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Abstract 

 

Brain networks use neural oscillations as information transfer mechanisms. Although 

the face perception network in occipitotemporal cortex is well-studied, contributions of 

oscillations to face representation remain an open question. We tested for links 

between oscillatory responses that encode facial dimensions and the theoretical 

proposal that faces are encoded in similarity-based “face spaces”. We quantified 

similarity-based encoding of dynamic faces in magnetoencephalographic sensor-level 

oscillatory power for identity, expression, physical and perceptual similarity of facial 

form and motion. Our data show that evoked responses manifest physical and 

perceptual form similarity that distinguishes facial identities. Low-frequency induced 

oscillations (<20 Hz) manifested more general similarity structure, which was not 

limited to identity, and spanned physical and perceived form and motion. A 

supplementary fMRI-constrained source reconstruction implicated fusiform gyrus and 

V5 in this similarity-based representation. These findings introduce a potential link 

between “face space” encoding and oscillatory network communication, which 

generates new hypotheses about the potential oscillation-mediated mechanisms that 

might encode facial dimensions. 
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1. Introduction 

 

Neural oscillations (rhythmic neural firing) are ubiquitous features of the brain 

and furnish mechanisms contributing to network communication (Engel & Singer, 

2001; Salinas & Sejnowski, 2001). Synchronization of membrane potentials enhances 

coupling between brain regions, allowing them to control information flow and organize 

specific functional networks (Fries, 2005; Fries, 2009). Hierarchical processing among 

visual areas may be mediated by oscillatory mechanisms, with forward (bottom-up) 

and backward (top-down) communication between higher- and lower-level visual 

areas carried respectively by high- (gamma) and low- (beta) frequency oscillations 

(Michalareas et al., 2016). These connectivity mechanisms could enable “binding” of 

visual dimension representations into unitary object percepts (Engel & Singer, 2001). 

Although these mechanisms have perhaps been best-studied for visual processes in 

non-human animals, neural oscillations are also a hallmark of visual processing in 

humans. Low-frequency power modulation is a ubiquitous feature of visual responses 

measured by electroencephalography (EEG) and magnetoencephalography (MEG). 

A negatively-deflected alpha/beta (10-30 Hz) response, in particular, putatively 

indexes visual object encoding (Hanslmayer et al., 2012). Nevertheless, more could 

be learned about how this low-frequency power deflection gives rise to visual 

encoding, what information is encoded, and in what format.  

An example of a brain network in the human whose communication may be 

mediated by oscillatory mechanisms is the well-studied network of discrete functional 

areas in ventral occipital cortex, fusiform gyrus, V5 and superior temporal sulcus 

(Haxby et al., 2001; Furl et al., 2015) associated with perception of dynamic faces and 

localized using functional magnetic resonance imaging (fMRI). These face-selective 



and motion-sensitive areas encode the form and motion information used to recognize 

faces and their emotional expressions and presumably give rise to oscillatory signals 

that reflect this encoding and that would be detectable using MEG. For example, 

spatial locations in static photographs of facial forms useful for expression 

categorization is reflected in both power and phase of oscillations below 25 Hz 

(Schyns et al., 2011). Several studies have now also examined dynamic facial 

movements and illustrated a role for low-frequency oscillations. This frequency range 

is modulated by motion and form information present in facial video 

(Muthukmaraswamy et al., 2006; Virji-Babul et al., 2007; Popov et al., 2013; Furl et 

al., 2014; Güntekin & Başar, 2014; Jabbi et al., 2015; Fox et al., 2016; Symons et al., 

2016). These findings suggest that oscillations, especially in low frequencies, may be 

transmitting the information about form and motion processed in the aforementioned 

face perception network.  

We propose to go beyond these existing studies by investigating the role of 

neural oscillations in face perception from the standpoint of similarity-based 

representations. A longstanding theory (Valentine, 1991) of face recognition posits a 

similarity-based “face space”, where faces are encoded relative to a set of constituent 

attributes in a multidimensional feature space and evaluated based on their similarity 

with learned representations. This formulation motivated us to test whether oscillatory 

power might also reflect representational distances between faces based on their 

physical and perceptual similarity. Such similarity-based object representations have 

been discovered using time-domain data from EEG (Kaneshiro et al., 2015), MEG 

(Cichy et al., 2014), intra-cranial recording (Op de Beeck, et al., 2001; Kiani et al., 

2007) and fMRI (Haushofer et al., 2008; Drucker & Aguirre, 2009; Proklova et al., 

2016) and for static facial attributes such as identities (Vida et al., 2017), configurations 



(Goesaert & Op de Beeck, 2013) and gaze directions (Carlin et al., 2011). However, 

these results are limited to time-domain data, and they cannot link stimulus information 

content with potential neural mechanisms manifested by oscillatory power. Much, 

therefore, remains to be learned about how oscillations might (or might not) reflect 

similarities among faces, relative to constituent features in a multidimensional 

similarity space.  

Here, we tested for similarity-based oscillatory responses using 

representational similarity analysis (RSA) to compare similarity distances between 

MEG response patterns with similarity values derived from physical and perceptual 

measures of high-level facial dimensions and categories (Su, et al., 2012). To this end, 

we developed “physical similarity spaces” by extracting configurations of facial form 

and patterns of facial motion from videos of dynamic facial expressions. We also 

developed “perceptual similarity spaces”, based on participants’ similarity judgments 

of facial form and motion. Lastly, “categorical similarity spaces” were based on the 

between- versus within-category structure for identity and emotional expression. Using 

these spaces, we were able to behaviorally test for inter-relationships between 

physical and perceptual measures of facial similarity and whether they contain 

information about facial identities and emotional expressions. Our main aim, however, 

was to establish whether any of these similarity spaces was manifested by induced 

oscillatory MEG responses, as measured at the sensor-level. As a basis for further 

comparison, we also tested whether time-domain evoked response similarity 

corresponded to physical perceptual or categorical face spaces. We therefore could 

determine whether any facial encoding we found for induced responses was also 

present in evoked signals. Lastly, as a supplemental analysis, we optimized a source 

reconstruction to localize our sensor space RSA effects within the aforementioned, 



well-studied face perception network. We acquired fMRI functional localizer data in the 

same participants as those who underwent behavioral and MEG testing and exploited 

the superior spatial resolution of fMRI to constrain our source solution. This multimodal 

dataset of physical data extracted from video, behavioral data, evoked and induced 

sensor-level MEG responses and fMRI-guided source localizations provided us with a 

rich set of measures to fully explore several novel tests about representations of facial 

similarity spaces. 

 

2. Methods and materials 

 

2.1 Participants 

 

Twenty participants (>18 years) were scanned using fMRI. Of these, two did 

not return for the behavioral experiment, one additional participant did not return for 

MEG, and behavioral data for one more participant were lost due to technical issues. 

Analyses proceeded with the sixteen participants who possessed the full complement 

of data. All participants were right-handed, had normal or corrected-to-normal vision 

and reported no history of psychiatric or neurological disorder. The local Cambridge, 

UK ethics committee granted approval. 

 

2.2 fMRI procedures and analysis 

 

Structural scans were obtained to facilitate data registration during MEG source 

reconstruction. The results of fMRI localizer scans were also used to constrain source 

solutions to fMRI-defined functional regions of interest (ROIs). fMRI scans were 



collected using a 3T Siemens Tim Trio MRI scanner with 32 channel head coil.  

