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ABSTRACT— As the field of educational neuroscience
continues to grow, questions have emerged regarding
the ecological validity and applicability of this research
to educational practice. Recent advances in mobile neu-
roimaging technologies have made it possible to conduct
neuroscientific studies directly in naturalistic learning
environments. We propose that embedding mobile neu-
roimaging research in a cycle (Matusz, Dikker, Huth, &
Perrodin, 2019), involving lab-based, seminaturalistic, and
fully naturalistic experiments, is well suited for addressing
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educational questions. With this review, we take a cautious
approach, by discussing the valuable insights that can be
gained from mobile neuroimaging technology, including
electroencephalography and functional near-infrared spec-
troscopy, as well as the challenges posed by bringing
neuroscientific methods into the classroom. Research
paradigms used alongside mobile neuroimaging technology
vary considerably. To illustrate this point, studies are dis-
cussed with increasingly naturalistic designs. We conclude
with several ethical considerations that should be taken into
account in this unique area of research.

Over the past 20 years, there has been a marked increase
in the use of neuroscientific methods to examine student
learning. In this relatively short period, a great deal has been
revealed about the neural processes associated with edu-
cationally relevant skills. As the field of educational neu-
roscience has developed, it has emerged as an inherently
interdisciplinary enterprise, drawing on theories and meth-
ods from education, psychology, and cognitive neuroscience
(Thomas, Ansari, & Knowland, 2019). Theoretical models
that characterize development in the school context empha-
size the role of complex and dynamic interactions between
students and teachers for growth (Eccles & Roeser, 2011).
Although these complex processes are what researchers aim
to study in the classroom, educational neuroscience has his-
torically fallen short of this goal.

This is in large part because the majority of edu-
cational neuroscience research is based on traditional
laboratory-based methods (e.g., functional magnetic reso-
nance imaging [fMRI] and electroencephalography [EEG]).
While these methods help elucidate cognitive processes that
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cannot be directly observed through student behavior, their
use involves artificially reducing the world to a small num-
ber of variables for experimental manipulation (“systematic
design”) studied in isolated individuals. This reductionist
approach affords researchers experimental control over phe-
nomena of interest; however, neuroscientific methods are
often seen as incommensurate with educational theory and
impose limitations on the generalizability to learning and
teaching in real life (Van Atteveldt, Van Kesteren, Braams, &
Krabbendam, 2018). Although informed by—and sometimes
conducted in collaboration with—educators, educational
neuroscience is often limited in the extent to which it can
fully capture dynamic real-world classroom experiences
and, in turn, inform educational practice (Bowers, 2016). In
this review, we discuss the promise afforded by real-world
neuroscience methods, and in particular, those made possi-
ble by advances in mobile neuroimaging technologies, for
understanding student learning in educational settings.

What Is Real-World Neuroscience?
Cognitive and social skills do not develop in isolation. Rather
they are formed through the multitude of experiences and

dynamic interactions that an individual has with other peo-
ple, as well as with the rich stimuli that make up our daily
environments. However, this real-world complexity can be
inherently at odds with the way research is conducted in a
laboratory setting.

Take, for example, the experience of an elementary school
student learning a new concept in mathematics. To examine
this in a traditional lab-based investigation, the student
might come to the university laboratory and individually
participate in a computerized task, carefully designed to
elicit neural responses associated with a particular aspect
of learning mathematics. As is shown on the far left side
of Figure 1, in this setting, it is possible to track the pro-
gression of learning and to tightly control the context in
which learning occurs. In contrast, assessing the learning
of mathematics in the classroom would involve accounting
for multisensory input, social interactions with teachers
and peers, active learning involving a two-way exchange
of information, and all kinds of distractions inherent to
being in a classroom. This distinction—between the expe-
rience of a student in a laboratory versus in a classroom—is
central to understanding the unique contributions of

Fig. 1. The three-stage cyclical model for educational neuroscience. Research in educational neuroscience covers a broad range of
paradigms with different trade-offs between experimental control and ecological validity, which can be achieved in different ways. In
contrast to the systematic design, researchers can increase their efforts to “bring the real-world to the lab” by the careful sampling of the
target ecology (“representative design”). The current review focuses on “bringing the lab to the real-world” using mobile neuroimaging
technology, which is another approach to real-world neuroscience (blue rectangle). One important challenge is to develop new paradigms
that work well outside the lab (“naturalistic design”). Research at all stages of the cycle is needed in educational neuroscience; lab studies
are needed to provide a basis for more naturalistic research, with the latter providing ground for previously established knowledge
or for formulating new hypotheses that can be tested in more controlled lab or seminaturalistic environments. Note that not all
neuroeducational research conforms to these categories; for example, some reliability studies use typical ERP designs (“systematic
design”) outside the lab with mobile electroencephalography (e.g., while walking or cycling). Further note that this is a revised version
of the cycle by Matusz et al. (2019), incorporating Brunwik’s terminology, the need for naturalistic paradigms and the focus on mobile
neuroimaging technology.
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research drawn from a range of paradigms in educational
neuroscience.

Even when experiments are designed to mimic the expe-
riences that students have in school, it is challenging to
simulate dynamic aspects of classroom ecologies including
the varied sensory inputs, social interactions with famil-
iar teachers and peers, student autonomy and agency, and
authentic academic experiences (e.g., challenging assign-
ments and cumulative units of instruction) that are naturally
occurring in the classroom setting. Indeed, there is reason
to suspect that the cognitive processes observed in the labo-
ratory setting vary from those employed in authentic social
interactions (Risko, Richardson, & Kingstone, 2016) and that
while this highly controlled research provides important
insight into these processes, this work cannot address the
complexities of how and when they are applied in the real
world (Osborne-Crowley, 2020).

