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Summary

Conventional anti-cancer therapies, such as chemotherapy, radiotherapy and targeted

therapy, are designed to kill cancer cells. Yet, the efficacy of anti-cancer therapies is not only
determined by their direct effects on cancer cells, but also by off-target effects within the host
immune system. Cytotoxic treatment regimens elicit a number of changes in immune-related
parameters including the composition, phenotype and function of immune cells. In this review,
we discuss the impact of innate and adaptive immune cells on the success of anti-cancer
therapy, we examine the opportunities to exploit host immune responses to boost tumor

clearing and we highlight the challenges facing the treatment of advanced metastatic disease.

Then and now: The link between the immune system and anti-cancer therapies
The relationship between anti-cancer therapies and the immune system is as old as the
invention of anti-cancer therapies themselves. After the use of mustard gas in the trenches of
World War |, a seminal observation was made that some exposed soldiers displayed severe
loss of bone marrow and lymph node cells [1]. This observation then spurred the idea that
the anti-proliferative capacity of mustard gas may also slow the growth of cancer cells.
Experiments carried out in mice transplanted with lymphoid tumors were convincing enough
to treat a lymphoma patient [2], and these events initiated the standardized treatment of
cancer patients with chemotherapy [3, 4].

Fast forward 100 years later. The influence of immune cells on tumor progression and
metastasis is well established [5], and an appreciation for the immune system’s impact
during conventional anti-cancer therapy treatment is growing. Recent seminal advances

indicate that immune cells can shape the outcome of various anti-cancer therapies. As such,



immune cells and their molecular mediators have evolved into bona vide targets of
therapeutic manipulation in cancer patients. The recent breakthrough of immunotherapeutics
that inhibit negative immune regulatory pathways, such as anti-CTLA4 and anti-PD1, has
initiated a new era in the treatment of cancer [6]. In parallel, immunomodulatory strategies
aimed at dampening pro-tumor functions of immune cells are currently being tested in cancer
patients [7]. Immune cells also function as reliable biomarkers, since their abundance or
activation status often predicts how well patients respond to a particular treatment regimen.
Here, we review these novel experimental and clinical insights, highlighting potential
implications for the development of synergistic therapies designed to combat primary tumors

and, more importantly, metastatic disease.

The pros and cons of experimental mouse models

Research questions aimed at understanding the role of immune cells during anti-cancer
therapy require models that mirror the complex interactions between the immune system and
diverse forms of human cancers. Transplantable cancer cell line models and carcinogen-
induced cancer models are the most frequently used for these purposes. However, studies in
genetically engineered mouse models (GEMMs; see Glossary) that spontaneously develop
specific cancer types as a consequence of germline or somatic mutations in discrete cell
types are gaining ground. There are key differences between cancer cell line inoculation
models and GEMMs of cancer (Box 1). In GEMMs, normal cells are transformed in situ
resulting in the development of spontaneous tumors that faithfully recapitulate each stage of
cancer progression — from tumor initiation to advanced disease and in some models also
metastasis. These spontaneous tumors develop in their natural microenvironment, and share
the genetic heterogeneity and histopathology of human tumors. In stark contrast,
transplantable models rely on the inoculation of large numbers of selected, homogenous
cancer cells grown in 2D. The tissue of tumor origin and location of injection are often
disparate in transplantable models with subcutaneous injection being the most common site
of implantation. Moreover, these tumor cell line inoculation models do not mimic the multi-
step progression of de novo tumors, and the speed of tumor outgrowth is very fast. Upon
inoculation, a large proportion of the cancer cells die, which can prime anti-tumor immune
responses in an unphysiological manner. Importantly, comparative studies have shown that
immune cell behavior and tumor response to anti-cancer therapies differs between
transplantable cell lines derived from GEMMs and the original GEMM [8-10]. Similarly, other
studies indicate that the use of GEMMs in pre-clinical studies may be better predictors of

clincial trials than transplantable models [11]. Xenografted human cancer cells established

from cell lines or fresh patient material (patient-derived xenograft, PDX) in

immunocompromised mice are other frequently used models. While it may be arqued that
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PDX models are the best representation of human disease from a cancer genetics or drug

response point-of-view, these models exclude the participation of the adaptive immune

system in cancer progression and anti-cancer therapy response. Therefore, they cannot

predict the full breadth of drug response in immunocompetent humans. These issues, as well

as other advantages and disadvantages, various strategies to refine these models and their

suitability for pre-clinical studies, have been extensively discussed elsewhere [12-16].

The influence of the immune system on chemotherapeutic efficacy

Various types of chemotherapy drugs exist which kill cancer cells via different mechanisms
(Figure 1). Cytotoxic drugs can eliminate cancer cells by inhibition of DNA replication,
chemical damaging of DNA, inhibition of the function of critical enzymes required for DNA
synthesis or prevention of mitosis. Drug-induced cancer cell death, as well as off-target
effects of chemotherapy, elicits a number of systemic and intra-tumoral changes in the host
immune system. In turn, the efficacy of chemotherapeutic drugs is influenced by the interplay
between tumor and immune components. These mechanisms are outlined below for both

innate and adaptive immune cells.

Innate immune cells

The microenvironment of solid tumors consists of multiple cell types, including many immune
cell populations that participate in and regulate tumorigenesis and metastasis [17, 18] (Box
2). Tumor-associated macrophages (TAMs) represent one of the most extensively studied
innate immune cell populations in chemotherapy response. Research spanning over the last
three decades has shown that TAMs interfere with or augment the therapeutic activity of
several types of chemotherapy and their role in these processes has been reviewed recently
[19, 20]. One of the first studies addressing the impact of macrophages on chemo-
responsiveness showed that doxorubicin enhances the tumoricidal properties of TAMs in
mice transplanted with leukemia and lymphomas and that macrophage-inactivating agents
reduce the efficacy of doxorubicin. Interestingly, these observations were chemotherapy
specific, since daunorubicin, another anthracycline, together with TAM depletion failed to
exhibit any synergism [21].

More recent literature pertaining to TAMs and solid epithelial malignancies indicates a
sinister role for these cells in limiting chemotherapy efficacy. Increased TAM abundance and
low CD8" T cell abundance in human breast tumors is associated with poor response to
neoadjuvant chemotherapy [22]. Paclitaxel treatment of mammary tumor-bearing MMTV-
PyMT mice increases TAM infiltration into tumors. These cells counteract chemotherapy
efficacy via several mechanisms, including inhibition of anti-tumor CD8" T cell responses via

IL10-mediated suppression of dendritic cells [22, 23], as well as secretion of chemoprotective
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survival signals, such as cathepsins [24]. Interestingly, splenic macrophages have also been
implicated in conferring systemic resistance to cisplatin in subcutaneous cell line models via
secretion of lysophospholipids that alter DNA damage response [25].