Functional scans included whole-brain T2*-weighted echo-planar volumes with 64 × 

64 matrix and 3 mm2 resolution in-plane and 3.75 mm thick axial slices, TR 2 s, TE 30 

ms, flip angle 78°. Structural scans were T1-weighted MPRAGE with 1 mm3 voxels. 

The two localizer runs (175 volumes) were separated by runs related to a different 

experiment on faces, not reported here. The localizer procedures were adapted from 

Furl et al. (2013; 2015). The experiment was controlled using E-Prime (Psychology 

Software Tools, Pittsburgh, PA). In each run, participants viewed four types of block, 

each containing grayscale presentations of a stimulus category: dynamic faces, 

dynamic objects or static versions of the same faces or objects (taken from the last 

frame of each video). There were six blocks of each block type per run and block order 

was pseudo-random. Each block comprised eight presentations of 1375 ms stimuli 

and a 1 s inter-block interval. Each participant fixated on a white dot overlaid on the 

center of each presentation and pressed a button-box key with the right index finger 

when the dot turned red on a pseudo-random one-third of stimulus presentations. Four 

male and four female facial identities, exhibiting transitions from neutral to disgust, 

fearful, happy and sad expressions were taken from the Amsterdam Dynamic Face 

Expression Set (ADFES)(van der Schalk et al., 2011). Face blocks comprised eight 

identities and four randomly-selected expressions, with each expression appearing 

twice. Object blocks included eight objects, previous used in functional localizers (Fox 

et al., 2009; Furl et al., 2013; 2015). Dynamic object videos included various plants 

blowing in the wind, a spinning globe, a spinning ceiling fan, a burning flame, operating 

machinery and a running tap.  

fMRI data were preprocessed and analyzed using SPM12 (Wellcome Trust 

Centre for Neuroimaging, London http://www.fil.ion.ucl.ac.uk/spm/) and MATLAB (The 

http://www.fil.ion.ucl.ac.uk/spm/


Mathworks, Natick, MA, USA). Data were motion-corrected, spatially-normalized to an 

EPI template in MNI space, and smoothed to 8 mm FWHM. At a first level of analysis, 

we estimated within-participant effects using an AR(1) corrected general linear model 

with a 128 ms high pass filter. Four regressors were added by convolving onset times 

and durations for dynamic faces, static faces, dynamic objects and static objects with 

a canonical hemodynamic response function. Regressors were also added for head 

motion parameters. We tested contrasts of the block types at a second level, where a 

group analysis was conducted to identify locations in MNI space of occipitotemporal 

areas associated with form and motion representations of dynamic faces (Haxby et 

al., 2000; Furl et al., 2015). We localized face-selective areas: bilateral occipital face 

area (OFA), bilateral fusiform face area (FFA) and right superior temporal sulcus (STS) 

(defined by contrasting face blocks > object blocks) and motion-sensitive areas: right 

and left V5 (defined by contrasting dynamic blocks > static blocks). For ROI definition, 

we identified the coordinates of the peaks of clusters observed at P < 0.001 

uncorrected that achieved family-wise error correction at the voxel level using random-

field theory (Brett et al., 2003).   

 

2.3 Behavioral procedures 

 

The behavioral experiment was conducted using PsychoPy (Peirce, 2009) in a 

separate testing session either immediately following fMRI or within two weeks. 

Participants viewed the 630 possible unique pairings of 36 dynamic faces. The 36 

faces were taken from the BU-4DFE face set (Yin et al., 2008) and depicted six 

identities (three female). All videos began with a neutral expression on the first frame 

(Figure 1A, left).and then transitioned to the apex of six possible emotional 



expressions: anger, disgust, fear, happy, sadness and surprise (Figure 1A) within a 2 

sec video clip. The timing by which this neutral to emotion movement occurred 

depended on the individual dynamics associated with each identity and expression 

(See Figure 1B for average dynamics for each expression). The two videos on each 

trial were presented on random sides of the computer screen and looped until the 

participant responded, so participants could inspect the forms and movements for as 

long as they needed before making judgments. Participants judged the similarity of 

each pair by using the mouse to click on a horizontal line on the screen, which 

represented a continuous similarity scale. Participants judged all pairs twice, once for 

form and once for motion similarity, in an order counterbalanced over participants. 

Participants were instructed to differentiate their form and motion judgements based 

on features, shapes and other information in the video that either were visible across 

every frame (form) or changed from frame to frame (motion). For form judgments, we 

instructed participants to evaluate only the forms and shapes visible on every static 

frame of each video and to ignore anything that changed from frame to frame, including 

motion. For motion judgments, we instructed participants to evaluate only how faces 

changed across frames and to ignore information visible across the frames. Although 

we gave them this guidance for what “form” and “motion” meant, we did not direct their 

attention to any specific information or features nor did we provide them with specific 

examples of forms or movements to use. Instead, participants were told that they 

should decide these for themselves, as we were interested studying their choices. 

Similarity judgments averaged over participants were used to construct form and 

motion-based similarity matrices. The form and motion judgment similarity matrices 

could then be used for RSA to test our hypothesis that MEG oscillatory signals exhibit 

representations of perceived form and motion.  



 

2.4 Configural form and motion pattern similarity measures 

  

In addition to constructing similarity matrices to characterize subjective, 

perceived form and motion, we also constructed similarity matrices to characterize 

more physical, objective measures of form and motion. We then could use RSA to test 

further hypotheses about the relationship of brain signals with these physical 

measures of facial form and motion. We extracted physical approximations to form 

and motion information from the 36 videos used in the behavioral and MEG 

experiments. One hundred seventy nine image landmarks were detected and tracked 

over frames using established methods implemented by the Psychomorph software 

(Chen & Tiddeman, 2010; Yu & Tiddeman, 2010).  

We extracted a physical “configural form” measure using landmarks from the 

first frame of each video, where only a neutral expression was present (Figure 1A). 

We computed a “configuration” as the 15,931 element vector of two-dimensional 

Euclidean pairwise distances between the 179 landmark coordinates. This form 

measure is “configural” in the sense that it is defined by distances between 

corresponding points that are defined by high-level facial feature locations, rendering 

this form representation specific for faces and not computable for non-face objects, 

which do not have corresponding reference points and therefore no comparable 

configuration of distances. We populated a configural form similarity matrix (Figure 2) 

by taking each pair of videos and computing the Pearson correlation between their 

landmark configuration vectors. 

We also used these landmark positions to approximate a physical measure of 

the facial motion pattern. To focus our analysis on non-rigid changes in facial muscle 



position, we selected 141 landmarks within the interior of the face. These landmarks 

are more likely to be subject to non-rigid expression motion of moveable facial features 

(Figure 1A) than exterior landmarks representing head shape. We corrected these 

landmark positions for rigid, whole head movement by identifying a triangle of three 

fiducial landmarks on the nose (a structure that can only move with the whole head) 

and applying an inverse affine transformation to correct the rest of the landmark 

positions for these fiducial positions. Then, for each video frame, we computed the 

optic flow (in units of numbers of pixels displaced) for each landmark position, relative 

to the previous video frame. For computational efficiency, we averaged these optic 

flow values over selected groups of landmarks associated with facial anatomy. The 

landmarks included in each feature are color-coded in Figure 1A and their optic flow 

values are summarized in Figure 1B by averaging each expression. Motion typically 

reaches a visible maximum before 1000 ms, although motion profiles are variable. In 

a similar fashion to the configural form computation, we found a spatiotemporal motion 

configuration by computing the 217,470 element vector of Euclidean distances 

between every pair of optic flow values across the 12 features and 56 video frames. 

