metabolism 1 

X-12544 lipid very low sterol/steroid 1 
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X-02973 cofactors and vitamins very low ascorbate and aldarate metabolism 1 

X-04357 carbohydrate very low fructose, mannose, galactose, starch, and sucrose metabolism 1 

X-12007 carbohydrate very low fructose, mannose, galactose, starch, and sucrose metabolism 1 

X-12056 carbohydrate very low fructose, mannose, galactose, starch, and sucrose metabolism 1 

X-12116 cofactors and vitamins very low ascorbate and aldarate metabolism 1 

X-12696 carbohydrate very low glycolysis, gluconeogenesis, pyruvate metabolism 1 

X-13727 carbohydrate very low fructose, mannose, galactose, starch, and sucrose metabolism 1 

X-17502 carbohydrate very low glycolysis, gluconeogenesis, pyruvate metabolism 1 

X-18221 carbohydrate very low glycolysis, gluconeogenesis, pyruvate metabolism 1 

X-14473 peptide very low dipeptide 1 

X-11799 lipid very low inositol metabolism 1 

X-10506 amino acid very low alanine and aspartate metabolism 1 

X-11315 amino acid very low glutamate metabolism 1 

X-17145 amino acid very low tryptophan metabolism 1 

X-15245 carbohydrate very low glycolysis, gluconeogenesis, pyruvate metabolism 1 

X-11561 peptide very low dipeptide 1 

X-14302 peptide very low polypeptide 1 

X-01911 cofactors and vitamins very low ascorbate and aldarate metabolism 1 

X-11319 lipid very low long chain fatty acid 1 

X-13866 lipid very low long chain fatty acid 1 

X-11787 amino acid very low amino fatty acid, or urea cycle; arginine-, proline-, metabolism 0.5 

X-11255 amino acid very low valine, leucine and isoleucine metabolism 1 

X-12704 amino acid very low phenylalanine & tyrosine metabolism 1 

1: Fraction of the most frequent sub pathway among neighboring metabolites with the predicted super pathway 

Table S2: Predicted super and sub pathways of unknown metabolites 
The table contains a list of all predicted super pathways for the set of unknown metabolites including their confidence classes 
ordered by decreasing confidence. The predicted sub pathways are shown with its fraction in surrounding metabolites with the 
predicted super pathway. 

 

Metabolite 1 Metabolite 2 Super Pathway 2 Sub Pathway 2 Δmass Predicted reaction by Δmass 

11-HpODE X-11421   0.98 Oxidative deamination 
2-methylbutyroylcarniti
ne 

X-11255 amino acid valine, leucine and 
isoleucine metabolism 

1* Oxidative deamination 

pyroglutamine X-11315 amino acid glutamate metabolism 1* Oxidative deamination 
3-methylhistidine X-13835 amino acid histidine metabolism 1* Oxidative deamination 
X-14632 X-14658   1 Oxidative deamination 
Guanine X-11422   1.05 Oxidative deamination 
X-11244 X-11443   1.1 Oxidative deamination 
X-11443 X-11450   -1.1 Oxidative deamination 
N-acetylornithine X-13477 amino acid urea cycle; arginine-, 

proline-, metabolism 
1.1 Oxidative deamination 

X-11378 X-16935   1.8 De-hydrogenation/ Reduction 
X-12217 X-16940   1.8 De-hydrogenation/ Reduction 
X-11444 X-12844   -1.9 De-hydrogenation/ Reduction 
X-12230 X-17185   -1.9 De-hydrogenation/ Reduction 
X-11444 X-17706   -1.9 De-hydrogenation/ Reduction 
pelargonate (9:0) X-11859 lipid medium chain fatty acid -1.92 De-hydrogenation/ Reduction 
decanoylcarnitine X-13435 lipid carnitine metabolism -1.94 De-hydrogenation/ Reduction 
estrone X-02249   -1.96 De-hydrogenation/ Reduction 
pseudouridine X-11429 nucleotide pyrimidine metabolism, 2* De-hydrogenation/ Reduction 
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uracil containing 
3-carboxy-4-methyl-5-
propyl-2-furanpropanoa
te (CMPF) 