In this regard, various strategies to deplete TAMs or neutralize their mediators have
been used to enhance chemotherapy efficacy in preclinical tumor models. The most common
strategy used to date involves the inhibition of CSF1-CSF1R signaling, since these
molecules are required for macrophage differentiation and maturation [26, 27]. Paclitaxel
treatment in combination with a CSF1R inhibitor reduces tumor growth in both MMTV-PyMT
and C3(1)-Tag mice [22, 23] — a conditional GEMM driven by SV40 large T antigen in
mammary epithelial cells [28]. Of note, this therapy combination also decreases spontaneous
lung metastasis in MMTV-PyMT mice, while neither paclitaxel nor CSF1R inhibitor alone
affects metastasis formation [22, 23]. Similarly, when paclitaxel is used with an inhibitor
blocking TAM-derived cathepsins, the total lung metastatic burden of MMTV-PyMT mice is
lowered [24]. In orthotopic pancreatic tumor transplants, blockade of TAMs and monocytes
via CSF1R or CCR2 inhibitors synergizes with gemcitabine and paclitaxel to slow cancer
growth and to reduce peritoneal metastasis [29]. Like TAMs in MMTV-PyMT mammary
tumors [22], TAMs from these pancreatic tumor transplants suppress CD8" T cell activation
to foster chemoresistance [29]. Studies in xenograft tumor models using human breast
cancer cell lines have also shown that CSF1 neutralization together with a triple
chemotherapy modality (cyclophosphamide, methotrexate, and 5-FU) reverses
chemoresistance [30]. Another chemotherapeutic drug, trabectedin, induces apoptosis
specifically in monocytes and macrophages, and this forms a key component of its anti-tumor
activity [31].

Although these studies reveal that macrophages counteract the efficacy of various

chemotherapeutics and suggest that the synergism between TAM inhibition and

chemotherapy may be beneficial for several types of cancer, it will be important for future

experiments to focus on resistance mechanisms within the immune system. The studies

above combining chemotherapy with TAM blockade show only a transient effect on tumor

growth; these tumors do not regress and they eventually grow out [22, 23, 29, 30]. The

inherent flexibility and redundancy of the immune system lends itself to potential deleterious

feedback mechanisms in which the functions of a depleted population are reinstated by

another population. One such mechanism is known to occur in cervical tumors of K14-

HPV/E, mice, where genetic inhibition of MMP9-expressing TAMs results in a compensatory

neutrophil influx that restores MMP9 levels, angiogenesis and tumor progression [32].

Similarly, inhibition of TAMs via CSF1R in mammary tumor-transplanted mice induces a

neutrophil-dependent increase in lung metastasis without affecting primary tumor growth [33].



The resistance mechanisms counteracting the synergism between chemotherapy (or other
anti-cancer therapies) and TAM blockade remains to be seen.

The CSF1 and CSF1R inhibitors utilized in the reports above function by depleting
the entire TAM population [22-24, 29, 30]. However, another promising strategy that may
prevent resistance to TAM depletion is to switch the polarization of TAMs from a pro-
tumorigenic phenotype to a more anti-tumorigenic phenotype (Box 3). This concept was
recently demonstrated in a GEMM of glioblastoma [34] and an orthotopic pancreatic cancer
model [35], where CSF1R inhibitors reduce expression of immunosuppressive and pro-
angiogenic genes and increase immunostimulatory genes in TAMs. Overexpression of a
molecule called histidine-rich glycoprotein (HRG) also repolarizes TAMs [36]. Resident TAMs
in transplanted fibrosarcomas overexpressing HRG exhibit a more anti-tumorigenic, less
angiogenic phenotype than TAMs in control tumors. This phenotypic switching renders
tumors more sensitive to doxorubicin by modulation of the tumor vasculature [36]. There is

also evidence that type | interferons convert TAMs into tumor-antagonizing cells. TAMs

engineered to express IFNa uprequlate expression of dendritic cell markers in mammary

tumors of MMTV-PyMT mice. As a consequence, these mice exhibit increased tumor-

infiltrating effector CD8" T cell frequencies, slower tumor growth and lower incidence of

metastasis [37]. As such, the combination of chemotherapy together with drugs that

repolarize TAMs may be exploited to achieve greater patient responses and prevent
resistance mechanisms within the immune system. Some chemotherapeutics skew the
polarization of macrophages directly [38], or indirectly via regulating cancer cell-secreted
factors [39].

Intravital imaging of experimental tumor models has provided additional clues about
the behavior of TAMs after chemotherapy. In these studies, doxorubicin treatment induces
infiltration of CCR2-expressing monocytes into necrotic regions of MMTV-PyMT mammary
tumors, where these cells control vascular permeability and facilitate regrowth of tumors
through MMP9 expression [40]. Consequently, spontaneous and transplanted tumors grown
in Ccr2 or Mmp9 knockout mice acquired an increased sensitivity to doxorubicin [40]. These
studies suggest that TAMs control drug delivery through regulating vessel functionality and
leakiness. In support of this notion, deletion of pro-angiogenic molecules, such as VEGFA
and PIGF, in myeloid cells and bone marrow-derived cells, respectively, decreases vascular
leakiness [36, 41] and increases the potency of cyclophosphamide on transplanted tumors
[41].

Like TAMSs, the role of tumor-associated neutrophils in response to chemotherapy
treatment is context and tumor type dependent. In athymic nude mice bearing E1A/Kras/Bcl-
xL-transformed murine embryonic fibroblast (MEF) tumors, the depletion of neutrophils using

the Grl antibody impairs the anti-cancer effect of cyclophosphamide [42]. The Grl antibody
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binds the granulocyte-specific antigen, Ly6G, as well as the Ly6C antigen that is expressed
by both granulocytes and monocytes. So it is possible that Ly6C" inflammatory monocytes
may also contribute to tumor control in this scenario. Neutrophil depletion via the more
specific anti-Ly6G antibody also modestly impairs the anti-cancer effect of doxorubicin on
various cancer cell lines transplanted into syngeneic, immunocompetent mice [43].

By contrast, strategies to impede neutrophil recruitment into tumors augment the
efficacy of chemotherapy. This has mainly been accomplished by inhibiting CXCR2, the
receptor for CXCL1, 2 and 5, that is expressed on neutrophils and other granulocytes [44].
Treatment of human breast cancer xenografts with the combination of doxorubicin,
cyclophosphamide and a CXCR2 inhibitor significantly slows tumor growth and metastasis,
when compared to chemotherapy or the CXCR2 inhibitor alone [44]. Similarly, docetaxel
synergizes with a CXCR2 inhibitor to prevent tumor progression in a GEMM for Pten-
deficient prostate cancer [45]. In these prostate tumors, infiltrating neutrophils secrete ILIRA
to counteract cancer cell senescence and activate proliferation. Clinical support for a role of
neutrophils in chemotherapy response comes from observations in a variety of cancer
patients, such as breast and non-small cell lung cancer patients, where chemotherapy-
induced neutropenia is associated with better patient prognosis [46, 47]. We and others have
established a metastasis-promoting role for neutrophils in breast and melanoma models [48-
50]. Therefore, targeting neutrophils or their mediators may synergize with
chemotherapeutics to specifically decrease metastasis.

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of immature
and mature myeloid cells that is predominated by neutrophils with T cell-suppressive
functions [51, 52] (Box 2). In subcutaneous and orthotopic cell line transplantation models,
gemcitabine, 5-FU and doxorubicin directly induce splenic CD11b*Gr1* MDSC apoptosis [53-
56]. This chemotherapy-induced MDSC death increases the activity of cytotoxic T cells and
contributes to tumor control. However, gemcitabine and 5-FU have also been reported to
induce activation of the NLRP3 inflammasome in MDSCs, which limits chemotherapy
efficacy [56]. Other chemotherapeutics, such as irinotecan, enhance immunosuppression in
colorectal cancer patients and in a carcinogen-induced colon cancer model via MDSC
expansion [57]. These data indicate that direct killing of MDSCs by chemotherapy can be an
additional off-target benefit of anti-cancer therapies, but caution should be exercised, as
these effects are chemotherapy- and tumor type-specific.