This “motion pattern” captures the three-dimensional optic flow distribution over two 

spatial position dimensions and the time dimension. As with our configural form 

measure, we have defined motion as a “pattern” between correspondence points so 

this high-level representation is face-specific, is not computable for non-face objects, 

and does not represent the average motion energy or an “overall” motion measure. 

Similarity matrices were then constructed by taking each pair of videos and computing 

the Pearson correlation between their motion patterns.  

 

2.5 MEG procedures and analysis 



 

MEG data (306-channel Elekta Neuromag Vectorview system, Stockholm) 

were sampled continuously at 1 kHz. Participants’ heads were localized within the 

MEG dewar using five indicator coils. Head shape was characterized by digitizing 

nasion, left and right preauricular fiducial locations and approximately 80 additional 

locations evenly-distributed over the scalp. The experiment was controlled using E-

Prime. Participants viewed the same 36 videos from the behavioral experiment. 

Participants viewed all videos eight times in each of four scanning runs resulting in 

1152 trials and 32 presentations of each video per participant. Each participant fixated 

on a centrally-overlaid white dot and pressed a button-box key with the right index 

finger when it changed red on a random one-third of trials. Videos were sequentially-

presented pairs with stimulus onset asynchronies of 3.4 s within each pair of images 

and 5 s between pairs. Expressions and identities were matched or mismatched over 

face pairs, for the original intention of measuring repetition suppression. However, 

repetition suppression effects did not prove robust or significant and are not reported 

further. We speculate that the lack of repetition suppression may relate to the fleeting, 

dynamic nature of stimulus information (as repetition effects may be enhanced through 

prolonged exposure) or to the long stimulus durations and interstimulus intervals we 

used, which might attenuate repetition effects.  

We used Neuromag Maxfilter (Taulu & Kajola, 2005) to register scalp data, 

remove artifactual background noise (using a signal separation method) and 

downsample to 250 Hz. Using SPM12, continuous data were filtered 4 to 50 Hz, 

epoched from 500 ms pre-stimulus onset to 2500 post-stimulus onset and 

downsampled to 100 Hz. Trials were considered artifactual and excluded from analysis 

if an axial magnetometer signal exceeded 2000 fT or a planar gradiometer signal 



exceeded 50 ft/mm. For time-domain evoked analysis, epochs (stimulus onset at 0 ms 

to 500 ms past stimulus offset) were baseline-corrected using the average response -

500 to 0 ms (i.e., stimulus onset) and then averaged over trials. For time-frequency 

oscillatory responses, we estimated power for 4-50 Hz and -500 to 2500 ms by 

subjecting epochs to a Morlet wavelet decomposition with factor 7. Epochs in the time-

frequency domain were averaged and rescaled by taking, for each frequency, a log-

ratio baseline correction with -350 to -100 baseline.  

Our principal predictions that our test similarity matrices would correlate with 

similarities among MEG responses were tested in sensor space. The MEG sensor-

level matrices were based on evoked and induced response similarity. For evoked 

responses, similarity matrices were constructed at every peri-stimulus time point by 

taking each pair of videos and computing the Pearson correlation between their 

patterns of MEG response over all 306 sensors. Because all oscillatory response 

components manifested overlapping occipitotemporal sensor distributions (e.g., 

Figure 4), we could eliminate noisy/irrelevant sensors by selecting sensors where t 

tests indicated an occipitotemporal response greater than zero at P < 1×e-4 

uncorrected for any frequency or post-stimulus time (56% of sensors). For every peri-

stimulus time point and frequency, we constructed a similarity matrix by taking each 

pair of videos and computing the Pearson correlation between their sensor response 

patterns.  

We hypothesized that low-frequency oscillations would encode facial similarity 

space dimensions, with a special interest in the negative alpha/beta deflection (as 

discussed in the Introduction), and so we selected our data, downsampling rate and 

filters to optimize our analysis for a relatively low frequency range. Nevertheless, we 

adopted wide enough frequency coverage to include theta, alpha, beta and gamma 



bands and all the major response components, as shown in Figure 4. This included 

even the gamma component, which appears maximal from 40-60 Hz and is weaker 

above 60 Hz. Given a report that similarities among different pictures of faces were 

related to >80 Hz electrophysiological responses in intra-cranial recordings 

(Davidesco et al., 2014), we also pursued an exploratory analysis of high gamma (50-

100 Hz), using a corresponding 50 to 100 Hz filter on continuous data downsampled 

to 200 Hz. We found no significant RSA effects for such high frequencies at P<0.05 

using threshold-free cluster enhancement and the same statistical methods described 

for our 4-50 Hz analysis. We therefore focus our results reporting on analyses 

optimized for the 4-50 Hz range that includes the traditional time-frequency response 

features (Figure 4). 

Although we performed our main RSA analysis on sensor data, which is 

relatively close to the original MEG signals, we also transformed our signals into 

source space. We examined source reconstructions of both evoked time-domain and 

time-frequency responses. For the time-frequency analysis, source reconstruction 

was only aimed at testing where, within the face perception network, our sensor space 

effects might have arisen, rather than using source reconstruction to perform a parallel 

test of our predictions with respect to oscillation frequency. Indeed, our sensor space 

analysis was already framed as a search through frequency space for RSA effects 

and the result of this search was that 4-20 Hz was identified as the frequencies best 

expressing RSA effects (Figure 6). Our source space RSA, in contrast to the sensor-

space RSA, was framed as a search through an anatomic region of interest space for 

RSA effects. Thus, we searched for individual regions of interest expressing RSA 

effects, averaged over the 4-20 Hz already-known from the sensor-space analysis to 

best express RSA effects (Figure 4). 



Individual participant cortical meshes with 20,484 vertices (i.e., the “fine” mesh) 

were prepared in SPM12 by computing a non-linear spatial transformation between 

each participant’s segmented MPRAGE and a template structural MRI in MNI space 

(Mattout et al., 2007) and applying the inverse transformation to a mesh derived from 

the template structural MRI. MEG sensor data were coregistered to the transformed 

mesh using the three (nasion, left, right preauricular) fiducial points for rigid body 

registration and the manually-defined head shape points for surface matching (Besl & 

McKay, 1992). Lead fields were computed using a local spheres head model (Huang 

et al., 1999) and a Bayesian model inversion was carried out using empirical 

beamforming (EBB; Wipf & Nagarajan, 2009; Belardinelli et al., 2012). To facilitate 

statistical comparison, we used a group inversion (Litvak & Friston, 2008) restricted to 

a common set of ROIs, defined from our fMRI localizer runs using the same 

participants. Our reconstructions were constrained to 10 mm spheres around the fMRI-

defined group peak coordinates of right OFA (MNI: 36 -84 -12), left OFA (MNI: -32 -88 

-10), right FFA (MNI: 40 -64 -22), left FFA (MNI: -42 -56 -22), right V5 (MNI: 46 -68 -

2), left V5 (MNI: -50 -72 4) and right STS (MNI: 62 -46 20). From these reconstructions, 

we extracted time courses from every vertex (source location) within our ROIs and 

subjected them to the same evoked and time-frequency analysis procedures as we 

performed on the sensor-level data. For evoked source responses, the peri-stimulus 

time courses for each ROI were averaged over epochs. Similarity matrices were then 

constructed for each time point for each ROI. For time-frequency source responses, 

we subjected time courses to Morlet wavelet analysis factor = 7 between 4 and 50 Hz 

and then averaged the resultant time-frequency data over trials. Rather than repeat 

our search through the frequencies for RSA effects, we used sensor-level RSA to 

search frequency space for frequencies showing the strongest RSA effects (4-20 Hz, 



as can be seen in Figure 6), and then averaged over these frequencies at the source 

level. We used these averages over low frequencies to populate similarity matrices for 

each time point for each ROI for use with RSA. 