The goal of real world or “real-life” (Shamay-Tsoory &
Mendelsohn, 2019) neuroscience is to increase the ecological
validity of neuroscience investigations. There is a recent dis-
cussion (Holleman, Hooge, Kemner, & Hessels, 2020) about
the definition of ecological validity and real-life experiments,
which is useful to consider with respect to our current goal.
This discussion is more a revival, as Hammond (1998)
already argued that ecological validity is often conflated
with representative design (Brunswik, 1955). According to
Brunswik, researchers should not only aim for proper sam-
pling of participants (to represent a target population) but
also aim for proper sampling of stimuli, tasks, and situations
(to represent a specific target ecology). Holleman et al. (2020)
argue that the words “real-world” and “ecological validity”
are often used superficially and suggest that researchers
should more clearly specify and describe the particular con-
texts of behavior in which they are interested (target ecology).

The Continuum of Real-World Neuroscience
There are a number of ways that researchers can begin
examining neural processes in real-world settings. As an
initial step in this direction, researchers have begun to
examine neural processes in response to real-world stimuli.
For example, Cantlon (2020) provides an example of how
the same research group examining numerical cognition
progressed from a traditional lab neuroimaging study to
a more representative paradigm to validate their theory.
Starting with a typical fMRI lab paradigm, 4-year-old chil-
dren were presented with dot arrays with the same number
of elements and element shape; however, in some of the
trials, there was a deviant stimulus in either the number of
elements (number deviants) or local element shape (shape
deviants; Cantlon, Brannon, Carter, & Pelphrey, 2006). The
results indicated that the intraparietal sulcus (IPS), previ-
ously associated with numerical processing, showed greater
activation for the number deviants.

Children’s early math skills develop in part through
informal learning opportunities including watching edu-
cational programs. To examine the extent to which the
IPS is involved in numerical processing when children
are engaged in these types of everyday activities, in their
subsequent fMRI study (Cantlon & Li, 2013), they aimed to
have more naturalistic stimuli by using a 20-min episode of
Sesame Street about mathematics, reading, and other topics.
Children’s IPS responses were higher during mathematics
content than during non-numerical content. Moreover,
the maturity of children’s neural time courses in the IPS,
compared to adults, predicted their mathematics test per-
formance better than traditional fMRI measures. The right
IPS showed an overall higher maturity and more speci-
ficity for mathematics than the left IPS, which is consistent
with previous studies, suggesting that the comparison
of analog quantities (more strongly related to the right
IPS) develops earlier than the processing of precise sym-
bolic representations of numerical values (more strongly
related to the left IPS). A recent study similarly examined
neural alignment between novice college students and
experts while they watched math lectures and completed
an open-question exam in the fMRI scanner. Results indi-
cated that neural alignment with other students and experts
predicted exam performance, even on a more fine-grained
question-by-question basis within individual students
(Meshulam et al., 2021).

The principles of representative design are also
increasingly used in lab-based functional near-infrared
spectroscopy (fNIRS) studies. For example, in one inves-
tigation, adult students watched a lecture on astronomy
and completed related quiz questions (Oku & Sato, 2021).
Using this experimental design with representative stimuli
allowed researchers to measure activation in the pre-
frontal cortex and examine how this was related to quiz
accuracy. Others have used fNIRS in combination with
virtual reality (VR) neuropsychological tests to approximate
real-life contexts in the laboratory, to address questions
about working memory (Jang et al., 2021) and read-
ing development (Blume et al., 2020) for children with
Attention-Deficit/Hyperactivity Disorder (ADHD) in the
context of virtual classrooms. The combination of fNIRS
and VR-based real-life context allowed researchers to assess
brain activity while controlling the classroom setting to limit
any extraneous factors.

These examples improve our understanding of brain
development and learning in more naturalistic contexts.
Future studies may further inform us about learning dis-
abilities and other individual differences, potentially aiding
the development of educational programs. Otherwise, these
findings may help us to understand why existing programs
are more or less effective. We think that validating earlier
findings with more naturalistic paradigms is a crucial step.
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Especially encouraging is when findings not only replicate
but also improve prediction of real-world outcomes.

The previous examples highlight (1) the ways in which
neuroscience can be used to address questions relevant to
education (e.g., what are the neural processes associated with
numeracy, and how does exposure to real-world educational
videos relate to these processes?) and (2) how researchers
can iterate between traditional lab tasks and novel paradigms
to understand neural processes in naturalistic contexts.

In-line with these examples, we argue that the most useful
model for educational neuroscience is cyclical, as some of us
previously outlined in Matusz et al. (2019). The three-stage
cyclical model comprises (1) tightly controlled lab-based
studies, (2) seminaturalistic research conducted either in the
laboratory or in controlled field settings, which are designed
to be representative of classroom experiences, and (3) fully
naturalistic studies. Educationally relevant studies exist on
a continuum of two dimensions, experimental control and
ecological validity, which generally have an antagonistic rela-
tionship, see Figure 1. By iterating across stages and meth-
ods, it is possible to generate complementary and converg-
ing evidence that—considered collectively—can yield com-
prehensive, neuroscientifically informed evidence to address
complex educational questions. In this way, research rele-
vant to education can be construed broadly, ranging from
work focused on “low-level” learning-related behaviors and
single cognitive constructs (Willingham & Lloyd, 2007), such
as numerical processing, attention, or memory, to more
complex educational processes like advanced mathematical
problem solving or social interactions.

Educational neuroscience studies in lab environments can
be made more naturalistic using the principle of representa-
tive design, that is, by “bringing the real world to the lab.”
This is a valuable and promising approach. In this review,
however, we instead focus on “bringing the lab to the real
world” (stages 2 and 3). Specifically, we discuss the poten-
tial of neuroscientific work conducted directly in real-world
settings, including schools, homes, and community-based
settings. The aim is to probe neural and behavioral processes
in the contexts in which they realistically occur and—in the
specific case of educational neuroscience—to increase the
translational potential of neuroscientific findings for educa-
tional practice.