X-11469 lipid fatty acid, dicarboxylate -2* De-hydrogenation/ Reduction 

X-11299 X-11483   -2* De-hydrogenation/ Reduction 
octadecanedioate X-11538 lipid fatty acid, dicarboxylate -2* De-hydrogenation/ Reduction 
hexadecanedioate X-11905 lipid fatty acid, dicarboxylate -2* De-hydrogenation/ Reduction 
thymol sulfate X-12847 xenobiotics food component/plant -2* De-hydrogenation/ Reduction 
X-11538 X-16480   -2 De-hydrogenation/ Reduction 
L-urobilin X-17162 cofactors and 

vitamins 
hemoglobin and 
porphyrin metabolism 

-2* De-hydrogenation/ Reduction 

X-12844 X-17357   2 De-hydrogenation/ Reduction 
X-12846 X-17703   -2 De-hydrogenation/ Reduction 
X-15492 X-17706   -2 De-hydrogenation/ Reduction 
omega hydroxy 
tetradecanoate 
(n-C14:0) 

X-11438   -2 De-hydrogenation/ Reduction 

pelargonate (9:0) X-17269 lipid medium chain fatty acid -2.02 De-hydrogenation/ Reduction 
dehydroisoandrosteron
e sulfate (DHEA-S) 

X-18601 lipid sterol, steroid 2.04 De-hydrogenation/ Reduction 

4-hydroxyphenylpyruvat
e 

X-12543 amino acid phenylalanine & 
tyrosine metabolism 

2.07 De-hydrogenation/ Reduction 

dodecanedioate X-13891 lipid fatty acid, dicarboxylate -2.1* De-hydrogenation/ Reduction 
X-17359 X-17706   -2.1 De-hydrogenation/ Reduction 
5,8-tetradecadienoate X-13069 lipid long chain fatty acid 2.3* De-hydrogenation/ Reduction 
myristate (14:0) X-11438 lipid long chain fatty acid 14 Methylation/ De-methylation, 

or Alkyl-chain-elongation 
X-11317 X-11497   14 Methylation/ De-methylation, 

or Alkyl-chain-elongation 
13-cis-retinoate X-11530   14 Methylation/ De-methylation, 

or Alkyl-chain-elongation 
all-trans-retinoate X-11530   14 Methylation/ De-methylation, 

or Alkyl-chain-elongation 
X-14374 X-14473   14 Methylation/ De-methylation, 

or Alkyl-chain-elongation 
X-12212 X-15636   14 Methylation/ De-methylation, 

or Alkyl-chain-elongation 
X-11441 X-16946   -14 Methylation/ De-methylation, 

or Alkyl-chain-elongation 
X-12734 X-17685   14 Methylation/ De-methylation, 

or Alkyl-chain-elongation 
palmitate (16:0) X-11438 lipid long chain fatty acid -14.03 Methylation/ De-methylation, 

or Alkyl-chain-elongation 
estrone X-02269   -14.06 Methylation/ De-methylation, 

or Alkyl-chain-elongation 
8-hydroxyoctanoate X-11508 lipid fatty acid, monohydroxy 14.1* Methylation/ De-methylation, 

or Alkyl-chain-elongation 
2-aminooctanoic acid X-11818 amino acid amino fatty acid -14.1* Methylation/ De-methylation, 

or Alkyl-chain-elongation 
X-12039 X-12329   14.1 Methylation/ De-methylation, 

or Alkyl-chain-elongation 
X-11470 X-12844   14.1 Methylation/ De-methylation, 

or Alkyl-chain-elongation 
X-02249 X-13866   -14.1 Methylation/ De-methylation, 

or Alkyl-chain-elongation 
catechol sulfate X-12217 xenobiotics benzoate metabolism 14.2* Methylation/ De-methylation, 

or Alkyl-chain-elongation 
X-12734 X-16940   -14.2 Methylation/ De-methylation, 

or Alkyl-chain-elongation 
urate X-11422 nucleotide purine metabolism, 

urate metabolism 
-15.93 Oxidation, or Hydroxylation, 

or Epoxidation 
3-carboxy-4-methyl-5-
propyl-2-
furanpropanoate 
(CMPF) 

