501 research outputs found

    Evolution of somatic mutations in mammary tumors in transgenic mice is influenced by the inherited genotype

    Get PDF
    BACKGROUND: MMTV-Wnt1 transgenic mice develop mammary hyperplasia early in development, followed by the appearance of solitary mammary tumors with a high proportion of cells expressing early lineage markers and many myoepithelial cells. The occurrence of tumors is accelerated in experiments that activate FGF proto-oncogenes or remove the tumor suppressor genes Pten or P53, implying that secondary oncogenic events are required for progression from mammary hyperplasia to carcinoma. It is not known, however, which oncogenic pathways contribute to Wnt1-induced tumorigenesis – further experimental manipulation of these mice is needed. Secondary events also appear to be required for mammary tumorigenesis in MMTV-Neu transgenic mice because the transgene in the tumors usually contains an acquired mutation that activates the Neu protein-tyrosine kinase. METHODS: cDNA or DNA from the mammary glands and mammary tumors from MMTV-Wnt1, MMTV-Wnt1/p53(-/-), MMTV-Neu transgenic mice, and newly generated MMTV-Wnt1/MMTV-Neu bitransgenic mice, was sequenced to seek activating mutations in H-Ras, K-Ras, and N-Ras genes, or in the MMTV-Neu transgene. In addition, tumors from bitransgenic animals were examined to determine the cellular phenotype. RESULTS: We found activating mutations at codons 12, 13, and 61 of H-Ras in just over half of the mammary tumors in MMTV-Wnt1 transgenic mice, and we confirmed the high frequency of activating mutations of Neu in tumors in MMTV-Neu transgenic mice. Tumors appeared earlier in bitransgenic MMTV-Wnt1/MMTV-Neu mice, but no Ras or MMTV-Neu mutations were found in these tumors, which were phenotypically similar to those arising in MMTV-Wnt1 mice. In addition, no Ras mutations were found in the mammary tumors that arise in MMTV-Wnt1 transgenic mice lacking an intact P53 gene. CONCLUSIONS: Tumorigenic properties of cells undergoing functionally significant secondary mutations in H-Ras or the MMTV-Neu transgene allow selection of those cells in MMTV-Wnt1 and MMTV-Neu transgenic mice, respectively. Alternative sources of oncogenic potential, such as a second transgenic oncogene or deficiency of a tumor suppressor gene, can obviate the selective power of those secondary mutations. These observations are consistent with the notion that somatic evolution of mouse mammary tumors is influenced by the specific nature of the inherited cancer-promoting genotype

    Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal.

    Get PDF
    The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient

    Immune-mediated mechanisms influencing the efficacy of anticancer therapies

    Get PDF
    Conventional anticancer therapies, such as chemotherapy, radiotherapy, and targeted therapy, are designed to kill cancer cells. However, the efficacy of anticancer therapies is not only determined by their direct effects on cancer cells but also by off-target effects within the host immune system. Cytotoxic treatment regimens elicit several changes in immune-related parameters including the composition, phenotype, and function of immune cells. Here we discuss the impact of innate and adaptive immune cells on the success of anticancer therapy. In this context we examine the opportunities to exploit host immune responses to boost tumor clearing, and highlight the challenges facing the treatment of advanced metastatic disease

    RAC1(P29S) Induces a Mesenchymal Phenotypic Switch via Serum Response Factor to Promote Melanoma Development and Therapy Resistance

    Get PDF
    RAC1 P29 is the third most commonly mutated codon in human cutaneous melanoma, after BRAF V600 and NRAS Q61. Here, we study the role of RAC1P29S in melanoma development and reveal that RAC1P29S activates PAK, AKT, and a gene expression program initiated by the SRF/MRTF transcriptional pathway, which results in a melanocytic to mesenchymal phenotypic switch. Mice with ubiquitous expression of RAC1P29S from the endogenous locus develop lymphoma. When expressed only in melanocytes, RAC1P29S cooperates with oncogenic BRAF or with NF1-loss to promote tumorigenesis. RAC1P29S also drives resistance to BRAF inhibitors, which is reversed by SRF/MRTF inhibitors. These findings establish RAC1P29S as a promoter of melanoma initiation and mediator of therapy resistance, while identifying SRF/MRTF as a potential therapeutic target

    Prediction of phosphotyrosine signaling networks using a scoring matrix-assisted ligand identification approach

    Get PDF
    Systematic identification of binding partners for modular domains such as Src homology 2 (SH2) is important for understanding the biological function of the corresponding SH2 proteins. We have developed a worldwide web-accessible computer program dubbed SMALI for scoring matrix-assisted ligand identification for SH2 domains and other signaling modules. The current version of SMALI harbors 76 unique scoring matrices for SH2 domains derived from screening oriented peptide array libraries. These scoring matrices are used to search a protein database for short peptides preferred by an SH2 domain. An experimentally determined cut-off value is used to normalize an SMALI score, therefore allowing for direct comparison in peptide-binding potential for different SH2 domains. SMALI employs distinct scoring matrices from Scansite, a popular motif-scanning program. Moreover, SMALI contains built-in filters for phosphoproteins, Gene Ontology (GO) correlation and colocalization of subject and query proteins. Compared to Scansite, SMALI exhibited improved accuracy in identifying binding peptides for SH2 domains. Applying SMALI to a group of SH2 domains identified hundreds of interactions that overlap significantly with known networks mediated by the corresponding SH2 proteins, suggesting SMALI is a useful tool for facile identification of signaling networks mediated by modular domains that recognize short linear peptide motifs