Mobile Neuroimaging
Advances in mobile neuroimaging technology, namely
mobile EEG and mobile fNIRS, have played a key role
in bringing the lab to the real world. Mobile systems are
small, lightweight, battery-powered, and can be worn by
participants without being tethered by wires to an ampli-
fier or other recording devices (for examples of mobile
EEG systems, see Lau-Zhu, Lau, & McLoughlin, 2019; for

examples of fNIRS systems, see Quaresima & Ferrari, 2019;
see Table 1 for more details on the EEG and fNIRS tech-
niques). Wearing mobile technology, student learning would
ideally be investigated while they are able to freely move
about the classroom and engage with the world around
them, while data on behavioral and brain processes are
being continuously acquired. In this review, it will become
apparent that currently, the most “real-world” educational
neuroscience studies come close to this ideal, but with the
inherent trade-offs that have to be made to retain some
experimental control.

CURRENT STATE OF AFFAIRS

Mobile neuroimaging systems have been used in a vari-
ety of research settings, both inside and outside the lab,
because they allow more natural behaviors in participants.
However, research paradigms that are used alongside mobile
EEG/fNIRS vary considerably in how naturalistic they are.
To illustrate this point, we will discuss exemplar studies
with increasingly naturalistic designs, covered in the follow-
ing sections: (2.1) lab paradigms in mobile labs, (2.2) lab
paradigms in naturalistic settings, (2.3) online paradigms in
educational technology, and (2.4) naturalistic paradigms in
naturalistic settings. For Section 2.4, we will focus on stud-
ies that used mobile EEG/fNIRS outside the lab in educa-
tional settings, as indicated by the blue rectangle in Figure 1.
In doing so, we highlight the strengths of these approaches
and challenges that need to be addressed in future research.
Where possible, we will address how research findings may
be indirectly relevant for the classroom.

In the final section of this review, we will address ethi-
cal considerations of mobile technologies and present rec-
ommendations for future research. fNIRS has been scarcely
used in educational settings, therefore this review comprises
mostly mobile EEG examples, though many methodological
and ethical challenges are similar for both techniques.

Lab Paradigms in Mobile Labs
Mobile technologies have the potential to significantly
increase inclusion in science for communities that have
largely remained excluded from scientific research. Most
neuroimaging research to date takes place at universities
and hospitals. These settings inherently create barriers
to an inclusive and comprehensive science of the human
brain. There are socioeconomic and cultural factors that
prevent many people from participating in neuroimaging
research. Moreover, university campus laboratories can be
unfamiliar, difficult to navigate, and potentially intimidating
to visit for individuals and families who may have never
been there before. These obstacles have a cumulative effect
in neuroscience; much of our understanding of human brain
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development is effectively based on a nonrepresentative
sample (Henrich, Heine, & Norenzayan, 2010). With mobile
techniques, neuroimaging studies can take place virtually
anywhere; in schools (Grammer, Carrasco, Gehring, &
Morrison, 2014; Pietto et al., 2018) and in communities that
are distant to a university or hospital-based lab, or at home.
From a methodological standpoint, such studies may employ
typical lab paradigms in “pop-up labs” (e.g., empty class-
room and living room), allowing researchers to examine the
links between neural processes and educational outcomes
(Kim et al., 2016) with more representative samples.

Mobile neuroimaging tools have also successfully been
used to study child development beyond high-income
countries (HICs), where the majority of neuroimaging
laboratories exist. For example, Jasińska and Guei (2018)
developed a field neuroimaging protocol for use in rural
sub-Saharan Africa, Côte d’Ivoire, to better understand the
reading development of primary-school children growing
up in environments with a high-risk of illiteracy. fNIRS
techniques have also been used to evaluate the impact
of early risk on infant and child development in global
health settings. In rural Gambia (Blasi, Lloyd-Fox, Katus,
& Elwell, 2019; Lloyd-Fox et al., 2014; Papademetriou
et al., 2014), in an urban slum in Bangladesh (Perdue
et al., 2019; Storrs, 2017), and in India (Wijeakumar, Kumar,
Delgado Reyes, Tiwari, & Spencer, 2019), researchers have
used fNIRS to study infant cognition and gain new insights
into how environmental factors such as nutrition and
sanitation contribute to brain development.

Lab Paradigms in Naturalistic Settings
One way researchers have taken mobile technologies into the
real world involves employing lab paradigms in naturalistic
settings. At first sight, it may seem paradoxical to combine
typical lab paradigms with mobile neuroimaging. However,
validating laboratory paradigms in the real world, and vali-
dating mobile technology using well-established laboratory
paradigms, is a crucial step in the development of real-world
neuroscience.

EEG Investigations
Validity and reliability studies of mobile EEG systems typ-
ically focus on replicating well-known and robust EEG
features, such as certain event-related potential (ERP) com-
ponents or power spectra features, outside the lab. Although
conducted in real-world settings, many of the same con-
siderations and limitations present in laboratory studies
are relevant (e.g., trial count, data quality, and loss; for
additional details, see Table 1). Most of these studies focus
on the P300 (or P3) component, which is a broad and large
positive deflection in the ERP, maximal at parieto-central
scalp locations, and is sensitive for subjective probability,

motivational significance, and attention (Nieuwenhuis, De
Geus, & Aston-Jones, 2011).