X-02269 lipid fatty acid, dicarboxylate 16* Oxidation, or Hydroxylation, 
or Epoxidation 

p-cresol sulfate X-06126 amino acid phenylalanine & 16* Oxidation, or Hydroxylation, 
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tyrosine metabolism or Epoxidation 
tetradecanedioate X-11438 lipid fatty acid, dicarboxylate -16* Oxidation, or Hydroxylation, 

or Epoxidation 
X-11444 X-11470   -16 Oxidation, or Hydroxylation, 

or Epoxidation 
4-ethylphenylsulfate X-12230 xenobiotics benzoate metabolism 16* Oxidation, or Hydroxylation, 

or Epoxidation 
X-12329 X-12730   16 Oxidation, or Hydroxylation, 

or Epoxidation 
X-12217 X-12734   16 Oxidation, or Hydroxylation, 

or Epoxidation 
2-aminooctanoic acid X-13477 amino acid amino fatty acid 16* Oxidation, or Hydroxylation, 

or Epoxidation 
gamma-glutamylglutam
ate 

X-14272 peptide gamma-glutamyl amino 
acid 

-16* Oxidation, or Hydroxylation, 
or Epoxidation 

catechol sulfate X-16940 xenobiotics benzoate metabolism 16* Oxidation, or Hydroxylation, 
or Epoxidation 

hypoxanthine X-11422 nucleotide purine metabolism, 
(hypo)xanthine/inosine 
containing 

16.06 Oxidation, or Hydroxylation, 
or Epoxidation 

estradiol X-02269   -16.08 Oxidation, or Hydroxylation, 
or Epoxidation 

3-phenylpropionate 
(hydrocinnamate) 

X-11478 amino acid phenylalanine & 
tyrosine metabolism 

16.1* Oxidation, or Hydroxylation, 
or Epoxidation 

5alpha-androstan-
3alpha,17beta-diol 
disulfate 

X-12544 lipid sterol/steroid -16.1* Oxidation, or Hydroxylation, 
or Epoxidation 

theobromine X-14374 xenobiotics xanthine metabolism 16.1* Oxidation, or Hydroxylation, 
or Epoxidation 

X-11470 X-15492   16.1 Oxidation, or Hydroxylation, 
or Epoxidation 

4-vinylphenol sulfate X-17185 xenobiotics benzoate metabolism 16.1* Oxidation, or Hydroxylation, 
or Epoxidation 

linoleate (18:2n6) X-12450 lipid essential fatty acid -27.83 De-ethylation, or Alkyl-chain-
elongation 

docosapentaenoate 
(n3 DPA; 22:5n3) 

X-12627 lipid essential fatty acid 28* De-ethylation, or Alkyl-chain-
elongation 

X-12855 X-12860   28 De-ethylation, or Alkyl-chain-
elongation 

X-16674 X-17438   28 De-ethylation, or Alkyl-chain-
elongation 

3-carboxy-4-methyl-5-
propyl-2-
furanpropanoate 
(CMPF) 

X-02249 lipid fatty acid, dicarboxylate 28.1* De-ethylation, or Alkyl-chain-
elongation 

X-10346 X-11437   -28.1 De-ethylation, or Alkyl-chain-
elongation 

X-11538 X-11905   -28.1 De-ethylation, or Alkyl-chain-
elongation 

N-acetylornithine X-12093 amino acid urea cycle; arginine-, 
proline-, metabolism 

28.1 De-ethylation, or Alkyl-chain-
elongation 

3-methylglutarylcarnitin
e (C6) 

X-12802 amino acid valine, leucine and 
isoleucine metabolism 

28.1* De-ethylation, or Alkyl-chain-
elongation 

X-11787 X-13477   28.1 De-ethylation, or Alkyl-chain-
elongation 

X-15728 X-16124   -28.1 De-ethylation, or Alkyl-chain-
elongation 

X-16940 X-17685   28.2 De-ethylation, or Alkyl-chain-
elongation 

2-hydroxyacetaminophe
n sulfate 

X-11838 xenobiotics drug 29.9* Quinone, or CH3 to COOH, or 
Nitro reduction 

4-ethylphenylsulfate X-15728 xenobiotics benzoate metabolism 30* Quinone, or CH3 to COOH, or 
Nitro reduction 

omega hydroxy 
hexadecanoate 
(n-C16:0) 