 

2.6 Representational similarity analyses 

 

We characterized the information content of our perceived and physical form 

and motion similarity matrices and tested whether they corresponded to MEG 

response pattern similarity using RSA. RSA indicates shared information content in 

similarity matrices by detecting correlations between pairs of such matrices and can 

be performed between any two similarity matrices, whether they represent physical, 

perceptual, or brain response pattern similarity (Kriegeskorte, Mur & Bandettini, 2008). 

RSA proceeded by finding Spearman’s rank correlations between pairs of matrices 

(Nili et al., 2014), separately for every participant, taking Fisher’s r to z transformation 

of these correlations and then testing the significance of the participants’ correlation 

coefficients at the group level with a one-sample right-sided t-test. We predicted a 

priori that correlations would be positive, as negative relationships between distances 

were not predicted and, indeed, would not be readily interpretable. For example, it 

would be surprising and difficult to explain if participants perceived facial forms to be 

more dissimilar, the more their physical forms or movements were similar. 

Before analyzing MEG response similarity, we performed RSAs to test for inter-

relations between six “test matrices”: identity and expression categorical structure, 

configural form and motion pattern physical information (extracted from the videos) 

and perceived form and motion judgments (Figure 2). To test for identity and 

expression category structure, we developed test similarity matrices (Figure 2) that 



assigned ones (maximal similarity) to within identity/expression face pairs and zeros 

(minimal similarity) to between identity/expression face pairs. Note that our identity 

similarity matrix tests for similarity structures that distinguish between identities, 

despite changes in six different expressions, and so is designed to test for expression-

invariant identity representations. Likewise our expression similarity matrix tests for 

similarity structures that distinguish between expressions, despite changes in six 

different identities, and so is designed to test for identity-invariant expression 

representations.  

Our planned comparisons tested whether: (1) form and motion judgment 

matrices are positively correlated, (2) form and motion judgment matrices positively 

correlate with identity and expression matrices, (3) the two physical matrices 

(configural form and motion pattern) positively correlate with identity and expression 

matrices, (4) The two physical matrices positively correlate with their corresponding 

perceptual (form and motion judgment) matrices. 

We implemented RSA to statistically test for relationships between (a) the six 

test matrices (Figure 2) and (b) MEG evoked response and time-frequency power 

similarity at sensor-level and source-level. We were also interested in determining 

whether form and motion representations were structured according to the forms or 

motions of identity or expression categories, or whether form and motion were 

represented more generally. Thus, we ascertained whether form and motion 

judgments uniquely contributed to the MEG signal, after variability due to identity and 

expression matrices had been removed using Spearman partial correlations.  

To increase the signal to noise ratio, based on the matched-filter theorem, we 

provided mild smoothing to the raw RSA correlations, prior to statistical testing. For 

evoked timecourses, we applied a low-pass Butterworth filter (< 10 Hz) and for the 



time/frequency maps, we used Gaussian filtering (4 Hz, 20 ms FWHM). This 

smoothing step is commonly used as part of univariate analysis, where smoothing/filter 

kernel choice should reflect, in part, potential inter-participant variability, in order to 

optimize overlap of the same effect exhibited in different participants. We chose our 

kernel sizes to be small and conservative, compared to the common uses of such 

applications to evoked or time-frequency data (Kilner, Kiebel & Friston, 2005; Kilner & 

Friston, 2010; Litvak et al., 2011; Perry & Singh, 2014). The resultant data were then 

submitted to mass-univariate one-sample t-tests (right-sided, as all relationships are 

between similarity distances, and so are expected to be positive). Threshold-free 

cluster enhancement (TFCE), combined with permutation testing (10,000 iterations), 

as implemented in the CosMoMVPA toolbox (Smith & Nicols, 2009; Oosterhof et al., 

2016) was used for multiple comparison correction for the number of time points (for 

sensor-level evoked responses and for source-space ROIs) and the maps of time 

points and frequencies (for sensor-level oscillatory power). 

 

3. Results 

 

3.1 Analysis of test similarity matrices 

 

Figure 2 shows the six test similarity matrices representing identity and 

expression categories, configural form, motion pattern and perceptual judgments 

about form and motion. The rows of the similarity matrices can be sorted by identities 

and then by expressions (first, third and fifth rows, Figure 2), such that greater within-

identity similarity (compared to between-identity similarity) appears as half-triangles 

near the diagonal, where same-identity pairs group together (first row, Figure 2). This 



identity-based categorical structure is visible for configural and perceived form. When 

the test matrices are sorted, instead, by expression and then by identity (second, 

fourth and sixth rows, Figure 2), expression categorical structure appears as half-

triangles near the diagonal. This pattern is visible for motion judgments, although some 

categories (disgust, fear and anger) appear more confusable than others (happy), 

consistent with previous findings (Furl et al., 2013). 

We used Spearman rank correlations (RSA) to formally quantify shared 

information in the test similarity matrices. First, we found that form and motion 

judgment matrices shared information r = 0.22, P < 0.001. Second, we tested for any 

inter-relationships form and motion judgments might have with identity and expression 

categorical structures. Identity was associated with form r = 0.61, P < 0.0001, but not 

motion judgments r = -0.03, P = 0.472. Expression was associated with both form r = 

0.22, P < 0.001 and motion judgments r = 0.54, P < 0.0001. Third, we tested for 

associations of configural form and motion pattern with identity and/or expression. 

Identity was associated with configural form r = 0.60, P < 0.0001 and motion pattern r 

= 0.09, P = 0.02. However, expression was associated with neither configural form r = 

-0.09, P = 0.99 nor motion pattern r = 0.04, P = 0.303. Fourth, we tested for 

associations of configural form and motion pattern with form and motion judgment. We 

found that configural form related to form r = 0.49, P < 0.0001 but not motion judgments 

r = -0.009, P = 0.825. Motion pattern was related to both form r = 0.19, P < 0.001 and 

motion judgments r = 0.11, P = 0.005. Although we used planned comparisons, the 

same correlations just reported remained significant after a more conservative 

Bonferroni correction for the 13 comparisons (critical P = 0.008), with the exception of 

the relationship between motion pattern and identity.  



To summarize, Identity, along with the physical and perceptual measures of 

form composed an inter-correlated group of measures. While expression was also 

related to form perception, expression further composed a part of a group of inter-

correlated measures that included perceived motion perception and (physical) motion 

pattern. 