It is common for mobile EEG studies to have partici-
pants walk or cycle a predetermined route on the university
campus, while they listen and count or respond to infre-
quent oddball tones through a headphone to obtain ERPs
(De Vos, Gandras, & Debener, 2014; Debener, Minow,
Emkes, Gandras, & de Vos, 2012; Ladouce, Donaldson,
Dudchenko, & Ietswaart, 2019; Zink, Hunyadi, Van Huffel,
& Vos, 2016). Validity is typically assessed by comparing
the oddball P300 during an outdoor condition with a sit-
ting condition. Although data loss can be high outdoors
(e.g., over 40% in Ladouce et al., 2019), the remaining
artifact-free trials can produce reliable P300 effects. Inter-
estingly, P300 amplitudes tend to be reduced in outdoor
conditions, despite similar data quality for remaining trials.
De Vos et al. (2014) reported a 30% P300 reduction in a
walking condition, probably because of more distraction.
P300 reduction effects may also be caused by increased
processing demands in real-life scenarios (Zink et al., 2016),
which were recently shown to be multisensory, involving
both visual and inertial processing (Ladouce et al., 2019).

Lau-Zhu et al. (2019) provide a more elaborative discus-
sion on the reliability and validity of mobile EEG systems.
They conclude that higher-quality research-grade gel-based
mobile systems, which are more similar to those used in lab-
oratory research and require a larger financial investment,
can produce the expected signal (e.g., oddball P300, power
spectra). In contrast, while less expensive consumer-grade
systems are more affordable and can be used more easily by
participants, they can be useful under more limited circum-
stances due to issues with data quality. Considering that data
loss can be high outside the lab, we recommend accounting
for this with a larger number of trials. Sufficient scalp cov-
erage is also recommended, as it allows independent com-
ponent analysis to separate brain and nonbrain (artifact)
sources, retaining parts of the EEG that would otherwise
have been rejected.

Currently, most mobile headsets are clearly visible and
this may reduce the compliance of students or reduce the
realism of the learning context. To address this, there are
recent efforts toward developing “transparent EEG,” such
as c-shaped electrode arrays (cEEGrid), which sit around
the ears and are near-invisible (Debener, Emkes, De Vos, &
Bleichner, 2015). Hölle and Bleichner (2021) demonstrated
the feasibility of transparent EEG in combination with a spo-
radic oddball paradigm (stimuli presented on average once
a minute), which was designed to interfere minimally with
the participants’ normal office routine for over 5 hr. Because
transparent EEG can be worn comfortably for extended
periods, it may even become feasible to rely entirely on
responses to naturally occurring events that are relatively
infrequent. In addition, by recording more EEG data, higher

7



Mobile Neuroimaging in Educational Science

EEG data exclusion rates in naturalistic environments can
be mitigated. Together, these advantages may allow ERP
research of natural events.

Not only reliability studies use more typical lab paradigms.
Ko, Komarov, Hairston, Jung, and Lin (2017) investigated
sustained attention with conventional EEG systems during
regular university lectures using an experimental task to
examine attentional processes. Specifically, while students
followed these lectures, they were instructed to press a
corresponding button on a smartphone when they saw
simple geometric objects, which unexpectedly appeared
on the lecture slides (>1 min between stimuli). Slower
response times, which were interpreted as lower sustained
attention, were preceded by increased delta and theta, and
decreased beta power, indicating mental fatigue. Notable is
that this situation is in fact a dual-task, requiring divided
attention between the lecture content and lab task. More
generally, this is the case when using lab paradigms in
naturalistic situations (Hölle & Bleichner, 2021). While
these examples have their own use cases, at the same time,
they show that the use of lab paradigms impose a real limit
to how “natural” real-world neuroscience can be, as they
involve the same artificial stimuli and tasks frequently used
in the lab.

fNIRS Investigations
Similar approaches have been applied to fNIRS technology.
Mobile fNIRS devices have paved the way for new studies
that examine both spatial and temporal patterns of neural
activation during a variety of cognitive tasks during daily life
activities, leveraging the specific advantages of fNIRS rela-
tive to both fMRI and EEG/ERP (Table 1). In recent years,
the fNIRS field has seen increased development of miniature,
wireless, wearable devices used in naturalistic and real-world
settings (Scholkmann et al., 2014), and increasingly sophis-
ticated devices with a greater number of source-detector
pairs have since become available, which permit simultane-
ous measurement of brain activity in multiple brain regions
(see Pinti et al., 2018 for a review).

Many of the mobile fNIRS studies published to date
involve a motor-cognitive dual-task walking protocol,
whereby participants are asked to perform a secondary
cognitive task while walking. For example, studies have
been conducted where participants complete cognitive
tasks such as serial subtractions (Maidan et al., 2016;
Mirelman et al., 2014; Nieuwhof et al., 2016), counting
forward (Mirelman et al., 2014; Nieuwhof et al., 2016),
verbal letter fluency (Doi et al., 2013), or reciting digits
(Nieuwhof et al., 2016) while freely moving. These stud-
ies all involved indoor protocols; however, other studies
have been conducted outside in everyday-life contexts
(Balardin et al., 2017; McKendrick, Mehta, Ayaz, Scheldrup,

& Parasuraman, 2017; Pinti et al., 2015). Challenges still
remain in limiting artifacts due to body movements, as well
as limiting systemic interferences that arise from the influ-
ence of other physiological factors (see Pinti et al., 2018 for a
discussion). However, strategies for minimizing the impact
of these factors on data quality, such as adding acceleration
measurements, are useful for interpreting data collected
from participants during free movement.

Online Paradigms in Educational Technology
When considering the continuum of real-world neuro-
science (see Figure 1), online learning environments can
provide a framework for more naturalistic educational stim-
uli, while retaining more control relative to real classrooms.
Mobile EEG systems are increasingly used in educational
technology research. Of 22 studies reviewed by Xu and
Zhong (2018), all used off-the-shelf consumer-grade sys-
tems, with 82% opting for a Neurosky system with only one
dry electrode on the forehead. The majority (91%) of the
authors used automatically calculated indices of “medita-
tion” or “attention” provided by the system’s proprietary
algorithms, instead of (pre)processing the raw EEG data
themselves. For these studies, it shows that the focus is more
on technology (applications) than neuroscience (under-
standing). For example, mobile EEG was used in attention
monitoring and alarm mechanisms in e-learning environ-
ments, intelligent tutoring systems, neurofeedback training,
or for evaluating e-learning instructional designs and edu-
cational entertainment, also called “edutainment.” A typical
example (Chen & Wang, 2018) would be an online English
course in which native Chinese speakers wear mobile EEG
systems, while the instructor receives alerts when there are
low-attention states (“No # student lacks concentration”),
who subsequently sends out an alarm message to the student
(“Your attention is now low. Please pay more attention to
the course! Cheer up!”).