In a variety of transplantable and chemically induced tumors, specific types of
chemotherapy, such as oxiliplatin and anthracyclines, trigger dendritic cell activation through
release of HMGB1 and ATP by dying cancer cells [58-60]. This process is called
immunogenic cell death and it increases chemotherapy response of certain tumor models

through induction of anti-tumor immunity. For many years, it has been thought that dendritic
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cells in the tumor bed are immature and lack the ability to prime cytotoxic T cells [61].
However, this notion was recently challenged. MMTV-PyMT mammary tumors as well as
various transplantable tumors contain two main populations of dendritic cells:
CD11b"CD11¢c'CD103 BATF3~ and CD11b~CD11¢c'CD103"BATF3" cells. The rare
CD11b™ dendritic cells have superior capability to stimulate cytotoxic T cells [23, 62];
although, intravital imaging has shown that dendritic cells are outcompeted for T cell
interaction by TAMs, lessening the chance of a robust anti-tumor immune response [62, 63].
Anti-tumor immunity can be reinstated by combining paclitaxel with TAM depletion or
neutralization of their tolerizing abilities (i.e. blocking IL10) [23]. While these studies report
that the CD11b ™ dendritic cell subset is important for chemotherapy response in MMTV-
PyMT mammary tumors [23, 62], the CD11b" subset plays a greater role in chemotherapy-
induced immunogenic cell death of transplantable models [43]. These data emphasize the
diverse influence of dendritic cell subsets in chemotherapeutic efficacy. As such, it will be
interesting to learn whether the predominant role of one dendritic cell subset is dependent on

specific parameters, such as the class of chemotherapy or type of tumor.

Adaptive immune cells
Like innate immune cells, the role of T cells and B cells in chemotherapy response is
paradoxical, as these cells may both promote or prevent chemotherapeutic potency. The
behavior and function of adaptive immune cells is highly dependent on the class of
chemotherapy used and tumor type and stage. Emerging evidence over the last few years
has challenged traditionally held views about the anti-cancer contributions of adaptive
immune cells. Take antibody-producing B cells, for instance. B cells facilitate squamous cell
carcinoma progression in K14-HPV16 mice through antibody-mediated activation of Fc
receptors on TAMs and mast cells, stimulating their pro-angiogenic abilities [64, 65]. B cells
also promote squamous cell carcinoma in a carcinogen-induced cancer model [66]. In
essence, B cells are viable targets in this tumor type. Indeed, the combination of platinum-
based chemotherapy or paclitaxel together with anti-CD20 antibodies in orthotopic squamous
cell carcinomas results in stasis of established tumors, whereas chemotherapy or B cell
depletion as single agents are completely ineffective [67]. The synergistic effect of
chemotherapy and B cell depletion is dependent upon TAMs and CD8" T cells, as depletion
of either population desensitizes tumors to the absence of B cells and chemotherapy [67].
Taken together, these studies indicate that inhibiting B cells in combination with
chemotherapy may be highly effective for some tumor types.

Studies focused on the role of CD4" T cells provide another example of the
complexity surrounding adaptive immune cells in chemotherapy response. One study has

shown that CD4" T cells limit the ability of 5-FU to delay the growth of subcutaneous
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thymoma cells [56]. 5-FU-exposed MDSCs stimulate CD4" T cells to express IL17 via IL1B;
although, the mechanism by which IL17-producing CD4" T cells (otherwise known as Th17
cells) counteract the anti-cancer efficacy of 5-FU is unclear. By contrast, IL17 is required for
therapeutic efficacy of doxorubicin in a subcutaneous sarcoma model, and y5 T cells, not
CD4" T cells, are the source of IL17 in this scenario [68]. In MMTV-Neu mice — a model
driven by wild-type rat ERBB2 [69] — inhibition of the immunosuppressive enzyme indolamine
2,3-dioxygenase (IDO), cooperates with cisplatin, cyclophosphamide, doxorubicin and
paclitaxel to retard tumor growth [70]. Interestingly, the anti-proliferative effects of IDO
inhibition and paclitaxel are dependent on CD4" T cells, as their depletion reverses the
phenotype. MMTV-Neu cell lines injected into nude mice and treated with paclitaxel/IDO
inhibitor phenocopy the CD4" T cell depletion experiments in the de novo tumor model [70].
Conversely, CD4" T cell depletion further delays MMTV-Neu tumor growth in mice treated
with doxorubicin and lapatinib — a small molecule inhibitor of EGFR and ERBB2 [71]. The
importance of CD4" cells following paclitaxel or doxorubicin, without the addition of IDO
inhibtors or lapatinib, remains to be established in mammary tumor-bearing MMTV-Neu mice,
since these controls were not included in either study [70, 71]. Nonetheless, manipulation of
Th17 cells or other CD4" T cell subsets may be a useful strategy to combat cancer growth
and metastasis when used in combination with chemotherapy.

FOXP3-expressing regulatory cells (Tregs) are the most notorious subpopulation of
CD4" T cells, known for their ability to suppress anti-tumor immune responses [72]. As early
as the 1980s, it was recognized that Tregs in tumor-bearing mice are sensitive to
cyclophosphamide [73], and more recent studies confirmed this both in non-tumor- and
tumor-bearing rodent models [74, 75]. The depletion of Tregs using anti-CD25 antibodies
synergizes with other types of chemotherapy, including platinum-containing agents and
etoposide, to reduce tumor growth in subcutaneous, transplantable models [76, 77], as well
as a GEMM of lung adenocarcinoma [78]. The mechanism of synergy is most likely
dependent on reactivation or re-infiltration of CD8" T cells in tumors [77]; however, this
remains to be confirmed.

Cytotoxic lymphocytes, including CD8" T cells and natural killer (NK) cells, have
been reported to contribute to the efficacy of certain chemotherapeutics. For example,
depletion of NK cells abolishes the tumor-shrinking ability of cyclophosphamide in tumor-
bearing immunodeficient mice [42] and in an experimental melanoma metastasis model [79].
CD8" T cells with anti-tumor activity are unleashed upon treatment with a non-cytotoxic dose
of paclitaxel in a spontaneous melanoma GEMM [80]. Similarly, CD8" T cells contribute to
cancer cell killing by immunogenic cell death-inducing chemotherapeutics in a variety of

transplantable and carcinogen-induced tumors [59, 60, 81]. Chemotherapy-driven



immunogenic cell death is not dependent on NK cells [60], but IFN signaling is important in
this process [82].

Recently, we and others have challenged the currently held dogma that cytotoxic
CD8" T lymphocytes are required for tumor regression following specific chemotherapeutic
agents [59, 60, 81]. For these studies, we used two different GEMMs of breast cancer:
K14cre;Cdh1™": Trp537" mice, a model for invasive lobular breast cancer driven by the
stochastic loss of E-cadherin and p53 [83]; and MMTV-NeuT mice, a model driven by a
mutated form of the rat proto-oncogene ERBB2 [84]. We showed that the adaptive immune
system is dispensable for response to oxaliplatin, doxorubicin and cisplatin [85]. In line with
these data, depletion of CD8" T cells in MMTV-PyMT mammary tumor-bearing mice fails to
counteract the efficacy of paclitaxel [22, 23], indicating that CD8" T cells are also dispensable
in this experimental setting. Additionally, CD8" T cell depletion in combination with 5-FU
treatment of subcutaneous EL4 thymomas has no impact on tumor growth [56]. Taken
together, these observations underscore the plasticity within the adaptive immune system in
response to different chemotherapeutic regimens and suggest that chemotherapy on its own
may not be enough to elicit anti-tumor immune responses in spontaneous epithelial tumors.
Chemotherapy together with additional anti-cancer agents, such as targeted therapies and

immunosuppression inhibitors, may be required to fully reactivate cytotoxic T lymphocytes.