X-11438   -30.03 Quinone, or CH3 to COOH, or 
Nitro reduction 
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16alpha-
Hydroxyestrone 

X-02269   -30.06 Quinone, or CH3 to COOH, or 
Nitro reduction 

X-02249 X-11469   -30.1 Quinone, or CH3 to COOH, or 
Nitro reduction 

13-cis-retinoate X-11441   31.9 Bis-oxidation 
all-trans-retinoate X-11441   31.9 Bis-oxidation 
13-cis-retinoate X-11442   31.9 Bis-oxidation 
all-trans-retinoate X-11442   31.9 Bis-oxidation 
propionylcarnitine X-11381 lipid fatty acid metabolism 

(also bcaa metabolism) 
-31.93 Bis-oxidation 

pregnenolone sulfate X-12456 lipid sterol/steroid 32.01 Bis-oxidation 
estrone X-11469   -32.06 Bis-oxidation 
2-Hydroxyestradiol-
17beta 

X-02269   -32.07 Bis-oxidation 

linolenate [alpha or 
gamma; (18:3n3 or 6)] 

X-16480 lipid essential fatty acid 32.08 Bis-oxidation 

lathosterol X-12063 lipid sterol/steroid 41.85 Acetylation 
lathosterol X-12456 lipid sterol/steroid 41.85 Acetylation 
5alpha-cholest-8-en-
3beta-ol 

X-12063   41.85 Acetylation 

5alpha-cholest-8-en-
3beta-ol 

X-12456   41.85 Acetylation 

androsterone X-11441   41.88 Acetylation 
androsterone X-11442   41.88 Acetylation 
carnosine X-11561   41.99 Acetylation 
X-12253 X-12258   42 Acetylation 
2-aminooctanoic acid X-12511 amino acid amino fatty acid 42* Acetylation 
X-12802 X-12860   -42 Acetylation 
Isocitrate X-15245   42 Acetylation 
estradiol X-11530   42.02 Acetylation 
laurate X-11438   42.03 Acetylation 
1-docosahexaenoylglyc
erophosphocholine 

X-12644 lipid lysolipid -42.1* Acetylation 

aflatoxin B1 exo-8,9-
epoxide 

X-18601   42.14 Acetylation 

cholesta-5,7-dien-
3beta-ol 

X-12063   43.86 Decarboxylation 

cholesta-5,7-dien-
3beta-ol 

X-12456   43.86 Decarboxylation 

5alpha-cholesta-7,24-
dien-3beta-ol 

X-12063   43.86 Decarboxylation 

5alpha-cholesta-7,24-
dien-3beta-ol 

X-12456   43.86 Decarboxylation 

testosterone X-11441   43.89 Decarboxylation 
testosterone X-11442   43.89 Decarboxylation 
glucose X-12007 carbohydrate glycolysis, 

gluconeogenesis, 
pyruvate metabolism 

43.94 Decarboxylation 

hexadecanedioate X-11438 lipid fatty acid, dicarboxylate -44* Decarboxylation 
andro steroid 
monosulfate 2 

X-12063 lipid sterol/steroid 44* Decarboxylation 

oxalatosuccinate(3-) X-15245   44.01 Decarboxylation 
estrone X-11530   44.04 Decarboxylation 
acetylcarnitine X-12465 lipid carnitine metabolism 44.08 Decarboxylation 
sebacate 
(decanedioate) 

X-17438 lipid fatty acid, dicarboxylate 44.1 Decarboxylation 

X-13891 X-17443   44.1* Decarboxylation 
3-hydroxyhippurate X-12704 xenobiotics benzoate metabolism 79.9* Sulfation, or Phosphatation 
3-dehydrocarnitine X-12798 lipid carnitine metabolism 79.9* Sulfation, or Phosphatation 
4-androsten-3beta,17b
eta-diol disulfate 2 

X-18601 lipid sterol, steroid 79.98 Sulfation, or Phosphatation 

X-06126 X-11837   80 Sulfation, or Phosphatation 
X-11308 X-11378   80.1 Sulfation, or Phosphatation 
X-11378 X-17654   -80.1 Sulfation, or Phosphatation 
X-14625 X-18221   95.8 Sulfation, or Phosphatation 
caproate (6:0) X-16578 lipid medium chain fatty acid 95.9* Sulfation, or Phosphatation 
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p-cresol sulfate X-11837 amino acid phenylalanine & 
tyrosine metabolism 