While our review concerns research approaches with
mobile neuroimaging, we deemed it important to mention
these application approaches as well to aid our ethical
discussion in Section 3. EEG frequency bands are often
used in these proprietary algorithms purporting to mea-
sure student mental states, but it should be noted that
the interpretation of EEG data is not straightforward. For
example, frequency bands do not readily correspond to
specific processes, the functional correlates may depend on
the location (e.g., 8–13 Hz over the motor cortex, also called
mu oscillations, are different from 8–13 Hz over visual
areas) and depend on the specific task, and especially when
analyzed in individuals, they are very prone to artifacts.
While we see merit in some of the more research-oriented
studies, also in respect to the push toward more blended
learning, and more recently the reliance on online learning
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due to the COVID-19 pandemic (Dhawan, 2020; Rapanta,
Botturi, Goodyear, Guàrdia, & Koole, 2020), we think that
the application-focused studies should receive a healthy
dose of skepticism and more ethical scrutiny (more on this
in Section 3).

Naturalistic Paradigms in Naturalistic Settings
While mobile technologies are advancing fast, the key chal-
lenge in the coming years is to design naturalistic paradigms
(naturalistic design, Figure 1) that allow us to take full advan-
tage of the technology. As set out by Nastase et al. (2020,
p. 1): “… the world outside the laboratory is not amenable
to many of the assumptions of classical experimental design;
real-world ecological variables are often multidimensional,
sometimes nonlinear, and interact in unexpected ways.”
The tension between mobile technology and typical lab
paradigms was clearly illustrated in Section 2.2. Although
the stimuli were presented in a real-life context, they were
still unrelated to this context, the participants remained
limited in their responses, and they were unable to affect
their situation. Shamay-Tsoory and Mendelsohn (2019)
named these person-dependent and situation-dependent
limitations.

Compared to the lab, real-world learning situations are
relatively unstructured, meaning that relevant events are not
pre-established, relatively rare, and not always have clear
onsets (e.g., presentation of learning material, distracting
noises, receiving teacher feedback, interacting with peers).
Therefore, naturalistic paradigms cannot easily isolate spe-
cific neurocognitive processes (e.g., feedback processing),
because these require many repeated and controlled occur-
rences of events to separate signal from noise. In the case of
mobile EEG, these limitations hinder calculating averaged
ERPs to naturally occurring events. However, naturalistic
paradigms can use personal or environmental events to
segment neuroscientific data, where more general cogni-
tive “states” (e.g., engagement, attention) can be explored.
Furthermore, the timing and nature of classroom activi-
ties can be decided beforehand, effectively resulting in a
blocked design. One example is a recent mobile EEG study
(Dikker et al., 2020) into the effects of school class times on
adolescent attention, including four types of teaching over
three-time points (morning, mid-morning, and afternoon).
Results corroborated previous findings, showing worse
performance and higher alpha power (inversely related to
attention) in the early morning, indicating mid-morning to
be the best time to learn.

Other investigations have experimentally manipulated
instruction to examine the impact of aspects of the class-
room environment on attention. For example, in their work
with college students, Grammer, Xu, and Lenartowicz (2021)
measured EEG oscillatory power collected when students

engaged in different types of classroom instruction (instruc-
tor initiated: lecture and video watching; student-initiated:
group work and independent work). They found that
occipital alpha, theta, and gamma power differed signifi-
cantly across instructional activities, revealing that attention
was highest during student-initiated activities, followed by
lecture. Notably, this pattern of findings stood in contrast
to standardized behavioral observations, which revealed a
different pattern in student attention as a function of teacher
instruction. For example, student attention was rated as low-
est during group activities, whereas EEG data indicated that
this was a period when attention was high. Overall, the con-
trast between behavioral and neural data indicates the EEG
measures provided additional and unique information that
was not immediately available through observing behavior
alone. Although these types of investigations are still quite
limited in number and work needs to be done before their
findings can be translated directly to recommendations for
instructional practice, they highlight the ways in which EEG
can be employed to understand the impact of instruction on
student cognition, providing additional insight that cannot
be gained by examining behavior in the classroom.

We recognize that over the past 30 years, isolating ERPs
has been one of the most fruitful analysis approaches in
laboratory-based EEG research. As discussed in Section 2.2,
this can be achieved outside the lab with typical lab
paradigms, but it is quite incompatible with naturalistic
paradigms. However, recent methodological developments
may contribute to the analysis of spontaneous events
in real-world learning situations. Su, Hairston, and Rob-
bins (2018) described and tested a method called “automated
event detection,” which identifies stereotypical responses
in the EEG (based on a trained classifier) and then asked
the reverse question, “which stimulus triggered this EEG
response?.” This proof of concept study still used a typical
oddball paradigm, with known timings of stimuli to vali-
date the algorithm. A similar approach is being developed
for fNIRS with the Automatic IDentification of functional
Events method (Pinti et al., 2017), where not only syn-
thetic and lab-based, but also real-world fNIRS data were
validated. For the real-world data, 3/4 of the events were
recovered during a complex real-world prospective memory
experiment conducted outside the lab. The authors sug-
gest that the main advantage of this method is to support
the behavioral analysis of video recordings by statistically
detecting functional event onsets from fNIRS data, which
both saves time and is more accurate. Combined with
mobile neuroimaging systems that can be comfortably worn
for longer periods, this might allow to collect sufficient
numbers of events for ERP research. Note, however, that
there would still be limited experimental control.