Influence of the immune system on radiotherapy

Approximately 50-60% of all cancer patients are treated with radiotherapy and this regimen is
given alone or in combination with chemotherapy and/or surgery [86, 87]. lonizing radiation
induces DNA damage in the form of single-strand and double-strand breaks. As a
consequence, a number of cellular events can occur including DNA damage recognition, cell
cycle checkpoint activation, DNA repair and/or apoptosis pathways. Dying cells then release
stress proteins and other factors that can be sensed by various immune cells to clear away
cellular debris, initiate tumor recovery processes or secondary anti-cancer responses. The

participation of innate and adaptive immune cells in radiotherapy efficacy is discussed here.

Innate immune cells

Several studies have reported increased recruitment of monocytes and macrophages
following irradiation of tumor-bearing mice [88-93]; although, the similarity to radiotherapy-
treated human tumors needs further investigation. In mice, radiotherapy-induced TAM
infiltration is mainly attributed to radiation-induced hypoxia and the subsequent surge in
hypoxia-regulated chemokines, such as CXCL12 [90, 93]. Monocytes and macrophages
expressing TIE2 — the receptor for Angiopoietins 1 and 2 — are highly receptive to increased

hypoxia and CXCL12 levels [90, 93, 94], and TIE2-expressing monocytes/macrophages
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have a profound ability to counteract hypoxia through the induction of angiogenesis [95]. As
one may predict, neutralizing CXCL12 or blocking its receptor, CXCR4, to prevent TAM
accumulation further delays tumor progression when combined with radiotherapy in
orthotopic syngeneic and xenograft models of glioblastoma [90], as well as subcutaneous
xenografts of lung carcinoma and syngeneic mammary tumors [93].

When TAMs are depleted in various subcutaneous transplantable and xenograft
models by targeting all CD11b" cells, the inhibitory effects of radiation on tumor growth and
angiogenesis are augmented [88, 89]. This result may be largely explained by the
contribution of MMP9 by CD11b" cells that drives tumor regrowth through vasculogenesis [88,
89]. Similar results are observed using other strategies to block TAMs, including CSF1R
inhibitors in combination with fractionated irradiation in subcutaneous prostate tumors [91]
and carrageenan in transplantable models [92]. In B16 melanomas, however, the anti-cancer
effect of a single local high radiotherapy dose is not affected by the absence of TAMs [96].
Depletion of Ly6G™ neutrophils and Ly6C" inflammatory monocytes using Grl antibodies has
no synergistic effect with radiotherapy in subcutaneous human prostate tumors [89].
Conversely, the depletion of neutrophilic MDSCs potentiates the efficacy of radiotherapy on
subcutaneous colon cancer cells [97], presumably through the alleviation of T cell
suppression. Dendritic cells also play a role in radiosensitivity [58, 96, 98], but their activation
by irradiation varies between transplantable models. For example, HMGB1-sensing TLR4"
dendritic cells are required for radiotherapy efficacy in subcutaneous thymomas [58]. By
contrast, inhibition of HMGB1 or knockout of downstream TLR4 signaling components has
no effect on subcutaneous colon cancer cells following radiotherapy [99]. In this model,
radiotherapy response is dependent on type | IFN signaling in dendritic cells and the adaptor
protein STING [98, 99]. Whether the discrepancy between the roles of myeloid cells in these
studies is caused by the differences in tumor model, or by the differences in radiotherapy
dose and schedule remains to be investigated. What is also absent from this area of anti-
cancer therapy research is how myeloid cells respond to irradiated metastases in mouse

models.

Adaptive immune cells

Various independent research groups have reported that radiosensitivity requires CD8" T
cells for tumor control in transplantable models [58, 96, 99-101]. On the other hand, CD4" T
cells may not be so important for this process [96]. Similar experiments in GEMMs are
unavailable, so the importance of CD8" T cells in radiotherapy response remains
unanswered in these models. Interestingly, one study showed that paclitaxel together with
irradiation actually increases mammary tumor growth and pulmonary metastases when

compared to irradiation alone [100]. The same study switched to a different model system to
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explain this phenomenon. Experiments using dacarbazine and radiotherapy in B16
melanomas showed that the radiation-induced priming and activation of CD8" T cells is
blunted by chemotherapy [100]. Whether the combination of chemotherapy and radiotherapy
is detrimental to T cell priming in cancer patients is unclear at present. Based on these data,
enhancement of CD8" T cell activity in combination with radiotherapy may provide additional
benefit to cancer patients. Indeed, mice bearing transplantable MMTV-PyMT mammary
tumors depleted of Tregs and treated with irradiation survive longer than either radiotherapy
or Treg depletion alone [102]. Various immunotherapeutic strategies to achieve these effects

will be discussed below.

Contribution of immune cells to targeted therapy

Over the past decade, targeted therapies have emerged from the identification of tumor type-
specific driver mutations and hyperactive signaling pathways. Some examples include BRAF
inhibitors (vemurafenib) for melanomas, ERRB2 inhibitors (trastuzumab) for HER2" breast
cancer, and PARP inhibitors (olaparib) for BRCA-deficient breast and ovarian tumors (Figure
1). Many of these are performing exceptionally well in the clinic. Yet, the lack of durable
responses is posing a major problem highlighting the need to find synergistic therapies. The
importance of stromal cells in mediating resistance to targeted therapies has recently been
shown in vitro using an extensive co-culture system. In this study, fibroblasts were reported
to secrete HGF that activates the MET receptor in melanoma cells and downstream MAPK
and AKT signaling pathways to bypass the dependency on BRAF [103]. Here, we highlight
the studies pertaining to immune cells and mouse models. A more extensive discussion has
been provided elsewhere [104].

When assessing the influence of innate and adaptive immune cells on the efficacy of
targeted therapies, it is important to take into account the distinctive properties of the two
types of targeted drugs: monoclonal antibodies and small-molecule inhibitors. Unlike small-
molecule inhibitors, therapeutic antibodies can activate immune cells, such as macrophages,
neutrophils and natural killer cells, via binding to their Fc receptors, resulting in complement-
dependent cytotoxicity (CDC) or antibody-dependent cellular cytotoxicity (ADCC) [105]. Thus,
the actual working mechanism of the targeted antibody drugs is in part dependent on their
ability to trigger immune cell activation, whereas this is not the case for small-molecule

inhibitors.

Innate immune cells
In mice bearing melanoma cell lines derived from Braf®®; Tyr::CreERT2 tumors, the release
of TNF by TAMs protects tumors from MEK inhibitor-induced cell death [106]. This resistance

mechanism can be overcome by combining MEK inhibitors with an inhibitor of NF-xB
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signaling to prevent TAM accumulation and TNF secretion in tumors. Interestingly, TNF
expression is independent of the state of TAM polarization in this model, as all cultured
macrophages expressed TNF regardless of the stimuli used in vitro to skew their polarization
[106]. By contrast, TAM polarization may be important for the response to targeted therapies
in other cancer types and can even result in adverse effects. Imatinib treatment of tumor-

V558/+

bearing Kit mice — which carry a gain-of-function point mutation on one allele of the Kit
receptor gene predisposing them to spontaneous gastrointestinal stromal tumor (GIST)
development [107] — has been shown to repolarize TAMs from their normal anti-tumorigenic,
T cell-stimulating phenotype to a more pro-tumorigenic phenotype [108]. However, the
consequence of TAM skewing by imatinib, whether this is beneficial or detrimental for tumor
progression, remains untested.

