47 research outputs found

    Morning brain: Real-world neural evidence that high school class times matter

    Get PDF
    Researchers, parents and educators consistently observe a stark mismatch between biologically preferred and socially imposed sleep–wake hours in adolescents, fueling debate about high school start times. We contribute neural evidence to this debate with electroencephalogram data collected from high school students during their regular morning, mid-morning and afternoon classes. Overall, student alpha power was lower when class content was taught via videos than through lectures. Students’ resting state alpha brain activity decreased as the day progressed, consistent with adolescents being least attentive early in the morning. During the lessons, students showed consistently worse performance and higher alpha power for early morning classes than for mid-morning classes, while afternoon quiz scores and alpha levels varied. Together, our findings demonstrate that both class activity and class time are reflected in adolescents’ brain states in a real-world setting, and corroborate educational research suggesting that mid-morning may be the best time to learn

    Localizing evoked and induced responses to faces using magnetoencephalography

    Get PDF
    A rich pattern of responses in frequency, time and space are known to be generated in the visual cortex in response to faces. Recently, a number of studies have used magnetoencephalography (MEG) to try to record these responses non-invasively – in many cases using source analysis techniques based on the beamforming method. Here we sought both to characterize best practice for measuring face-specific responses using MEG beamforming, and to determine whether the results produced by the beamformer match evidence from other modalities. We measured activity to visual presentation of face stimuli and phase-scrambled control stimuli, and performed source analyses of both induced and evoked responses using Synthetic Aperture Magnetometry. We localized the gamma-band response to bilateral lateral occipital cortex, and both the gamma-band response and the M170-evoked response to the right fusiform gyrus. Differences in the gamma-band response between faces and scrambled stimuli were confined to the frequency range 50–90 Hz; gamma-band activity at higher frequencies did not differ between the two stimulus categories. We additionally identified a component of the M220-evoked response – localized to the parieto-occipital sulcus – which was enhanced for scrambled vs. unscrambled faces. These findings help to establish that MEG beamforming can localize face-specific responses in time, frequency and space with good accuracy (when validated against established findings from functional magnetic resonance imaging and intracranial recordings), as well as contributing to the establishment of best methodological practice for the use of the beamformer method to measure face-specific responses

    Opportunities and Limitations of Mobile Neuroimaging Technologies in Educational Neuroscience.

    Get PDF
    Funder: European Association for Research on Learning and InstructionFunder: Jacobs Foundation; Id: http://dx.doi.org/10.13039/501100003986As the field of educational neuroscience continues to grow, questions have emerged regarding the ecological validity and applicability of this research to educational practice. Recent advances in mobile neuroimaging technologies have made it possible to conduct neuroscientific studies directly in naturalistic learning environments. We propose that embedding mobile neuroimaging research in a cycle (Matusz, Dikker, Huth, & Perrodin, 2019), involving lab-based, seminaturalistic, and fully naturalistic experiments, is well suited for addressing educational questions. With this review, we take a cautious approach, by discussing the valuable insights that can be gained from mobile neuroimaging technology, including electroencephalography and functional near-infrared spectroscopy, as well as the challenges posed by bringing neuroscientific methods into the classroom. Research paradigms used alongside mobile neuroimaging technology vary considerably. To illustrate this point, studies are discussed with increasingly naturalistic designs. We conclude with several ethical considerations that should be taken into account in this unique area of research

    Low-frequency oscillations employ a general coding of the spatio-temporal similarity of dynamic faces

    Get PDF
    Brain networks use neural oscillations as information transfer mechanisms. Although the face perception network in occipitotemporal cortex is well-studied, contributions of oscillations to face representation remain an open question. We tested for links between oscillatory responses that encode facial dimensions and the theoretical proposal that faces are encoded in similarity-based “face spaces”. We quantified similarity-based encoding of dynamic faces in magnetoencephalographic sensor-level oscillatory power for identity, expression, physical and perceptual similarity of facial form and motion. Our data show that evoked responses manifest physical and perceptual form similarity that distinguishes facial identities. Low-frequency induced oscillations (< 20 Hz) manifested more general similarity structure, which was not limited to identity, and spanned physical and perceived form and motion. A supplementary fMRI-constrained source reconstruction implicated fusiform gyrus and V5 in this similarity-based representation. These findings introduce a potential link between “face space” encoding and oscillatory network communication, which generates new hypotheses about the potential oscillation-mediated mechanisms that might encode facial dimensions

    Spatiotemporal dynamics in human visual cortex rapidly encode the emotional content of faces

    Get PDF
    Recognizing emotion in faces is important in human interaction and survival, yet existing studies do not paint a consistent picture of the neural representation supporting this task. To address this, we collected magnetoencephalography (MEG) data while participants passively viewed happy, angry and neutral faces. Using time-resolved decoding of sensor-level data, we show that responses to angry faces can be discriminated from happy and neutral faces as early as 90 ms after stimulus onset and only 10 ms later than faces can be discriminated from scrambled stimuli, even in the absence of differences in evoked responses. Time-resolved relevance patterns in source space track expression-related information from the visual cortex (100 ms) to higher-level temporal and frontal areas (200-500 ms). Together, our results point to a system optimised for rapid processing of emotional faces and preferentially tuned to threat, consistent with the important evolutionary role that such a system must have played in the development of human social interactions