The main challenge for naturalistic classroom paradigms
is to balance naturalism with experimental control. As will
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become apparent, the few “real-world” studies that were con-
ducted in classrooms, still imposed considerable constraints
to have some control over confounds (e.g., movement).
An additional challenge is that educational or cognitive
neuroscientists may not have enough expertise in what con-
stitutes real-world learning and classroom processes, and
their theories may also fall short in this dimension. A shift
toward more transdisciplinarity, including research-practice
partnerships, may therefore be needed for real-world edu-
cational neuroscience to advance (Youdell, Lindley, Shapiro,
Sun, & Leng, 2020).

Hyperscanning
As it stands now, hyperscanning studies seem to approach
the goal of marrying mobile EEG/fNIRS technology with
naturalistic paradigms most effectively. The term “hyper-
scanning” describes situations in which brain activity is
recorded from two or more people simultaneously. Usually,
some form of interbrain connectivity analysis is applied to
the data (Ayrolles et al., 2020; Hirsch, Noah, Zhang, Dravida,
& Ono, 2018). Most hyperscanning studies share the goal
to move from first-person neuroscience to “second-person
neuroscience” (Schilbach et al., 2013), thus investigating
dynamic social exchanges rather than one person in isola-
tion. Evidently, this is important in classrooms where there
is a continuous interaction among students and between stu-
dents and teachers. Most hyperscanning studies involve lab-
oratory simulations of particular social contexts, but there
are a few notable exceptions in the field of educational neu-
roscience, demonstrating the potential of mobile technology
to move to more naturalistic research.

In a pioneering study by Dikker et al. (2017), mobile EEG
was recorded in 12 high-school students over one semester.
Each class included four teaching styles that are typical for
schooling: teacher reads aloud, educational video, teacher
lecture, and group discussion. The findings suggested that
brain-to-brain synchrony was driven by a combination of
stimulus properties (teaching style) and individual differ-
ences (student focus, teaching style preference, teacher
likeability, and personality traits). Moreover, face-to-face
interaction prior to class not only increased brain-to-brain
synchrony during class but also seemed to serve as an
“activator” for interpersonal relationship features (Dikker
et al., 2017). Thus, brain-to-brain synchrony predicted both
student class engagement and social dynamics. Another
recent hyperscanning study with undergraduates under-
scores the relative sensitivity of this measure for real-world
outcomes; brain-to-brain synchrony, but not self-reported
group identification, predicted collective performance
among teams (Reinero, Dikker, & Van Bavel, 2021). fNIRS
methods have also been used to examine synchrony in
the brain activity of pre-schooler/teacher dyads during

a math game (Barreto et al., 2021) and between adult
learner/teacher dyads during a conceptual learning task
involving new psychology concepts (Pan et al., 2020). In
both of these cases, the goal was to examine how under-
standing synchrony between learners and teachers might
inform understanding of student outcomes.

It is important to emphasize that the interpretation of
brain-to-brain synchrony remains complex and ambiguous.
Low-level processing significantly affects brain-to-brain
synchrony through common visual (Poulsen, Kamronn,
Dmochowski, Parra, & Hansen, 2017) or auditory input, and
common motor output (Hamilton, 2020). This means that
brains similarly synchronize to stimuli and movement even
without higher-order processing. For example, fNIRS hyper-
scanning experiments of live eye-to-eye contact suggest that
mutual eye contact may play a critical role in natural inter-
personal interactions (Hirsch, Zhang, Noah, & Ono, 2017).
There is, however, evidence for higher-order processes con-
tributing to the strength of brain-to-brain synchrony. Based
on fMRI, fNIRS, and EEG hyperscanning evidence, Jiang,
Zheng, and Lu (2021) proposed that two processes—shared
representation and interpersonal predictive coding—might
facilitate successful interpersonal verbal communication
and underlie brain-to-brain synchrony during interactive
speech. Interpersonal predictive coding is probably specifi-
cally associated with time-lagged brain-to-brain synchrony
between two individuals, which seems especially relevant
for teacher-student interactions. Furthermore, shared atten-
tion seems to modulate brain-to-brain synchrony (Dikker
et al., 2017). When students are engaged, they pay atten-
tion to the same source (e.g., teacher’s voice). This leads
to synchronized brain activity through a process called
entrainment, that is, the “locking” of brain waves to the
rhythmic features of auditory and audiovisual input from the
environment (Zion Golumbic, Poeppel, & Schroeder, 2012).

The shared attention hypothesis is especially rele-
vant for educational neuroscience, as it predicts that
brain-to-brain synchrony is associated with learning.
Although brain-to-brain synchrony predicted learning in
lab environments (Cohen et al., 2018; Cohen & Parra, 2016),
this was in noninteracting students (they were separately
measured). The only study with a group of students, sim-
ilar set-up as Dikker et al. (2017), failed to demonstrate
such an association (Bevilacqua et al., 2019). However, the
link between brain-to-brain synchrony and learning was
only globally assessed, without pinpointing when exactly
information was presented. This was addressed in a recent
simulated classroom experiment in the lab (Davidesco
et al., 2019). Following a common approach in labora-
tory memory research, the researchers marked periods in
which certain information was presented by the teacher
and compared brain-to-brain synchrony during the periods
where retained information was presented to periods where
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unretained information was presented. Retained items
were associated with higher brain-to-brain synchrony. In
addition, student-to-teacher brain synchrony best predicted
learning when adjusting for a ∼200 millisecond lag in
the students’ brain activity relative to the teacher’s brain
activity, probably reflecting speech processing (Davidesco
et al., 2019) and/or interpersonal predictive coding (Jiang
et al., 2021).