3.2 Analysis of MEG sensor data 

 

Figure 3 shows main MEG response amplitude components in peri-stimulus 

time. We observed an M170 response with its typical latency and response distribution 

over sensors. A transient increase in theta/alpha power (4-12 Hz) appeared coincident 

with the M170. This was followed by a negative deflection in the alpha/beta range (8-

25 Hz) which was sustained for the remainder of the 2 s epoch, consistent with 

previous reports (Hanslmayr et al., 2012; Furl et al., 2014). A gamma power 

component appeared coincident to the M170 and initially broadband. However, this 

component was sustained throughout the remainder of the epoch, where it was 

centered on 40-60 Hz. To demonstrate that our selected range for RSA (4-50 Hz) 

overlaps with this gamma power component, the sensor maps showing positive 

occipital gamma field power from 40-50 Hz are shown in Figure 3E and 3F. All three 

time-frequency response components showed power distributed over posterior 

occipital and temporal sensors. For RSA, we were interested in testing whether 

categorical, physical and perceptual similarity was exhibited in MEG responses 

concomitant with these univariate response amplitude components. 

We tested whether similarity among MEG sensor patterns correlated with the 

six test similarity matrices using Spearman rank correlations. This analysis allowed us 

to test our principal hypothesis that oscillations, especially in low frequencies, show 



similarity patterns that match those of physical and perceived facial form and motion 

and similarities that distinguish identities (across changes in expression) and 

expression (across changes in identity). The correlations were numerically small 

(maximum 0.12) but statistically significant and comparable to previous reports 

including (as examples) split-half Spearman correlations of object recognition 

similarity fMRI data (Walther et al., 2016) and correlations between facial identity-

based similarities in MEG responses (Vida et al., 2017)   .  

For time-domain evoked responses, we tested our test similarity matrices 

(Figure 2) against MEG sensor pattern similarity separately for each time point (Figure 

5) and found that information about identity, configural form and form judgment was 

exhibited by evoked responses coincident with the M170, peaking circa 150-200 ms, 

and decaying until before 500 ms. Controlling for identity categorical structure using 

partial correlation eliminated the relationship between evoked responses and form 

judgment and rendered any residual relationship with configural form at this early time 

non-significant. Controlling for expression did not alter any results. At a later time 

(~900 ms), configural form and form judgment showed a weaker relationship with 

evoked responses. However, at this time, there was no concomitant relationship with 

identity and partialing out identity or expression matrices did not alter the relationships 

between physical and perceived form. Thus, at this later time, a small amount of form 

information was represented in evoked responses, but not enough to distinguish 

different identities or expressions. At an even later time period, 250 ms after stimulus 

offset, evoked responses exhibited representations of identity and form judgment, but 

did not show a relationship with configural form. Although evoked responses related 

to motion pattern similarity between 500 and 1000 ms, they showed no relationship 



with motion judgment at any time. Thus, evoked responses can signal some motion 

information, but none that factors into perceived motion similarity or expression. 

Time-frequency domain oscillatory power at the sensor-level revealed positive 

statistical relationships between low-frequency response pattern similarity and every 

test similarity matrix (Figure 6), except for expression. We report P-values for the 

maximal (peak) effect found within the stimulus duration. The identity matrix showed 

an early effect ~200 ms (peak, P = 0.001, corrected), a later effect that extended from 

before 1000 ms nearly to stimulus offset (2000 ms) and a final effect ~250 ms post-

stimulus offset. Configural form, like identity, exhibited an early (but much smaller) 

relationship with ~5 Hz responses, followed by a larger 4-30 Hz effect extending 

between 1000 ms (peak, P = 0.001, corrected) and stimulus offset, and a final effect 

250-500 ms post-stimulus offset. Motion pattern related to 4-30 Hz responses at 

around 900-1000 ms (peak, P = 0.002, corrected). Perceived form related to 4-40 Hz 

responses at 550-1200 ms (peak, P = 0.006, corrected) and also showed later effects 

in the post-stimulus offset period for 10-30 Hz responses at 250 ms post-stimulus 

offset and 4-20 Hz responses at 400-500 ms post-stimulus offset. Perceived motion 

related to 6-30 Hz responses at 400-800 ms (peak P = 0.02, corrected).  

To summarize the results for oscillatory responses, several test similarity 

matrices matched the similarity structure of low-frequency oscillations either around 

200 ms, or later, between 500 and 1500 ms. At this later time, several measures were 

roughly aligned in time, often directly overlapping. These measures included identity 

(900-1900 ms), configural form (900-2000 ms), form judgment (600-1500 ms), motion 

pattern (600-1200 ms) and motion judgment (500-800 ms). Although our 

measurements of these timings are unlikely to be exact (due to measurement noise, 

variable effect sizes, inter-participant variability and variability in stimulus motion 



timing), it seems, collectively, that they might show convergent results within the period 

between 500 and 1200 ms. It is thus possible that some of these oscillatory effects 

reflect a broad, general encoding of form and motion information, that forms the basis 

for behavioral perceptual reports and contains form information that, at least, can 

distinguish between different identity categories.  

Although there appears to be enough information about form available during 

this time period to distinguish identities (across changes in expression), these 

responses may contain more information about form and motion than is needed to 

differentiate categories like identity or expression. To assess this possibility, we re-

tested the relationships between MEG oscillatory responses and test similarity 

matrices, but partialing out identity or expression in cases when they were collinear. 

The relationship between MEG time-frequency responses and configural form 

remained significant after controlling for identity (peak P = 0.02, corrected). 

Relationships with motion pattern were also significant after controlling for identity 

(peak P = 0.004, corrected) or expression (peak P = 0.004, corrected). The 

relationship between MEG time-frequency responses and form judgment remained 

significant when using partial correlations that controlled for variation in identity- (peak 

P = 0.02, corrected) or expression-based similarity (peak P < 0.0001, corrected). The 

relationship between MEG time-frequency responses and motion judgment remained 

significant after controlling for expression (peak P = 0.02, corrected).  

  

3.3 Analysis of MEG source reconstructions 

 

Our source reconstructions were a supplementary analysis that aimed to 

identify brain regions from within the face perception network that give rise to the 



effects that we observed in sensor space. We localized evoked signal and also 

localized induced signal, averaged within frequencies that we observed in sensor 

space (Figure 6) to exhibit RSA results (4-20 Hz). We projected these sensor data 

onto vertices that correspond to anatomical locations on a cortical mesh. We then 

analyzed similarity among the patterns of activation distributed over the vertices found 

within each fMRI-defined brain area.  

For time-domain evoked responses, we extracted these patterns and compared 

their similarity to our test similarity matrices at every post-stimulus time point. We 

localized in source space (Figure 7) the evoked results that we observed in sensor 

space (Figure 5) to bilateral FFA and right V5. This activity was related to both early 

(~200 ms) effects of identity, configural form and form judgment and later effects of 

configural form, form judgment and motion pattern. Left V5 also contributed to effects 

in the early time period and to motion pattern. Bilateral OFA also contributed to identity 

in the early time period. Other findings were small and/or transient. 

 For time-frequency oscillatory source-level responses (Figure 8), bilateral FFA 

was related to the sensor-level RSA effects on identity, form judgments and motion 

judgments. Right V5 contributed to effects of identity, configural form and form 

judgments. Left OFA contributed to the RSA motion pattern effects. Other findings 

were small and/or transient. The configural form RSA effects that we observed at 

sensor level were not as well-detected in source responses.  

 

4. Discussion 

 

4.1 Similarity spaces manifested in behavior and MEG signals 

 



We identified a number of new findings with respect to the structure of similarity 

space-based encoding in MEG signals, including similarity spaces associated with 

several physical and perceptual dimensions of dynamic facial video and facial identity. 