    Postnatal Expression of BRAFV600E Does Not Induce Thyroid Cancer in Mouse Models of Thyroid Papillary Carcinoma

    Get PDF
    The mutant BRAF (BRAFV600E) is the most common genetic alteration in papillary thyroid carcinomas (PTCs). The oncogenicity of this mutation has been shown by some genetically engineered mouse models. However, in these mice, BRAFV600E is expressed in all the thyroid cells from the fetal periods, and suppresses thyroid function, thereby leading to TSH elevation, which by itself promotes thyroid tumorigenesis. To overcome these problems, we exploited 2 different approaches, both of which allowed temporally and spatially restricted expression of BRAFV600E in the thyroid glands. First, we generated conditional transgenic mice harboring the loxP-neoR-loxP-BRAFV600Einternal ribosome entry site-green fluorescent protein sequence [Tg(LNL-BRAFV600E)]. The double transgenic mice (LNL-BRAFV600E;TPO-Cre) were derived from a high expressor line of Tg(LNLBRAFV600E) mice and TPO-Cre mice; the latter expresses Cre DNA recombinase under the control of thyroid-specific thyroid peroxidase (TPO) promoter and developed PTC-like lesions in early life under normal serum TSH levels due to mosaic recombination. In contrast, injection of adenovirus expressing Cre under the control of another thyroid-specific thyroglobulin (Tg) promoter (Ad-TgP-Cre) into the thyroids of LNL-BRAF V600E mice did not induce tumor formation despite detection ofBRAFV600EandpERKin a small fraction of thyroid cells. Second, postnatal expression ofBRAFV600E in a smallnumberof thyroid cellswasalso achieved by injecting the lentivirus expressing loxP-green fluorescent protein-loxP-BRAFV600E into the thyroids of TPO-Cre mice; however, no tumor development was again observed. These results suggest that BRAFV600E does not appear to induce PTC-like lesions when expressed in a fraction of thyroid cells postnatally under normal TSH concentrations

    Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis

    Get PDF
    Rho-associated kinases 1 and 2 (ROCK1/2) are Rho-GTPase effectors that control key aspects of the actin cytoskeleton, but their role in proliferation and cancer initiation or progression is not known. Here, we provide evidence that ROCK1 and ROCK2 act redundantly to maintain actomyosin contractility and cell proliferation and that their loss leads to cell-cycle arrest and cellular senescence. This phenotype arises from down-regulation of the essential cell-cycle proteins CyclinA, CKS1 and CDK1. Accordingly, while the loss of either Rock1 or Rock2 had no negative impact on tumorigenesis in mouse models of non-small cell lung cancer and melanoma, loss of both blocked tumor formation, as no tumors arise in which both Rock1 and Rock2 have been genetically deleted. Our results reveal an indispensable role for ROCK, yet redundant role for isoforms 1 and 2, in cell cycle progression and tumorigenesis, possibly through the maintenance of cellular contractility

    Ibuprofen inhibits colitis-induced overexpression of tumor-related Rac1b

    Get PDF
    The serrated pathway to colorectal tumor formation involves oncogenic mutations in the BRAF gene which are sufficient for initiation of hyperplastic growth but not for tumor progression. The analysis of colorectal tumors revealed that overexpression of splice variant Rac1b occurs in around 80% of tumors with mutant B-Raf and both events were shown to cooperate in tumor cell survival. Here we provide evidence for increased expression of Rac1b in samples from inflammatory bowel disease patients as well as following experimentally induced colitis in mice. The increase of Rac1b in the mouse model was specifically prevented by the non-steroidal anti-inflammatory drug ibuprofen, which also inhibited Rac1b expression in cultured HT29 colorectal tumour cells through a cyclooxygenase inhibition-independent mechanism. Accordingly, the presence of ibuprofen led to a reduction of HT29 cell survival in vitro and inhibited Rac1b-dependent tumor growth of HT29 xenografts. Together, our results suggest that stromal cues, namely inflammation can trigger changes in Rac1b expression in the colon and identify ibuprofen as a highly specific and efficient inhibitor of Rac1b overexpression in colorectal tumors. Our data suggest that the use of ibuprofen may be beneficial in the treatment of patients with serrated colorectal tumors and in cancer prophylaxis following colon inflammation disorders

    The RAC1 target NCKAP1 plays a crucial role in progression of BRAF/PTEN -driven melanoma in mice

    Get PDF
    BRAF V600E is the most common driver mutation in human cutaneous melanoma and is frequently accompanied by loss of the tumor suppressing phosphatase PTEN. Recent evidence suggests a co-operative role for RAC1 activity in BRAF V600E -driven melanoma progression and drug resistance. However, the underlying molecular mechanisms and the role of RAC1 downstream targets are not well explored. Here, we examine the role of the NCKAP1 subunit of the pentameric cytoskeletal SCAR/WAVE complex, a major downstream target of RAC1, in a mouse model of melanoma driven by BRAF V600E; PTEN loss. The SCAR/WAVE complex is the major driver of lamellipodia formation and cell migration downstream of RAC1 and depends on NCKAP1 for its integrity. Targeted deletion of Nckap1 in the melanocyte lineage delayed tumor onset and progression of a mutant Braf ; Pten loss driven melanoma mouse model. Nckap1 depleted tumors displayed fibrotic stroma with increased collagen deposition concomitant with enhanced immune infiltration. Nckap1 loss slowed proliferation and tumor growth, highlighting a role in cell cycle progression. Altogether, we propose that NCKAP1-orchestrated actin polymerization is essential for tumor progression and maintenance of tumor tissue integrity in a mutant Braf ; Pten loss driven mouse model for melanoma
    corecore