Numerous studies have shown that Fc receptor (FCR) expression on TAMs and
neutrophils is required for the response to antibody-based targeted therapies through ADCC.
Using various transplantable models in knockout mice that lack one or more FcRs, tumor
regression mediated by rituximab, anti-CTLA4, trastuzumab and other anti-ERBB2
antibodies is reversed [109-115]. A lymphoma patient study showing that high TAM
infiltration correlates with improved prognosis after a rituximab-containing regimen, but
worsened prognosis without rituximab, supports these observations [116]. These data
suggest that whereas high numbers of TAMs serve as an indicator of poor disease outcome
in untreated, chemo- or radiotherapy treated patients, they may predict good disease
outcome in patients treated with targeted antibody drugs. Of note, however, FcR activation
on TAMs and mast cells by endogenous antibodies promotes squamous cell carcinoma
progression and pro-tumorigenic myeloid cell polarization in the K14-HPV16 model [65].
Similarly, the therapeutic antibody targeting EGFR, cetuximab, induces an
immunosuppressive phenotype in human monocytes cultured with colon cancer cell lines in
vitro [117]. These data suggest that the importance of FCR expression on myeloid cells in
regulating therapeutic antibody response may be context, drug and model dependent.

It has been reported that the efficacy of anti-ERBB2 antibodies is also dependent on
HMGBL1 and TLR signaling [110], suggesting that the mechanism of targeted-therapy
induced tumor regression may be similar to immunogenic cell death processes. However, the
addition of doxorubicin, an immunogenic cell death-inducing chemotherapy, to anti-ERBB2
treatment counteracts the effects of single agent anti-ERBB2 and fails to augment the
rejection of established mammary tumors. Why the combination of two immunogenic cell
death inducers fails to synergize remains a mystery. Paclitaxel, on the other hand, boosts the
effects of anti-ERBB2 treatment and this combination results in tumor rejection in 100% of
mice [110]. These data underscore the importance of optimally matching targeted therapy

with chemotherapeutic agents.
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There is evidence from pre-clinical models that targeting the JAK/STAT pathway
counteracts immunosuppression and controls cancer progression. For example, Pten-
deficient prostate tumors from Probasin-Cre4:Pten™ mice exhibit activation of the
JAK2/STAT3 pathway that mediates a MDSC-driven immunosuppressive environment.
Genetic deletion of Stat3 in prostate epithelial cells or treatment of prostate tumors with a
JAK?2 inhibitor in combination with docetaxel prevents MDSC recruitment to tumors and
slows tumor growth [118]. In addition, JAK2/STAT3 inhibition in mice bearing subcutaneous
sarcomas that lack STAT3 activation modulates MDSC and dendritic cell proportions as well
as their activity to reinstate anti-tumor immunity [119]. Since JAK/STAT inhibition directly
affects immune cell abundance and phenotype in some models, it is tempting to speculate
about the implications beyond this study. Targeted therapies that take out two birds with one
stone — cancer cells and immunosuppressive myeloid cells — could result in more positive

outcomes than when two distinct anti-cancer therapies are used simultaneously.

Adaptive immune cells

Elegant proof-of-principle experiments performed in transgenic mouse models, where
targeted therapy is emulated by switching off an oncogene-driving mutation (i.e. MYC) during
tumor development, have shown that T cells mediate tumor clearance through the killing of
both cancer cells and endothelial cells [120, 121]. These studies established the importance
of T cells in mouse models that mimic targeted therapies, and there are other reports
demonstrating the importance of adaptive immune cells using specific targeted therapies.
Treatment of melanoma patients with BRAF inhibitors increases infiltration of CD4" and CD8"
T cells into tumors and this correlates with reduced tumor size [122]. In experimental
melanoma metastasis models, NK cells mediate the anti-tumor effects of a BRAF inhibitor,
while CD4" and CD8" T cells are dispensable [123]. By contrast, CD8" T cells are required
for the response of BRAF inhibitors in transplantable melanoma models [124, 125], CD4" T
cells, but not CD8" T cells, mediate tumor clearance following BRAF inhibitor treatment of
spontaneous melanomas in a GEMM [126] (Braf'**°%;Pten™: Tyr::CreERT2 mice [127]).
Interestingly, each of these examples using melanoma models applied the same BRAF
inhibitor, PLX4720, which is a research analogue of vemurafenib. But why does each study
show a dependency on a different immune cell population? One explanation may be the
location of the tumor in the models used, including subcutaneous, skin and lungs, as well as
the timing of targeted therapy in relation to immune cell depletion. Similarly, imatinib efficacy
is dependent on NK cells in melanoma metastasis models [128], whereas CD8" T cells
contribute to tumor regression following imatinib treatment of GIST-bearing mice or dasatinib

treatment of subcutaneous mastocytoma-bearing mice [129, 130].
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In terms of immune regulation, mTOR inhibitors are very interesting targeted drugs.
MTOR is a critical regulator of immune function, as it promotes differentiation, activation and
function of T cells, B cells and antigen-presenting cells [131]. It also controls the balance
between effector T cells and Tregs [132]. Based on its strong immunomodulatory effects,
MTOR inhibition has been successfully utilized to prevent transplant rejection over the last
decades. In the cancer setting, the immunosuppressive effects of mTOR inhibitors are very
complex and mTOR inhibitor dependent. For example, the mTOR inhibitor AZD8055, in
contrast to rapamycin, enhances the anti-cancer efficacy of an CD40 agonist by activating
TAMs and DCs and induces a strong Thl response in an experimental liver metastasis
model [133]. Similarly, temsirolimus synergizes with depletion of CD4" T cells or Tregs to
reactivate CD8" T cells and reduce the growth of subcutaneous renal cell carcinomas [134].

Further investigations should work out whether dependency of targeted therapies on
adaptive immune cells is tumor type and/or location specific. If indeed the importance of
adaptive immune cells in regulating the response to targeted therapy is governed by the
location of the tumor, these data would suggest that the role of immune cells are also likely to

be different between primary tumors and metastasis in distant organs.

Immune cell function following vascular-targeting agents
Angoigenesis inhibitors — the most famous being the anti-VEGF antibody, bevacizumab —
and vascular damaging agents target blood vessels and thus limit re-oxygenation and
delivery of nutrients (Figure 1). The link between angiogenesis and the immune system is
well established [135], so perhaps it is not surprising that immune cells regulate the response
to anti-angiogenic therapies.

The pro-angiogenic functions of TAMs have been known for about a decade [95, 136,
137]. More recent studies have shown that TAMs are recruited to experimental tumors
following different forms of anti-angiogenic therapies [138-140], often because of the
hypoxia-induced increase in chemotactic factors [94, 138]. Various studies have reported
that TAMs counteract the efficacy of anti-angiogenic agents. For example, TAM depletion
with clodronate liposomes synergizes with sorafinib in human hepatocellular carcinoma
xenograft models [141] and with the anti-VEGFR2 antibody, DC101, in subcutaneous colon
tumors [142] to reduce tumor growth. Synergy also occurs when combining a CSF1R
inhibitor with DC101 in another transplantable model [143].

Blockade of the Angiopoietin-TIE2 signaling axis is another potent strategy to prevent
tumor angiogenesis and slow tumor growth. In MMTV-PyMT mice, an anti-Angiopoietin 2
(ANGPT2) antibody not only decreases blood vessel density and retards tumor progression,
but it also prohibits TIE2-expressing macrophages from associating with endothelial cells.