What Can We Learn From These Naturalistic
Hyperscanning Studies?
Although the mechanisms behind brain-to-brain synchrony
are complex, it seems to be a sensitive marker for processes
relevant for education: engagement, shared attention, social
dynamics, collective performance, and learning. We do
think that a more detailed understanding of brain-to-brain
synchrony using EEG and fNIRS methodology (Brocking-
ton et al., 2018) could benefit educational research. For
instance, researchers could increase their efforts to track
behavior (Hamilton, 2020) and the stimulus environment
in classrooms alongside brain activity. Similar to Poulsen
et al. (2017) and Davidesco et al. (2019), video and audio
recordings of the classroom could be synchronized with
brain data. In addition, the behavior could be tracked
with eye-tracking, transcripts, and coding of speech. This
approach may help to delineate lower- (e.g., shared stimulus
environment) and higher-order (e.g., shared attention) mod-
erators of brain-to-brain synchrony, leading to a better spec-
ification of higher-order mechanisms that are relevant in the
classroom. Conversely, by reverse engineering, periods of
high brain-to-brain synchrony can be identified as functional
events, forming the basis for exploring behavioral correlates
(“brain-first approach”; Pinti et al., 2017). The causal role
of interbrain synchrony on social interaction needs more
attention as well, for example, by adequate experimental
designs and computational tools (Moreau & Dumas, 2021)
or by multibrain stimulation (Novembre & Iannetti, 2021).

These first pioneering studies demonstrated that the class-
room lends itself well as a stage for real-world neuroscience
experiments. Compared to, for example, shopping in a busy
street, activities in a classroom naturally have structure and
are confined to a specific space and time and group compo-
sition. Naturalistic paradigms can be built on this structure
as demonstrated (Bevilacqua et al., 2019; Dikker et al., 2017);
however, striking the right balance between ecological valid-
ity and experimental control remains a challenge. Although
the previous examples are currently the most extreme on the
continuum (see right side of Figure 1), close inspection of
the research reveals that true “realism” still suffers because
of necessary experimental control.

For example, in Dikker et al. (2017), the actual teaching
during each class was relatively short (13 min over four

different activities) compared to usual classes, and they
followed the same structure over the semester, providing
limited room for spontaneity and variety. Even though
students were instructed to minimize overt movement
during the recordings, EEG rejection rates due to artifacts
were high (∼40–60%), especially for classroom activities
that involve extensive student interaction, such as group
discussions. In a follow-up study, EEG activity was col-
lected only during lectures and videos, and “students were
instructed to reserve questions and discussion for after
the recording session was over. Thus, minimal to no con-
versational exchange occurred between students and their
teacher during the EEG recordings” (Bevilacqua et al., 2019,
p. 404). Furthermore, the teacher in this study was requested
to remain seated throughout the lecture and minimize head
movement, which resulted in less naturalistic teaching.

These challenges may be addressed by collecting data
long enough to end up with sufficient clean data or to have
sufficient data to average out artifacts. Additionally, some
of these problems are likely to improve by advancements in
hardware (e.g., better shielding, less electrode movement,
and dual-electrodes motion artifact cancellation; Nordin,
Hairston, & Ferris, 2018), advances in artifact identification
and removal, but other problems may remain inherent to
research outside the lab, such as limited control over and
limited occurrences of unstructured events.

In conclusion, brain-to-brain synchrony provides an
implicit, unobtrusive, and continuous measure that cap-
tures important aspects of interpersonal interactions and
motivation in classrooms. This may be used as an objective
marker with unique predictive value (Reinero et al., 2021),
in conjunction with behavioral and self-report measures,
to better understand these complex processes. In addition,
brain-to-brain synchrony may be suitable in the future
as an outcome measure to test school interventions and
teaching methods or to even inform the development of
new neuroscience-informed interventions before they are
used at scale. We like to reiterate that we do not expect
such naturalistic hyperscanning studies to be sufficient for
informing innovations in teaching; rather, these studies have
a place in the cycle that we discussed in the first section.

REFLECTION AND WAYS FORWARD

Overpromising
Although mobile brain technologies provide exciting new
research avenues, there have been several critiques to this
emerging field of research. Some argue that the use of
mobile technology is currently being advocated in an overly
optimistic way, which comes with the risk that limitations
and challenges do not get the attention they should (Hes-
sels, Niehorster, Holleman, Benjamins, & Hooge, 2020). A
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question that should always be answered first is whether
the use of mobile technology is justified for a specific study
and what insights it will add, given the challenges with
regard to data quality and analysis. To be able to answer
this question, researchers should be educated and trained
in using the technology. This point is also made in Parada
and Rossi (2017). They stress the importance of discussing
the theoretical and methodological need for using mobile
equipment. Theory-guided and hypothesis-driven experi-
ments are important even in the most naturalistic settings.
And even if a study is more exploratory, it should be avoided
at any rate that researchers are uninformed, collect terabytes
of data using portable devices, only to find out that the analy-
ses are far from straightforward and lack a theoretical foun-
dation (Hessels et al., 2020). The use of mobile technology
should not be presented as a “simple solution” to the lim-
ited ecological validity of lab-based research. One step in the
right direction is to use mobile technology as part of the cycle
(Figure 1), not as a standalone “replacement” of lab research.

Brain Data: Commercial (Mis)Use
Another cause of concern is when (unintentional) over-
promising is not done by researchers, but by commer-
cial parties. Given the wide availability of consumer-grade
mobile systems that are easy to use, there are companies
advertising wearable EEG bands to businesses or to schools
as tools to monitor their employees’ or students’ focus lev-
els. They claim that this technology enables personalized
interventions that improve workplace productivity and aca-
demic achievement. These applications send “attention lev-
els” to workplace supervisors or teachers in a dashboard in
real time, who can use them to recommend short breaks
or lower workload if focus drops and stress increases. A
video published by the Wall Street Journal (WSJ, 2019) doc-
uments a Chinese primary school where this type of tech-
nology was implemented in their classes. Besides a lack of
empirical evidence for the rational and accuracy of translat-
ing EEG signals into “attention levels,” such applications give
rise to serious privacy and consent issues (Minielly, Hrincu,
& Illes, 2020). Indeed, data collection at the Chinese school
was shut down based on parents’ privacy concerns.