    Measuring Brain Waves in the Classroom

    No full text
    Brain researchers used to study the workings of the brain only in special laboratories at universities or hospitals. Recently, researchers started using portable devices that people can wear on their heads outside of the laboratory. For example, these devices allow researchers to measure the brain activity of students in classrooms, as they go through the school day. This sounds futuristic, and maybe also a bit alarming. In this article, we will explain what such devices do and do not measure—for example, they cannot read your mind! We will also explain how this kind of research can be useful to you and your classmates

    Neuroscience research in the classroom: Portable brain technologies in education research

    No full text
    Cognitive neuroscience research is typically conducted in controlled laboratory environments and therefore its contribution to our understanding of learning in real-world environments is limited. In recent years, however, portable and wearable brain devices have become more readily available for classroom-based research. Complementing existing education research methods, these emerging technologies could provide information about learning processes that might not be reflected in classroom observations or learners’ self-reports. This essay critically evaluates the value added by portable brain technologies in education research and outlines a proposed research agenda, centered around questions related to student engagement, cognitive load, and self-regulation. We also address ethical concerns regarding student privacy and the potential misuse of students’ brain data

    Brain-to-brain synchrony and learning outcomes vary by student-teacher dynamics: Evidence from a real-world classroom electroencephalography study

    No full text
    How does the human brain support real-world learning? We used wireless electroencephalography to collect neurophysiological data from a group of 12 senior high school students and their teacher during regular biology lessons. Six scheduled classes over the course of the semester were organized such that class materials were presented using different teaching styles (videos and lectures), and students completed a multiple-choice quiz after each class to measure their retention of that lesson's content. Both students' brain-to-brain synchrony and their content retention were higher for videos than lectures across the six classes. Brain-to-brain synchrony between the teacher and students varied as a function of student engagement as well as teacher likeability: Students who reported greater social closeness to the teacher showed higher brain-to-brain synchrony with the teacher, but this was only the case for lectures-that is, when the teacher is an integral part of the content presentation. Furthermore, students' retention of the class content correlated with student-teacher closeness, but not with brain-to-brain synchrony. These findings expand on existing social neuroscience research by showing that social factors such as perceived closeness are reflected in brain-to-brain synchrony in real-world group settings and can predict cognitive outcomes such as students' academic performance

    Investigating Students’ Learning Experiences in a Neural Engineering Integrated STEM High School Curriculum

    No full text
    STEM integration has become a national and international priority, but our understanding of student learning experiences in integrated STEM courses, especially those that integrate life sciences and engineering design, is limited. Our team has designed a new high school curriculum unit that focuses on neural engineering, an emerging interdisciplinary field that brings together neuroscience, technology, and engineering. Through the implementation of the unit in a high school engineering design course, we asked how incorporating life sciences into an engineering course supported student learning and what challenges were experienced by the students and their teacher. To address these questions, we conducted an exploratory case study consisting of a student focus group, an interview with the teacher, and analysis of student journals. Our analysis suggests that students were highly engaged by the authentic and collaborative engineering design process, helping solidify their self-efficacy and interest in engineering design. We also identified some challenges, such as students’ lower interest in life sciences compared to engineering design and the teacher lacking a life sciences background. These preliminary findings suggest that neural engineering can provide an effective context to the integration of life sciences and engineering design but more scaffolding and teacher support is needed for full integration

    Seeing Scenes: Topographic Visual Hallucinations Evoked by Direct Electrical Stimulation of the Parahippocampal Place Area

    No full text
    In recent years, functional neuroimaging has disclosed a network of cortical areas in the basal temporal lobe that selectively respond to visual scenes, including the parahippocampal place area (PPA). Beyond the observation that lesions involving the PPA cause topographic disorientation, there is little causal evidence linking neural activity in that area to the perception of places. Here, we combined functional magnetic resonance imaging (fMRI) and intracranial EEG (iEEG) recordings to delineate place-selective cortex in a patient implanted with stereo-EEG electrodes for presurgical evaluation of drug-resistant epilepsy. Bipolar direct electrical stimulation of a cortical area in the collateral sulcus and medial fusiform gyrus, which was place-selective according to both fMRI and iEEG, induced a topographic visual hallucination: the patient described seeing indoor and outdoor scenes that included views of the neighborhood he lives in. By contrast, stimulating the more lateral aspect of the basal temporal lobe caused distortion of the patient\u27s perception of faces, as recently reported (Parvizi et al., 2012). Our results support the causal role of the PPA in the perception of visual scenes, demonstrate that electrical stimulation of higher order visual areas can induce complex hallucinations, and also reaffirm direct electrical brain stimulation as a tool to assess the function of the human cerebral cortex
    corecore