The TAM-endothelial cell interaction is required for angiogenesis, since conditional deletion
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of Tie2 in TAMs decreases blood vessel density and mirrors anti-ANGPT2 treatment [140]. In
addition, ANGPT?2 inhibitors reduce lung metastasis in spontaneous breast cancer
metastasis models [140, 144]. The effect of ANGPT2 inhibitors on metastasis most likely
occurs during the late stages of the metastatic cascade when monocyte-derived
macrophages facilitate angiogenesis [145], since neutralization of ANGPT2 decreases
CCL2-dependent monocyte recruitment to lungs and ICAM-mediated monocyte adhesion to
endothelial cells [144]. Furthermore, inhibition of recruitment of TIE2-expressing macrophage
to transplanted tumors via CXCR4 blockade amplifies the tumor inhibitory effect of the
vascular-damaging agent, combretastatin, indicating that this subset of TAMs counteracts
the efficacy of combretastatin [138]. Thus, combining inhibitors of both TAMs and the
Angiopoietin-TIE2 axis may yield promising tumor-reductive results.

Studies from a few years ago showed that tumor-induced CD11b*Gr1" cells (Box 2)
also mediate intrinsic resistance to anti-VEGF therapies [146]. More recently, a suppressive
functionality was demonstrated for these cells [147], indicating that CD11b*Gr1" cells in this
subcutaneous lymphoma model can be categorized as MDSCs. These CD11b*Gr1" cells
express pro-angiogenic molecules, like PROK2/BV8, that circumvent the dependency of
transplantable tumors on VEGF. Targeting MDSCs or PROK2/BV8 synergizes with anti-
VEGF treatment to reduce tumor growth [146, 148, 149]. Tumor-derived G-CSF is
responsible for initiating this cascade by mobilizing MDSCs and up-regulating their
expression of PROK2/BV8. As one may predict, neutralization of G-CSF also synergizes with
anti-VEGF therapy [149]. The cytokine, IL17, is also involved in this cascade. Like inhibition
of MDSCs, PROK2/BV8 or G-CSF, blockade and genetic knockout of IL17 sensitizes
resistant, transplanted tumors to anti-VEGF therapy [147]. Interestingly, CD4" T cells appear
to be the source of IL17 in these tumor models and IL17 regulates G-CSF expression in
tumor-associated fibroblasts. We have recently shown that IL17-producing yd T cells induce
systemic expression of G-CSF to expand immunosuppressive neutrophils and facilitate
breast cancer metastasis [49]. In this regard, targeting the IL17-producing T cell—G-CSF—
neutrophil axis in combination with anti-angiogenic therapies may benefit patients with
metastatic disease.

Much less is known about the role of Tregs and T cells during anti-angiogenic therapy.
In renal cell and colorectal carcinoma patients, sunitinib reduces the number of Tregs and
MDSCs [150-152] and bevacizumab does the same in colorectal carcinoma patients [151]. A
few experimental studies have shown that endogenous T cell infiltration is increased
following anti-angiogenic agents [153-155], and one study has shown that the efficacy of
DC101 treatment is dependent on both CD4" and CD8" T cells in a transplantable mammary

tumor model [153]. As such, the need for more investigations into the role of
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immunosuppressive and adaptive immune cells is warranted to help guide the future clinical

possibility of combining vascular-targeting agents with immunotherapy.

Immunotherapeutic strategies to enhance the response to anti-cancer therapies

The studies highlighted above have established that both innate and adaptive immune cells
are viable targets for therapeutic manipulation. Three main immunomodulatory approaches
are under intense pre-clinical and clinical investigation: 1) immunotherapy aimed at boosting
the patients’ own immune system to fight cancer, for example via T cell checkpoint inhibitors
targeting CTLA4 and the PD1-PDL1 axis (Figure 1), or via cancer vaccines; 2)
immunotherapy through adoptive transfer of (genetically engineered) autologous T cells; and
3) therapies aimed at suppressing pro-tumor inflammatory processes (Figure 1), such as
anti-CSF1R [7] and anti-CCL2 [156, 157].

The clinical success of immunotherapeutics that block negative immune regulatory
pathways, including anti-CTLA4 (ipilimumab) and anti-PD1 (pembrolizumab and nivolumab)
[158-160], has reinvigorated cancer research and oncology. The potential of these drugs
shows no signs of stopping, since the list of tumor types that respond to checkpoint inhibitors
is expanding rapidly [161, 162]. However, checkpoint inhibitors do not benefit every patient
[158, 163, 164]. To increase the number of cancer patients that benefit from immunotherapy,
it will be critical to fill in several gaps. First, biomarkers that preselect those patients most
likely to respond to immunotherapy need to be uncovered and implemented into clinical
practice. Recent reports suggest that both mutational load as well as the nature of neo-
antigens might dictate whether a tumor will respond to immune checkpoint inhibitors [165].
Additionally, high intratumoral CD8" T cells, PD1" and PDL1" cells are associated with
increased responsiveness to therapies targeting PD1-PDL1 signaling [160-162, 166]. Since
many human cancers are characterized by the influx of T cell-suppressive immune cells,
such as Tregs, TAMs, MDSCs and neutrophils, it is likely that the quantity and/or phenotype
of these cells also contains predictive value. Second, the most efficacious combinations of
conventional anti-cancer therapies and immunotherapy need to be established. Given the
predictive power of CD8" T cell infiltration in tumors, anti-cancer therapies that augment
CD8" T cell infiltration and inhibit immunosuppressive cells into tumors are obvious
candidates to test with immune checkpoint inhibitors. In support of this notion, gemcitabine —
a chemotherapeutic that targets Tregs and MDSCs [53, 167, 168] — and melphalan synergize
with anti-CTLA4 in transplantable tumor models [169, 170]. Experimental and clinical studies
have also revealed synergy between cyclophosphamide — known for its Treg-reducing
effects [73-75] — and various immunotherapeutic approaches [171, 172]. By contrast, the
synergy between cisplatin, a chemotherapeutic that does not affect imnmunosuppressive cells,
and anti-CTLA4 is controversial [170, 173]. Radiotherapy also synergizes with CTLA4, PDL1
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and combined CD40/CD137 targeting to control the growth of various transplantable models
and lung metastases [97, 174, 175] — a process that is dependent on CD4" T cells, CD8" T
cells, NK cells or all of the above [97, 174]. These data suggest that intervention strategies
that induce a favorable T cell influx and/or reduced Foxp3/CD8 ratio in tumors are efficacious
partners for checkpoint inhibitors.

Chemo-, radio-, targeted and anti-angiogenic therapies have all been shown to
increase recruitment of adoptively transferred T cells to transplanted tumors and enhance
anti-tumor responses [96, 176-183], but the mechanism by which this occurs has not been
fully elucidated. One recent report showed that irradiation of spontaneous pancreatic tumors
in RIP1-Tag5 mice increases recruitment of adoptively transferred CD8" T cells and T cell-
mediated tumor rejection, which depended on repolarization of TAMs towards an anti-
tumorigenic phenotype [184]. Thus, strategies that condition the microenvironment to
become more receptive to T cells with anti-tumor activity may enhance tumor eradication.
Intriguingly, the tumor microenvironment not only regulates the initial therapeutic effect of
adoptively transferred T cells by influencing their intra-tumoral recruitment, but can also
induce resistance of tumors to adoptively transferred T cells. In a GEMM of melanoma,
cancer cells acquire resistance to T cell adoptive transfer through inflammation-induced
tumor cell dedifferentiation, which is characterized by reversible loss of tumor antigen
expression [185].