96* Sulfation, or Phosphatation 

alpha-glutamyltyrosine X-11805 peptide dipeptide 107* Taurine Conjugation 
X-12830 X-17703   107.1 Taurine Conjugation 
X-11261 X-11478   -119 Cys Conjugation 
S-methylcysteine X-13866 amino acid cysteine, methionine, 

sam, taurine 
metabolism 

119.1* Cys Conjugation 

dehydroisoandrosteron
e sulfate (DHEA-S) 

X-11440 lipid sterol, steroid -120.86 Cys Conjugation 

testosterone sulfate X-11440   -120.86 Cys Conjugation 
deoxycholate X-11491 lipid bile acid metabolism 176.02 Glucuronidation 
1-arachidonoylglycerop
hosphoinositol 

X-12063 lipid lysolipid -192.2* Glucuronidation 

1-arachidonoylglycerop
hosphoinositol 

X-12456 lipid lysolipid -192.2* Glucuronidation 

X-09789 X-18774   192.2 Glucuronidation 
phenylalanylphenylalani
ne 

X-17189 peptide dipeptide 306.8* GSH Conjugation 

*) Δmass based on measured mass of known metabolite 

Table S3: Predicted reactions based on Δmass 
We selected reactions connecting known and unknown metabolites as well as among pairs of unknown metabolites simply based 
on Δmass. Pairs of metabolites were collected based on GGM edges, a common GWAS gene, or a gene that is functionally related to 
a metabolite and associated to an unknown metabolite. The sign of the numbers of the Δmass column indicate the direction of the 
reaction, starting with the known metabolite (or metabolite 1). 

 

 

Figure S3: Difference in retention index of metabolites connected by a dehydrogenation reaction 
The distributions of difference in retention time of pairs of known metabolites connected by a GGM edge are shown separately for 
reaction partners of dehydrogenation reactions or other cases. The threshold was calculated by the mean of the distributions 
± their standard deviations. 
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Metabolite 1 Metabolite 2 Δmass Δri  Predicted reaction 

pelargonate (9:0) X-11859 -1.92 294  De-hydrogenation/ Reduction 
decanoylcarnitine X-13435 -1.94 60  De-hydrogenation/ Reduction 
pseudouridine X-11429 2 47  De-hydrogenation/ Reduction 
octadecanedioate X-11538 -2 113  De-hydrogenation/ Reduction 
hexadecanedioate X-11905 -2 249  De-hydrogenation/ Reduction 
thymol sulfate X-12847 -2 155  De-hydrogenation/ Reduction 
L-urobilin X-17162 -2 50.2  De-hydrogenation/ Reduction 
pelargonate (9:0) X-17269 -2.02 316.8  De-hydrogenation/ Reduction 
dehydroisoandrosterone sulfate 
(DHEA-S) 

X-18601 2.04 229.4  De-hydrogenation/ Reduction 

4-hydroxyphenylpyruvate X-12543 2.07 265  De-hydrogenation/ Reduction 
dodecanedioate X-13891 -2.1 274  De-hydrogenation/ Reduction 
5,8-tetradecadienoate X-13069 2.3 94  De-hydrogenation/ Reduction 
3-carboxy-4-methyl-5-propyl-2-
furanpropanoate (CMPF) 

X-11469 -2 NA  measured on different 
platforms 

estrone X-02249 -1.96 NA  non-measured metabolite 
omega hydroxy tetradecanoate 
(n-C14:0) 

X-11438 -2 NA  non-measured metabolite 

X-11444 X-12844 -1.9 185  De-hydrogenation/ Reduction 
X-12230 X-17185 -1.9 290.9  De-hydrogenation/ Reduction 
X-11538 X-16480 -2 234.5  De-hydrogenation/ Reduction 
X-12844 X-17357 2 73  De-hydrogenation/ Reduction 
X-12846 X-17703 -2 70  De-hydrogenation/ Reduction 
X-15492 X-17706 -2 6.7  De-hydrogenation/ Reduction 
X-17359 X-17706 -2.1 83.8  De-hydrogenation/ Reduction 
X-11378 X-16935 1.8 859.5  no 
X-12217 X-16940 1.8 648.9  no 
X-11444 X-17706 -1.9 708.3  no 
X-11299 X-11483 -2 450  no 