Our results revealed relationships between similarity representations of (1) physical 

information extracted from facial video, (2) behavioral-reports of perceived form and 

motion and (3) facial identity and emotional expression.  

Physical and perceived form information was associated with identity and, to a 

lesser degree, expression. In contrast, we found inter-relations among expression and 

physical and perceived motion. These behavioral RSA findings underscore the 

differences in physical and perceptual information that support identity and expression 

recognition. Indeed, our findings are consistent with existing models of identity and 

expression recognition, which predict that identity and expression perception is based 

on differing degrees of form and motion information (Haxby et al., 2001; Calder & 

Young, 2005).  

We also applied this same similarity-space technique to identify similarity space 

dimensions (form, motion) and their associated categorical perceptions (identity, 

expression) that are represented in MEG activity measures (evoked versus induced 

oscillatory). We tested this primary hypothesis in sensor space targeting a frequency 

range that captures three well-known univariate components of MEG responses 

(alpha, beta, gamma). Identity and physical (configural) form encoding was associated 

with early (150-250 ms) evoked and induced response components, with stronger 

physical and perceptual form effects for evoked responses. Later (500-1200 ms), 

oscillatory responses (<20 Hz), but not evoked responses, showed encoding of 

several physical and perceptual measures, alongside identity encoding. Because 

these responses were likely to arise from the oft-reported network of face-selective 



and motion-sensitive brain areas (that we also measured using fMRI in our participant 

sample), we computed source reconstructions optimized to test for the locations of our 

sensor-space findings within these areas. We found evidence primarily for FFA and 

V5 in encoding physical and perceptual dimensions.  

 In summary, we offer novel findings with respect to similarity-based, 

spatiotemporal representations of dynamic faces, which suggest that there are distinct 

roles for evoked and induced responses in encoding form and motion dimensions, 

including those that might support identity recognition. Given that neural oscillations 

manifest fundamental neural communication mechanisms (Fries et al., 2005), our 

findings provide a new step toward a mechanistic understanding of how the face 

perception network communicates and gives rise to behavior. 

 

4.2 Measuring dimensions of dynamic faces with physical measures  

 

We used subjective judgments as behavioral measures of perception of the 

dimensions of facial similarity spaces. However, participants were instructed to choose 

the most relevant facial information for similarity. The facial information chosen is not 

obvious to researchers and so we extracted physical measures of form and motion to 

assist interpretation. Jabbi et al. (2015) successfully used a similar strategy to show 

that beta power amplitude tracks a physical quantification of facial expression motion. 

Here, we similarly quantified motion from facial video, but using a motion pattern 

measure together with RSA to relate this physical measure with both perception and 

MEG responses. We found correlated similarity between physical and perceived 

motion, even though our motion pattern measure nevertheless lacked the expression 

categorical structure that was evident for perceived motion. There is room for further 



development of this novel approach that might in future better capture movements 

discriminative of expression categories.  

Physical and perceived measures were correlated for form also and both 

measures exhibited greater between-identity similarity than within-identity similarity. In 

contrast, neither physical nor perceived motion showed a relationship with identity. 

Nevertheless, some variation in motion pattern influenced form perception. Facial 

morphology might influence both a face’s invariant static appearance while 

constraining the movements of the face and so could influence static form, motion and 

“structure from motion” perception. 

 

4.3 Representations revealed by evoked versus induced responses 

 

In addition to using behavioral RSA to understand the perceptual dimensions 

of similarity space representations, we also tested for representation of these 

dimensions in sensor-space evoked time domain and induced oscillatory responses 

(Figure 5, 6). In a relatively early time period, these two measures showed convergent 

findings, related to identity and configural form encoding. These RSA effects may be 

related to the M170, or an MEG equivalent of N250. The characteristics of this effect 

conform to proposals that facial identity information becomes available and is reflected 

in evoked potentials near to this time period (Schweinberger & Burton, 2003). At least 

for evoked responses, information during this time period seemed limited to form 

information organized by identity. Effects relating evoked responses to physical and 

perceived form measures became non-significant after partialing out the identity 

matrix.  



The identity-specific similarity information encoded during this early time period 

by evoked responses and low-frequency oscillations must include high-level visual 

information. Our identity matrix considers similarities among identities across changes 

in expressions and so the identity code is likely to be expression-invariant. Although a 

previous study examined identity-based similarities among electrocorticographic 

gamma responses (Davidesco et al., 2014), invariance across different static 

photographs pictures of the same identity was not reported. Our evoked response 

results more closely resemble those of Vida et al (2017), who show invariant identity 

decoding for evoked responses to static photographs in the same early time period, 

although they did not analyze time-frequency representations or dynamic faces. We 

also show evoked responses and <20 Hz similarity spaces that manifest structures 

correlated with our physical configural form measure. This measure captures high-

level form information, as it is based on demarcations of shapes, and is computed 

based on distances that span the face between landmarks. This measure is not 

derived from local image information and could not be represented by neural 

populations with small receptive fields, such as in retinotopic cortex.  

At later time periods (500-1200 ms), evoked time domain (Figure 5) and 

induced oscillatory responses (Figure 6) were more divergent. While evoked 

responses no longer encoded identity, time-frequency power (<20 Hz) gave rise to 

similarity spaces that corresponded to identity as well as physical and perceived form 

and motion. Although the responses did not all share identical timing, they were 

approximately coincident and might therefore represent a common representational 

similarity space. Unlike the early evoked response, these later oscillatory responses 

reflected both identity-dependent and identity-independent representations of form, as 

the relationships with both physical and perceived form matrices were robust to 



partialing out the identity matrix. Low-frequency representations therefore might 

manifest a general similarity space related to several facial dimensions, with a subset 

of the information capable of distinguishing identities. In any case, measurement of 

induced responses were necessary to reveal both motion- and form-based 

representations that were are not readily measureable in evoked time-domain signals. 

Thus, our results introduce an important methodological caution, as many EEG and 

MEG studies limit their analysis to evoked responses.  

This finding of general dimensional coding, beyond identity categorical 

structure complements previous fMRI research. While facial identities are decodable 

from fMRI response patterns (Anzellotti et al., 2014), neural response patterns can 

represent facial information that goes beyond discrete identity membership, including 

quantitative similarity along perceived dimensions of faces (Carlin et al., 2011; 

Goesaert & Op de Beeck, 2013; Stolier & Freeman, 2016). For example, Sormaz et 

al. (2016) shows that physical facial landmark configurations (similar to our configural 

form measure) and perceptual similarity judgments between static facial expression 

images correlate with fMRI response similarity even after expression categorical 

structure is eliminated from the data. This type of this broader, more generalized 

similarity-based coding (as opposed to coding limited to discrete categories) may be 

prevalent. Occipitotemporal fMRI responses encode the constituent dimensions of 

diverse visual stimuli from objects to animals (Edelman et al., 1998; Haushofer et al., 

2008; Proklova et al., 2016) and object similarity can be detected in MEG time-domain 

patterns (Cichy et al., 2013). However, time-domain MEG and fMRI cannot speak 

directly to whether oscillatory neural mechanisms mediate representations capable of 

producing similarity relationships. Our findings introduce the possibility that neural 



oscillations may contribute to general coding of stimulus dimensions for dynamic faces 

and other visual stimulus domains. 