As discussed above, many tumors are characterized by influx of myeloid cells with
immunosuppressive activity, such as macrophages, MDSCs and neutrophils, which may
impede successful T cell-mediated eradiation of cancer cells. Relieving the
immunosuppressive networks in tumor-bearing patients might be an alternative strategy to
maximize success of immunotherapy and there is experimental evidence to support this idea.
For instance, blockade of CXCR2-mediated MDSC trafficking into transplanted
rhabdomyosarcomas increases the efficacy of anti-PD1 therapy [186]. In an orthotopic
pancreatic tumor model, the triple combination of gemcitabine, TAM blockade via CSF1R
inhibition and anti-CTLA4 or the quadruple combination with anti-PD1 is most effective at
inducing tumor regression [35]. Blockade of CCL2, a monocyte chemoattractant, has been
reported to increase the anti-cancer efficacy of various cancer vaccines on subcutaneous
tumors [187]. A growing number of next-generation immunomodulatory drugs aimed at
targeting tumor-associated myeloid cells is being developed and tested in clinical trials [7].
Combining these immunomodulatory drugs with the emerging immunotherapeutic
approaches will likely increase the number of cancer patients that benefit from

immunotherapy.
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Concluding remarks
What is clear from the aforementioned experimental and clinical studies is that the immune

system is a major regulator of anti-cancer therapy response and resistance. At the same time,

it is difficult to deduce one over-arching conclusion from these studies, because of the

overwhelming complexity and the diversity of immune cell responses to specific anti-cancer

therapies. What we can say for sure is that the involvement of immune cells is largely

dictated by tumor type, mutational signature, tumor model and tumor location (e.g. orthotopic

vS. subcutaneous) (Table 1), and generalizing immune cell response to a particular anti-

cancer therapy across multiple tumor types or locations should be avoided. Proof of this

principle was recently provided by directly comparing the efficacy of immunotherapy on three

orthotopic tumors versus their subcutaneous counterparts. This study showed that in addition

to microenvironmental differences in immune cell profile and vascularity, orthotopic tumors

are more immunosuppressive in nature and less sensitive to immunotherapy than

subcutaneous tumors [188]. We have also learned that conventional anti-cancer therapies

have both direct and indirect effects on the immune system (Figure 2). Relatively little is
known about the role of immune cells during other anti-cancer therapies not mentioned here,
such as hormonal therapy. Future experiments and clinical trials will undoubtedly broaden
our knowledge in this arena.

Right now, the excitement and success of immune checkpoint inhibitors in advanced
cancer patients has set the stage for new therapeutic approaches in the treatment of cancer
with a focus on combined targeting of cancer cell-intrinsic and -extrinsic processes. For
optimal clinical implementation, however, a number of key questions and issues need to be
addressed (Box 4). First, conventional therapies need to be optimally matched to specific
immunotherapy and/or immunomodulatory drugs to achieve maximal benefit. Timing of
treatments will be crucial in this process. These combinations will require certain aspects of
personalization, taking into account tumor type, mutation status and intra-tumoral immune
profiles prior to treatment. Second, researchers should be on the lookout for immune-based
resistance mechanisms limiting the efficacy of traditional anti-cancer therapies and
immunotherapies. Since immune cells are highly versatile and plastic cells that are designed
to adapt quickly to a variety of unanticipated situations, resistance to immunotherapy and
immunomodulatory agents is inevitable and may be dictated by rewiring of immune
processes. Finally, more effort should be focused on metastasis. Metastatic disease, not
primary tumors, is responsible for the majority of cancer-related mortality and controlling
metastatic disease is the most urgent need in the clinic. The discrepancy between the effects
of anti-cancer therapies on experimental tumor growth and the response to these drugs in
metastatic patients enrolled in early clinical trials may explain why about 85% of new drugs

fail [189]. Mouse models have revealed meaningful disparities between the response of
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primary tumors and their visceral metastases to anti-cancer therapies [190, 191]. In this
regard, choosing pre-clinical models that accurately represent each stage of the metastatic
cascade is also critical to understand basic biological mechanisms of metastasis formation
as it occurs in patients [192] and to specifically target metastatic disease (Figure 3).
Furthermore, targeting both cancer cells and immune cells may be the key to prevent

metastasis from occurring and to combat established metastasis.
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Box Legends

Box 1: Comparison of mouse models used in anti-cancer therapy research. In immune-
related anti-cancer therapy research, three types of mouse models are commonly used
including cancer cell line-based transplantable, carcinogen-induced and genetically
engineered mouse models (GEMMSs) of cancer. Several advantages and disadvantages are
presented for each model. Transplantable models rely on the injection of in vitro cultured
cancer cells into recipient immunocompetent or immunodeficient mice and this is usually
done subcutaneously. In carcinogen-induced models, chemical carcinogens are injected into,
or topically applied to mice to induce tumors, where the type and location of carcinogen
dictates the location of the tumors formed. For example, topical application of DMBA/TPA
results in skin carcinogenesis, and injection of methylcholanthrene (MCA) intramuscularly
results in fibrosarcomas. One caveat of this model is that tumors do not always form in
carcinogen-injected mice. By their nature, carcinogen-induced tumors represent only a small
fraction of human cancers. GEMMSs are driven by specific mutations in oncogenes or tumor
suppressors. The first generation GEMMs were developed in the 1980s and depended on
germ-line introduction of oncogenes, whose constitutive expression could be spatially
controlled by tissue-specific promoters. Many of the experimental studies addressing the
causal link between immune system, tumorigenesis and therapy efficacy have used these
so-called ‘onco-mice’. An example is the MMTV-PyMT mouse model for breast cancer, in
which the Mouse Mammary Tumor Virus (MMTV) promoter drives a viral oncogene, Polyoma
Middle T antigen. MMTV-PyMT mice develop multifocal tumors in all five pairs of mammary

glands, as well as spontaneous lung metastases [193]. To overcome some of the drawbacks
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of the first-generation GEMMs — such as embryonic lethality or the development of tumors
outside the tissue of interest — methods have been developed to conditionally induce somatic
mutations in a tissue-specific and/or time-dependent manner. An example of a second-
generation GEMM is the K14cre;Cdh1™;Trp53™" model in which stochastic Cre
recombinase-mediated loss of the floxed genes encoding for E-cadherin and p53 results in

the formation of mammary tumors resembling human invasive lobular breast cancer [83].

Box 2: Immune complexity in tumor-bearing hosts

The immune system has long been postulated to protect against cancer and metastatic
spread; yet, tumors exploit a number of strategies to successfully evade destruction by the
immune system. Cancer cells hijack the immune system for their own benefit, allowing
themselves to escape from immune attack, maintain limitless proliferation, survive under dire
circumstances and spread to distant organs. As such, immune cells and their inflammatory
mediators can create a hospitable microenvironment that is favorable for cancer outgrowth
[194].

Immune cells and their mediators are abundantly present in the microenvironment of
(disseminated) cancer cells. The exact nature of the tumor-induced local and systemic
immune alterations is dictated by the genetic make-up of the tumor (i.e. type of
oncogenes/loss of tumor suppressors, mutational load), tumor type (tissue of origin and
etiology), tumor stage, therapy history and age of the patient.

Macrophages and neutrophils make up a significant proportion of the inflammatory
infiltrate in many tumors and their accumulation in cancer patients has been associated with
poor prognosis [22, 195, 196]. Experimental studies have confirmed pro-tumor and pro-
metastatic functions for these tumor-associated myeloid cells [197]. Another type of tumor-
associated immune cell that has gained a lot of recent attention is the myeloid-derived
suppressor cell (MDSC) [51, 52]. MDSCs represent a heterogeneous group of immature
CD11b*Gr1" cells that includes precursors of macrophages, granulocytes and dendritic cells
at different stages of their differentiation, and they are defined by their functional ability to
suppress T cell proliferation. Tumor-derived mediators promote aberrant differentiation of
myeloid lineage cells, resulting in accumulation of MDSCs in the circulation and lymphoid
organs. MDSCs are potent immunosuppressive and pro-angiogenic cells and their
accumulation in the circulation of solid cancer patients has been linked with disease
progression and metastasis [198-200].