Table S4: Predicted dehydrogenation/ reduction reactions 
The table contains all pairs of neighboring known and unknown metabolites with mass difference 2 ± 0.3 and a prediction whether 
or not they are connected by a dehydrogenation reaction. Additionally, pairs of unknown metabolites are also considered. The sign 
of the numbers of the column Δmass indicate the direction of the reaction, starting with the known metabolite or metabolite 1. The 
numbers in column Δri contain absolute values. 
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Figure S4: Spectra of the candidate molecule 9-tetradecenoic acid and X-13069 
The extracted ion chromatograms show the same retention time peaks for the candidate molecule, the unknown metabolite, and 
the mixture of both substances. Their MS2 fragmentation spectra are composed of the same fragments with equal relative 
intensities. Therefore, this candidate is verified. 
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Figure S5: Spectra of the candidate molecule 9-octadecenedioic acid and X-11538 
The retention time peaks of 9-octadecenedioic acid and X-11538 are slightly shifted (4.89 and 4.86 min.), which can be seen in the 
extracted ion chromatogram of the mixture probe of the pure substance and the reference plasma that contains the unknown 
molecule. The fragmentation spectra are similar, but not identical. The two main peaks at 249.1 and 293.2 show similar relative 
intensities in the MS2 fragmentation spectra of all measurements, but two smaller peaks at 267.2 and 279.1 are much larger for the 
plasma sample compared to the pure substance. In consequence this candidate could be falsified. 
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Figure S6: Extracted ion chromatograms of the candidate molecules of X-11859 
2-nonenoic acid, 3-noneoic acid, 8-noneoic acid and X-11859 (m/z: 155.2) have different retention time peaks in the extracted ion 
chromatograms. Partially, there are fragments with the same m/z in the MS2 fragmentation spectra, but the relative intensities are 
different so that these candidates could be falsified. 

 

Compound 1 Compound 2 m/z RT 1 RT 2 MS2 1 MS2 2 match 

X-13891 2-dodecendioic acid 227.1 2.77 2.77 165.1, 183.0, 209.1 165.0, 183.0, 209.1 yes 

X-13069 9-tetradecenoic acid 225.4 5.31 5.31 225.2, 207.1 225.2, 207.3 yes 

X-11538 9-octadecenedioic acid 311.3 4.86 4.89 249.1, 293.2, 

267.2, 279.0 

249.1, 293.2, 

267.2, 279.0 

no 

X-11859 2-nonenoic acid 155.2 4.46 4.55 110.8, 82.0, 155.2, 

123.1, 136.9 

155.0, 111.1 no 

X-11859 3-nonenoic acid 155.2 4.46 4.54 

4.31 

110.8, 82.0, 155.2, 

123.1, 136.9 

111.1, 155.0, 137.1 

155.0, 137.0 

no 

X-11859 8-nonenoic acid 155.2 4.46 4.31 110.8, 82.0, 155.2, 

123.1, 136.9 

155.0, 137.0 no 

Table S5: Detailed evaluation results of predicted candidate molecules 
The table juxtaposes the retention time and the main MS2 fragments, ordered by descending intensity, of the purchased candidate 
molecules and the respective unknown metabolites of LC-MS measurements. Both characteristics match for 2 selected candidate 
molecules and differs in 4 cases. 

 

File S1: R scripts and example data 
The zip file contains implementations for all modules of the approach in R along with example data.  
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File S2: Graphml file of a representation of the network model 
The network model embeds 254 measured unknown metabolites into their biochemical and functional context. The model was 
constructed based on 758 measured metabolites (known: 439, unknown: 319), 2626 metabolites of the public database Recon 2 
and 1782 genes. For clarity, elements of Recon 2 are incorporated only if they are either directly or through a gene connected to a 
measured metabolite. Not-connected metabolites and genes are not shown. Edge and node colors are equal to the network 
representation in Figure 1. 

 


