502 research outputs found

    Processing methods for differential analysis of LC/MS profile data

    Get PDF
    BACKGROUND: Liquid chromatography coupled to mass spectrometry (LC/MS) has been widely used in proteomics and metabolomics research. In this context, the technology has been increasingly used for differential profiling, i.e. broad screening of biomolecular components across multiple samples in order to elucidate the observed phenotypes and discover biomarkers. One of the major challenges in this domain remains development of better solutions for processing of LC/MS data. RESULTS: We present a software package MZmine that enables differential LC/MS analysis of metabolomics data. This software is a toolbox containing methods for all data processing stages preceding differential analysis: spectral filtering, peak detection, alignment and normalization. Specifically, we developed and implemented a new recursive peak search algorithm and a secondary peak picking method for improving already aligned results, as well as a normalization tool that uses multiple internal standards. Visualization tools enable comparative viewing of data across multiple samples. Peak lists can be exported into other data analysis programs. The toolbox has already been utilized in a wide range of applications. We demonstrate its utility on an example of metabolic profiling of Catharanthus roseus cell cultures. CONCLUSION: The software is freely available under the GNU General Public License and it can be obtained from the project web page at:

    Systems medicine and the integration of bioinformatic tools for the diagnosis of Alzheimer's disease

    Get PDF
    Because of the changes in demographic structure, the prevalence of Alzheimer's disease is expected to rise dramatically over the next decades. The progression of this degenerative and terminal disease is gradual, with the subclinical stage of illness believed to span several decades. Despite this, no therapy to prevent or cure Alzheimer's disease is currently available. Early disease detection is still important for delaying the onset of the disease with pharmacological treatment and/or lifestyle changes, assessing the efficacy of potential therapeutic agents, or monitoring disease progression more closely using medical imaging. Sensitive cerebrospinal-fluid-derived marker candidates exist, but given the invasiveness of sample collection their use in routine diagnostics may be limited. The pathogenesis of Alzheimer's disease is complex and poorly understood. There is thus a strong case for integrating information across multiple physiological levels, from molecular profiling (metabolomics, lipidomics, proteomics and transcriptomics) and brain imaging to cognitive assessments. To facilitate the integration of heterogeneous data, such as molecular and image data, sophisticated statistical approaches are needed to segment the image data and study their dependencies on molecular changes in the same individuals. Molecular profiling, combined with biophysical modeling of molecular assemblies associated with the disease, offer an opportunity to link the molecular pathway changes with cell- and tissue-level physiology and structure. Given that data acquired at different levels can carry complementary information about early Alzheimer's disease pathology, it is expected that their integration will improve early detection as well as our understanding of the disease

    Izdaja osebnega dokumenta

    Full text link

    MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mass spectrometry (MS) coupled with online separation methods is commonly applied for differential and quantitative profiling of biological samples in metabolomic as well as proteomic research. Such approaches are used for systems biology, functional genomics, and biomarker discovery, among others. An ongoing challenge of these molecular profiling approaches, however, is the development of better data processing methods. Here we introduce a new generation of a popular open-source data processing toolbox, MZmine 2.</p> <p>Results</p> <p>A key concept of the MZmine 2 software design is the strict separation of core functionality and data processing modules, with emphasis on easy usability and support for high-resolution spectra processing. Data processing modules take advantage of embedded visualization tools, allowing for immediate previews of parameter settings. Newly introduced functionality includes the identification of peaks using online databases, MS<sup>n </sup>data support, improved isotope pattern support, scatter plot visualization, and a new method for peak list alignment based on the random sample consensus (RANSAC) algorithm. The performance of the RANSAC alignment was evaluated using synthetic datasets as well as actual experimental data, and the results were compared to those obtained using other alignment algorithms.</p> <p>Conclusions</p> <p>MZmine 2 is freely available under a GNU GPL license and can be obtained from the project website at: <url>http://mzmine.sourceforge.net/</url>. The current version of MZmine 2 is suitable for processing large batches of data and has been applied to both targeted and non-targeted metabolomic analyses.</p

    Metabolic Modeling of Human Gut Microbiota on a Genome Scale: An Overview

    Get PDF
    There is growing interest in the metabolic interplay between the gut microbiome and host metabolism. Taxonomic and functional profiling of the gut microbiome by next-generation sequencing (NGS) has unveiled substantial richness and diversity. However, the mechanisms underlying interactions between diet, gut microbiome and host metabolism are still poorly understood. Genome-scale metabolic modeling (GSMM) is an emerging approach that has been increasingly applied to infer diet⁻microbiome, microbe⁻microbe and host⁻microbe interactions under physiological conditions. GSMM can, for example, be applied to estimate the metabolic capabilities of microbes in the gut. Here, we discuss how meta-omics datasets such as shotgun metagenomics, can be processed and integrated to develop large-scale, condition-specific, personalized microbiota models in healthy and disease states. Furthermore, we summarize various tools and resources available for metagenomic data processing and GSMM, highlighting the experimental approaches needed to validate the model predictions

    Persistent Alterations in Plasma Lipid Profiles Before Introduction of Gluten in the Diet Associated With Progression to Celiac Disease

    Get PDF
    OBJECTIVES: Celiac disease (CD) is a chronic enteropathy characterized by an autoimmune reaction in the small intestine of genetically susceptible individuals. The underlying causes of autoimmune reaction and its effect on host metabolism remain largely unknown. Herein, we apply lipidomics to elucidate the early events preceding clinical CD in a cohort of Finnish children, followed up in the Type 1 Diabetes Prediction and Prevention study. METHODS: Mass spectrometry-based lipidomics profiling was applied to a longitudinal/prospective series of 233 plasma samples obtained from CD progressors (n = 23) and healthy controls (n = 23), matched for human leukocyte antigen (HLA) risk, sex, and age. The children were followed from birth until diagnosis of clinical CD and subsequent introduction of a gluten-free diet. RESULTS: Twenty-three children progressed to CD at a mean age of 4.8 years. They showed increased amounts of triacylglycerols (TGs) of low carbon number and double bond count and a decreased level of phosphatidylcholines by age 3 months as compared to controls. These differences were exacerbated with age but were not observed at birth (cord blood). No significant differences were observed in the essential TGs. DISCUSSION: Our preliminary findings suggest that abnormal lipid metabolism associates with the development of clinical CD and occurs already before the first introduction of gluten to the diet. Moreover, our data suggest that the specific TGs found elevated in CD progressors may be due to a host response to compromised intake of essential lipids in the small intestine, requiring de novo lipogenesis.Peer reviewe

    Perspectives on systems modeling of human peripheral blood mononuclear cells

    Get PDF
    Human peripheral blood mononuclear cells (PBMCs) are the key drivers of the immune responses. These cells undergo activation, proliferation and differentiation into various subsets. During these processes they initiate metabolic reprogramming, which is coordinated by specific gene and protein activities. PBMCs as a model system have been widely used to study metabolic and autoimmune diseases. Herein we review various omics and systems-based approaches such as transcriptomics, epigenomics, proteomics, and metabolomics as applied to PBMCs, particularly T helper subsets, that unveiled disease markers and the underlying mechanisms. We also discuss and emphasize several aspects of T cell metabolic modeling in healthy and disease states using genome-scale metabolic models.</p
    corecore