One surprising finding from our sensor-space RSA was that no relationships 

were found between MEG signals and facial expressions. When the participants’ task 

was to judge perceived form and motion, their judgments distinguished expression 

categories. In contrast, MEG signals while viewing faces (but not making judgments) 

did not distinguish emotional expressions. This is not likely due to insufficient power, 

as our data provided sufficient power to detect relationships between MEG similarities 

and a number of other types of information, including identity. Few results of 

successful decoding of dynamic facial expressions from MEG or EEG sensor data are 

reported to date (but see Tsuchiya et al., 2008, for decoding of morphed emotion 

transitions from electrocorticography) and so we can only speculate about this post 

hoc. However, there are a number of mostly non-mutually exclusive possibilities that 

will need to be considered in future attempts. (1) Facial form information, used for 

recognizing identity, is available immediately upon stimulus onset. Thus, the 

timecourse of form processing and identity recognition may be similar across stimuli. 

However, expressions elapse at variable rates and so transient expression 

recognitions may not have overlapped sufficiently across participants to yield effects. 

(2) There is typically substantial variability in the recognizability of different 

expressions (e.g., happy faces are well-recognized while fearful expressions are not). 

Figure 2 shows, for example, that perceived motion does not predict every expression 

category equally. This may reduce our power for detecting expressions matrices 

defined for all expressions equally (Figure 2). (3) Facial expressions may not be all 

processed simultaneously by a single cortical system (Calder & Young, 2005). Several 

MEG signals, occurring at different times and from different sources may contribute to 



expression recognition. Some sources, like the amygdala, may not be as accessible 

to MEG as others. (4) Our expression matrix required that expressions be 

distinguished across identities. However, representations accessible to the MEG may 

be identity-specific. (5) Participants were not instructed to respond or attend to 

expression or the face, but responded to fixation point color changes. Expression 

effects might manifest when they are task-relevant. 

 

4.4 Do oscillations mediate face space representations? 

 

What causes brain signals to exhibit these similarity-based relationships? 

Intracranial recording studies in humans (Op de Beeck et al., 2001) and macaque 

monkeys (Kiani et al., 2007) show that population coding gives rise to distributed 

response patterns that reflect similarity relationships among stimulus attributes. 

Population codes, defined over neurons sensitive to facial form or motion dimensions, 

also accords with face space theory. This popular theory of face representation 

(Valentine, 1991) suggests that faces are represented as vectors in a multidimensional 

similarity-based feature space. Our multivariate RSA results show that low-frequency 

neural oscillatory response patterns can index a type of similarity-based coding and 

should serve as candidates for future study on the dimensions of face space 

representations.  

This potential link between face space dimensions and oscillations introduces 

a new mechanistic perspective on face perception that can be described in terms of 

network function (Fries, 2005). Empirical evidence and theoretical modeling raise the 

possibility that low-frequency oscillations in the visual system arise from backward 

hierarchical connectivity (Bastos, et al., 2012; Michalareas et al., 2016). If so, then our 



data suggest a new hypothesis that top-down processing (i.e., backward connectivity) 

is key for instantiating similarity space representations. Although hypotheses of such 

a mechanistic nature remain speculative now, the finding that multidimensional 

similarity space representations might rely on low-frequency channels that are not 

necessarily in phase with stimulus presentation (induced responses) introduces novel 

mechanistic neuroscientific hypotheses that are testable.  

 

4.5 Relationship to oscillatory response amplitude components 

 

To date, links between visual perception and oscillations have relied 

predominantly on univariate analysis of response amplitudes, rather than the 

multivariate similarity space approach we employed here. An oft-reported 

(Hanslmayer et al., 2012) negative deflection in the alpha/beta range (8-12 Hz), arising 

250-300 ms after visual stimulation (Figure 4) appears concomitant with many of our 

findings. This deflection may be related to the ongoing coding that we were able to 

detect using RSA. Consistent with our findings, the overall magnitude of alpha/beta 

power response in previous studies has been modulated by dynamic expression 

movements (Popov et al., 2013; Jabbi et al., 2015) and speech movements 

(Muthukmaraswamy et al., 2006), although our study is the first to examine response 

pattern relationships among individual faces for this frequency range. The Mu rhythm 

is another negative deflection in a similar frequency range that has been well-studied 

in the context of body actions (Fox et al., 2016). The mu rhythm might represent forms 

and motions of bodies, just as low frequency codes represent this information for 

dynamic faces. However, further studies using RSA (as we used here) and multivariate 



decoding are needed to go beyond univariate response modulations and to measure 

the similarity structure of individual stimuli such as bodies.  

In addition to these low-frequency modulations, univariate analysis of gamma 

power (>30 Hz) typically shows a sustained response component around 40 Hz in 

response to visual stimuli (Uhlhaas et al., 2011). In MEG responses to static facial 

photographs (Gao et al., 2013; Uono et al., 2017), this component can also be 

centered around 40 Hz, although it can be faster (Dobel et al., 2011; Perry & Singh, 

2014). This gamma power component was also present for dynamic facial videos in 

our data, observed between 40 and 60 Hz (Figure 4). Although this component should 

have been detectable within our 4-50 Hz sensor-space RSA window, we found limited 

evidence for similarity-based encoding above about 20 Hz. Several studies examining 

oscillations with direct cerebral electrical recordings have reported gamma responses 

both below (Klopp et al., 1999; Lachaux et al., 2005; Fische et al., 2009; Engell & 

McCarthy, 2010) and above 50 Hz in response to static facial photographs (Vidal, et 

al., 2010; Davidesco et al., 2014) and face-like stimuli (Lachaux et al., 2005). Most 

studies of this high-frequency gamma response may have employed intra-cranial 

measurements, instead of scalp EEG or MEG, because direct cortical contact 

facilitates resolution of the low-amplitudes associated with very high frequencies 

(Ulhaas et al., 2011). Our data, which differs from this work by using MEG and dynamic 

facial video, do not show a compelling response amplitude component between 60 

and 100 Hz (Figure 4) and our exploratory RSA of the 50-100 Hz range did yield 

significant effects. 

 

4.6 Source reconstruction 

 



We tested our primary hypotheses about similarity-space representations in the brain 

using MEG data in sensor space, as this is relatively close to the original signal. This 

sensor space analysis was framed as a search through frequency space for RSA 

effects. We supplemented this sensor-level analysis by isolating the evoked response 

and the frequency ranges at which sensor space RSA effects were best observed (<20 

Hz, see Figure 6) and testing for sources that express RSA effects associated with 

this frequency band. Consequently, this source space analysis was not aimed at 

establishing the frequencies at which evoked and induced signals showed similarity-

based effects. Instead, we designed the source reconstructions analysis to suggest 

some sources from within the well-known occipitotemporal network of brain areas 

involved in perception of dynamic faces that might be responsible for the effects that 

we observed in sensor space. The network of brain areas responsible for high-level 

representation of form and motion in dynamic faces is not controversial, can be 

observed in individual participants, as well as across participant samples and has been 

demonstrated many times using fMRI (Fox et al., 2009; Schultz & Pilz, 2009; 

Trautmann et al., 2009; Pitcher et al., 2011; Foley et al., 2012; Grosbras et al., 2012; 