In addition to applications aimed to measure brain sig-
nals in a work or school setting for monitoring employ-
ees or students, the research described in Section 2.3 has
also found its way to commercial “neuro-adaptive learning
platforms,” which use neural data to personalize learning.
Such examples are based on the assumption that brain sig-
nals measured with mobile devices can accurately be inter-
preted and translated into simple outputs that are relevant
for teachers or employers, but the empirical evidence for this
assumption is yet lacking (Williamson, 2019). Many other
commercial applications claim to enhance or optimize brain

function or wellbeing (e.g., by electrical brain stimulation
or neurofeedback training). Although such neuromodula-
tion applications are beyond the scope of this paper, they
too require careful ethical (Schuijer, de Jong, Kupper, & van
Atteveldt, 2017; Williamson, 2019) and methodological con-
sideration (Thibault & Raz, 2017), especially in more vul-
nerable populations (e.g., children with neurodevelopmental
disorders). A recent effort by neurofeedback researchers led
to a consensus on how to conduct neurofeedback research
(CRED-nf checklist), advocating research standards, such as
using (blinded) randomized controlled trial (RCT) designs,
detailed reporting, and efforts to disentangle specific and
nonspecific treatment effects (Ros et al., 2020). Educational
neuroscience could build further on these initiatives and
the long history of educational science with RCTs (Styles &
Torgerson, 2018), to ensure rigorous evaluation of (commer-
cial) neurotechnologies.

Direct-to-consumer marketing of neurotechnologies
raises profound ethical concerns about unsubstantiated
claims bringing risks for public trust as well as for safety
(Coates McCall, Lau, Minielly, & Illes, 2019). Another issue
is the potential “neuropower” (Williamson, 2019) provided
by such EEG datasets (and optimization tools) to companies
and governments. Emerging neurotechnologies increase the
risk of using the brain as a “biopolitical resource,” promoting
optimization and thereby the competitiveness of a popula-
tion (Rose & Abi-Rached, 2014). This means that the brain
is increasingly viewed as an entity to optimize: to read and
store its data and use this to optimize and “sculpt” in a way
that companies and governments see fit. Even though the
technology is currently not there to enable such power, it is
important to anticipate such possible impacts in the future.

Conclusion and Future Directions
By bringing the lab into the real world, mobile neuroimag-
ing technology extends the toolbox available to researchers
to conduct real-world educational neuroscience. Research
paradigms that are used alongside mobile neuroimaging vary
considerably in how naturalistic they are: ranging from typ-
ical lab paradigms, in and outside the lab, to more nat-
uralistic paradigms. As discussed throughout this article,
there are trade-offs between ecological validity and exper-
imental control, and finding the right balance between the
two depends on the research question at hand. We sug-
gest embedding mobile neuroimaging in a research cycle
that involves lab-based and semi-naturalistic experiments.
Another use case of mobile neuroimaging is to set up mobile
labs that can help to include more representative samples,
such as lower socioeconomic status students or beyond
HICs. Due to the complexity of real-world learning environ-
ments, there are still limits to which research questions can
be addressed with mobile neuroimaging. As it stands now,
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Fig. 2. Checklist for using neuroimaging technology in educational neuroscience. Before choosing mobile neuroimaging for a study,
these steps/questions are useful to consider.

naturalistic paradigms are less suitable for event-related
research into specific cognitive processes, while general cog-
nitive “states” are more feasible to study.

Conducting mobile neuroimaging research in schools can
be theoretically, methodologically, and technically challeng-
ing, which asks for new collaborations that cross disciplines.
We see much value in creating a community of researchers
who are interested in using mobile neuroimaging, to share
best practices and discuss potential ethical issues. Our
Emerging Field Group (https://earli.org/efg-01), supported
by EARLI and the Jacobs Foundation, offers opportunities
to create such a community. Mobile brain technologies can
also be used as an educational tool and provide opportuni-
ties for teachers and students to gain hands-on experience in
neuroscience research (Azeka, Carter, & Davidesco, 2020).
Another overarching goal for educational neuroscience is to
move toward transdisciplinary approaches, to have different
disciplines jointly design studies from the outset (Youdell
et al., 2020). In other words—this can truly integrate disci-
plines to create something new, rather than simply taking
a neuroscience method and plug it into the classroom,
without understanding this “target ecology.”

Not all real-world educational neuroscience research
should or can be conducted outside the lab; many research
questions can be addressed by bringing the real world to the
lab, using representative design principles. Figure 2 contains
a decision tree, which may be helpful to decide whether a
mobile neuroimaging study is actually needed and feasible.
Additionally, preregistered studies and registered reports
may help to enforce quality standards and prevent data col-
lection without theoretical grounding, and the field would
benefit from a better consensus on appropriate benchmark-
ing criteria for establishing validity and reliability, which
it is currently lacking (but see Oliveira, Schlink, Hairston,
König, & Ferris, 2016). Open data needs to be ensured (i.e.,
that the researcher has access to the raw data of the mobile
device), and the same holds true for any signal processing
that is done in commercial devices.

We think it is important to safeguard that (commercial)
applications should not outpace the evidence, and that eth-
ical issues should be dealt with in advance and on the way,
rather than waiting until ethically questionable applications
are already in use. Therefore, reflexive practices should be
used, such as responsible research and innovation (Van
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Atteveldt, Tijsma, Janssen, & Kupper, 2019), where desirable
and less desirable directions are discussed beforehand by
researchers together with stakeholders, and importantly,
researchers respond to these inclusive deliberations by
adjusting the course of their research. This fits in the line of
thought to take this new research field one step at a time.
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