Schultz et al., 2013; Furl et al., 2014; Furl et al., 2015), including within the present 

study, and using MEG (Furl et al., 2009; Sato et al., 2015). This network includes face-

selective areas in bilateral FFA and OFA, motion-sensitive areas in bilateral V5 and 

an area responding preferentially to dynamic faces in right STS. A homologous pattern 

of areas that are face-selective, motion-sensitive and specific to dynamic faces has 

been observed in the macaque (Furl et al., 2012). Given our a priori expectation of 

involvement of these areas, and the need for informative priors to facilitate accurate 

source reconstruction, we constrained our source reconstructions to this network. We 

measured responses from source locations obtained from fMRI localization using the 



same participants as our MEG sample. We then tested whether different areas within 

this network, individually, exhibited our hypothesized similarity spaces. This finding is 

not guaranteed. The response patterns with the requisite similarity may be distributed 

over the network and response patterns over the neural population within any one 

region may not individually provide sufficient information. At the same time, it must be 

remembered that these areas are closely-spaced within occipitotemporal cortex, 

relative to the potential spatial resolution of EBB source reconstruction. Thus, the 

source reconstruction results should be interpreted with caution. Nevertheless, our 

results did implicate specific foci within the network as potential sources for our evoked 

and oscillatory RSA effects: bilateral FFA and V5. The involvement of V5 in 

representing some types of information, such as configural form, seems surprising, 

given that V5 was defined as motion-sensitive. Although, there is evidence that V5 can 

contribute to perception of static images, when only form is available (Furl et al., 2012), 

this effect could also arise from imprecise source resolution. The relationship of FFA 

with identity and form is consistent with prevailing views of the function of FFA (Haxby 

et al., 2001; Calder et al., 2005; Bernstein et al., 2015), although our data suggest a 

wider role, including motion as well.  

 

5. Conclusion 

 

We show that oscillations convey information about dynamic faces that evoked 

responses do not. Specifically, they support a broad, general encoding that includes 

both physical information about static facial form configurations and how these 

movements are patterned in time. This oscillatory coding, moreover, correlates with 

behavioral measures of facial form and motion perception. And, this oscillatory 



encoding captures the similarity structure associated with identity, even though there 

is further form and motion information that is not related to identity also. These results 

are consistent with a hypothesis that these oscillations may reflect the 

multidimensional basis for a “face space” – a popular and longstanding theoretical 

viewpoint in face perception – in which faces are represented by their similarity on 

multiple attribute dimensions (e.g., form, motion).  
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Figure Legends 

 

Figure 1. Physical stimulus measures. 

(A) Examples of neutral (left) and happy (right) video frames. The neutral frame has 

superimposed on it the landmark locations used to compute configural form and 

motion pattern measures, color-coded according to facial feature membership. (B) 

Optic-flow estimates of pixel displacement, averaged for each expression.  

 

Figure 2. Test similarity matrices. 

Similarity matrices for physical and perceptual measures of form and motion. The 

labels on the left side of matrices indicate the positions within the matrices of category 

members. The matrix rows can be sorted by identities first, then by expressions or by 

expressions first, then by identities.  

 

Figure 3. Amplitude components of sensor space evoked responses. 

Interpolated sensor topographies and contour plots of the evoked response 

amplitudes of the root mean square of paired planar gradiometers (A) and axial 

magnetometers (B), averaged between 150-200 ms, a time period selected to capture 

the M170 component. Also shown are time courses at single sensors located by the 

white circle in A and B (selected to illustrate the M170) for the root mean square of a 

pair of planar gradiometers (C) and an axial magnetometer (D). 

 

Figure 4. Amplitude components of sensor space oscillatory responses. 



Interpolated sensor topographies and contour plots of the oscillatory power amplitudes 

of the root mean square of paired planar gradiometers (top row) and axial 

magnetometers (middle row), illustrating main oscillatory response components, 

including: positive occipitotemporal power in theta/alpha range (4-12 Hz), averaged 

between 150-300 ms (A,B); negative occipitotemporal power in the beta range (13-30 

Hz), averaged between 300-2000 ms (C,D); and positive occipitotemporal gamma 

band power (40-50 Hz), averaged between 150-2000 ms (E,F). Also shown are time 

frequency representations for the pair of planar gradiometers (G) and the axial 

magnetometer (H) located by the white circle in A-F. This sensor location was selected 

to illustrate the time course of all three response components illustrated in A-F. 

 

Figure 5. Representation similarity analysis of sensor-space evoked responses. 

T-values for Spearman correlations between sensor-level evoked response pattern 

similarity and test similarity matrices representing: (A) categorical structure of identity 

(green) and expression (gray); (B) configural form (pink) and motion pattern (gray); (C) 

form (blue) and motion (gray) judgments; (D) configural form (pink) and form (blue) 

judgments, each controlling for identity categorical structure using partial correlation. 

Shaded areas represent standard errors of the mean. Asterisks at bottoms of graphs 

indicate time points with Spearman correlations significantly greater than zero at P < 

0.05 after threshold-free cluster enhancement correction for the number of time points. 

Asterisks are color-coded by test similarity matrix. 

 

Figure 6. Representation similarity analysis of sensor-space oscillatory responses. 

T-values for Spearman correlations between sensor-level oscillatory power pattern 

similarity and test similarity matrices representing: (A) identity and (B) expression 



categorical structure; (C) configural form; (D) motion pattern; (E) form judgments; (F) 

motion judgments. Black contour lines outline clusters of time-frequency points that 

are significant at P < 0.05 using threshold-free cluster enhancement multiple 

comparison correction. 

 

Figure 7. Representation similarity analysis of source-space evoked responses. 

T-values for Spearman correlations between source-level evoked response similarity 

in fMRI-defined functional regions of interest and test similarity matrices. Lines are 

color coded by region of interest. Asterisks at bottoms of graphs indicate time points 

with Spearman correlations significantly greater than zero at P < 0.05, threshold-free 

cluster enhancement corrected. Asterisks are color-coded by region of interest. Panels 

A-F are left hemisphere data extracted from OFA (blue), V5 (red) and FFA (green). 

Panels G-L are right hemisphere data extracted from STS (gray), OFA (blue), V5 (red) 

and FFA (green). Test similarity matrices include (A,G) identity and (B,H) expression 

categorical structure; (C,I) configural form; (D,J) motion pattern; (E,K) form judgments; 

(F,L) motion judgments.  

 

Figure 8. Representation similarity analysis of source-space oscillatory responses. 

T-values for Spearman correlations between source-level oscillatory response 

(averaged 4-20 Hz) similarity in fMRI-defined functional regions of interest and test 

similarity matrices. T-values for Spearman correlations between source-level evoked 

response similarity in fMRI-defined functional regions of interest and test similarity 

matrices. Lines are color coded by region of interest. Asterisks at bottoms of graphs 

indicate time points with Spearman correlations significantly greater than zero at P < 

0.05, threshold-free cluster enhancement corrected. Asterisks are color-coded by 



region of interest. Panels A-F are left hemisphere data extracted from OFA (blue), V5 

(red) and FFA (green). Panels G-L are right hemisphere data extracted from STS 

(gray), OFA (blue), V5 (red) and FFA (green). Test similarity matrices include (A,G) 

identity and (B,H) expression categorical structure; (C,I) configural form; (D,J) motion 

pattern; (E,K) form judgments; (F,L) motion judgments. 

  



 

  



 

  



 

  



 

  



 

  







 