Alongside myeloid cells, adaptive immune cells are frequently found in tumors. Their
role in tumorigenesis is rather paradoxical [201]. Whereas CD8" T cells potentially recognize
and kill tumor cells, CD4" T cells, Tregs, B cells and y§ T cells play a more sinister role in

tumor biology [49, 64, 65, 78, 202]. In tumor-bearing hosts, crosstalk between adaptive and
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innate immune cells fosters disease progression. Tumor-associated myeloid cells frequently
suppress CD8" T cells and induce Tregs, while at the same time, cells of the adaptive
immune system, notably B lymphocytes, CD4" T cells and y5 T cells, can actually contribute
to the expansion and pro-tumor polarization of myeloid cells in tumor bearing hosts [49, 64,
65, 78, 202].

Box 3: Immune cell polarization

As normal epithelial cells make the transition to cancer cells, they induce the aberrant
expression of molecules whose concentration is unphysiological, or molecules that may be
entirely new to a particular tumor-originating location. Immune cells respond to these
mutation-driven cues both locally and systemically and the resulting effect is a skewing of
their phenotype and behavior. In addition to cancer cell-derived factors, physiological aspects
of the tumor microenvironment, such as hypoxia and pH, and factors from other cell types
also educate immune cells. This alteration in immune cell appearance and function is
referred to as polarization. For many years, researchers have used a binary nomenclature
that reflects extreme ends of immune cell polarization. As an example, macrophages are
often referred to as pro-tumorigenic M2 TAMs or anti-tumorigenic M1 TAMs. This has led to
the misconception that there are only two types of TAMs. Recent gene expression data from
several independent laboratories has discredited this oversimplified idea, showing that TAMs
comprise several distinct populations and share properties of both M1 and M2 cells [203-205].
In regards to therapy, repolarization of immune cells from a pro-tumorigenic state to a more
anti-tumorigenic is one strategy that may enhance the efficacy of traditional anti-cancer
therapies.

Box 4: Outstanding questions

e What are the determinants in each tissue/tumor type that dictate the involvement of

immune cells to therapy response?

e What is the role of other, more rare populations of immune cells — like mast cells,

eosinophils and innate lymphoid cells — in anti-cancer therapy response and

resistance?

e Which tumor types will be most responsive to immunotherapy and/or

immunomodulatory agents, and what are the underlying mechanisms?

e How can the most optimal therapy combinations be determined for individual

patients?
¢ What are the mechanisms underlying resistance towards immunotherapy and

immunomodulatory agents, and how can resistance be anticipated and prevented?
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e Should immune-based treatment strategies for metastatic patients be the same as

non-metastatic patients?

e How can GEMMSs be further sophisticated to better model anti-cancer therapy

response in humans?

Glossary Box

Alkylating agents: A class of chemotherapy drugs that directly damage DNA by substituting
alkyl groups for hydrogen atoms on DNA, causing the formation of cross links within DNA
chains and thereby resulting in cell death. Examples of alkylating agents are

cyclophosphamide and melphalan.

Anthracyclines: A class of chemotherapy drugs that is widely used to treat many different
types of cancer. Anthracyclines prevent cell division by disrupting the structure of the DNA

via several mechanisms. Examples of anthracyclines are doxorubicin and daunorubicin.

BrafV®F; Tyr::CreERT?2 or Braf'®"%; Pten™; Tyr::CreERT2 mouse tumor models: A
conditional GEMM of melanoma driven by an activated form of BRAF and loss of PTEN
under the control of the Tyrosinase promoter. Tumors are induced by topical administration

of tamoxifen to the skin, so timing of tumor development can be initiated as desired.

C3(1)-Tag mouse tumor model: A GEMM model in which SV40 large T antigen expression
under the control of the 5’ flanking region of the C3(1) component of the rat prostate steroid
binding protein drives tumor development. In females, mammary ductal epithelium is
transformed leading to invasive mammary tumors that resemble human ductal carcinoma in
situ (DCIS). Male mice develop phenotypic changes in the prostate that progress into

invasive carcinoma.

Genetically engineered mouse model (GEMM) for cancer: In GEMMs for cancer, normal
cells are transformed in situ as a consequence of germline or somatic mutations in specific
cell types, resulting in the development of spontaneous tumors that faithfully recapitulate
each stage of cancer progression — from tumor initiation to advanced disease and in some

models also metastasis.
K14-HPV16 mouse tumor model: A GEMM for de novo squamous carcinogenesis of the

skin. These mice transgenically express the early region genes of the human papilloma-virus

type 16 (HPV16) under control of the human keratin 14 promoter/enhancer. Cervical tumors
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can also be induced in these mice by administration of low-dose estrogen, hence K14-
HPV16/E,.

Kl4cre;Cdh1™:Trp53™F mouse tumor model: A conditional GEMM for invasive lobular
breast cancer. These mice transgenically express cre-recombinase under control of the
human keratin 14 promoter. In these mice, the alleles encoding for E-cadherin and p53 are
homozygously floxed. As a consequence, mammary and skin epithelial cells stochastically
lose E-cadherin and p53, which induces the formation of tumors in these tissues.

Kit¥**®* mouse tumor model: These mice carry a gain-of-function point mutation on one
allele of the Kit receptor gene predisposing them to spontaneous gastrointestinal stromal

tumor (GIST) development.

Metastatic Cascade: Cancer dissemination is a multistep process, consisting of the
following steps: local invasion at the primary tumor site, intravasation and survival into the
circulation, extravasation and survival at distant sites, adaptation to a foreign
microenvironment and outgrowth of a metastasis. During every step of the metastatic
cascade, cancer cells encounter normal host cells, such as immune cells. Interactions
between disseminated cancer cells and normal host cells largely dictate the success of

metastasis formation.

MMTV-Neu mouse tumor model: A GEMM for HER2" breast cancer in which wild-type rat
ERBB2 expression is driven by the Mouse Mammary Tumor Virus (MMTV) promoter, which
is only active in the mammary gland. These mice develop multifocal tumors in all 10
mammary glands, as well as spontaneous lung metastases in most mice. They are

maintained on the FVB/n background.

MMTV-NeuT mouse tumor model: Similar to MMTV-Neu mice, this GEMM represents
another model for HER2" breast cancer. However, a mutated form of the rat proto-oncogene,
ERBB2, is expressed under control of the Mouse Mammary Tumor Virus (MMTV) promoter
in this case. Multifocal tumors also arise in these mice from all five pairs of mammary glands
and they develop spontaneous lung metastases. These mice are usually maintained on the
BALB/c background.

MMTV-PyMT mouse tumor model: A GEMM for mammary tumorigenesis. These mice

transgenically express the viral oncogene Polyoma Middle T antigen under control of the
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Mouse Mammary Tumor Virus (MMTV) promoter. These mice develop multifocal tumors in

all 10 mammary glands, as well as spontaneous lung metastases.

Patient-derived xenograft (PDX) tumor models: Fresh tumor tissue from patients
undergoing surgery is implanted into immunodeficient mice (usually NOD/SCID/112rg,
otherwise known as NSG, mice) directly or following enzymatic digestion. Tumors can be
grafted subcutaneously or orthotopically. PDX tumors are serially passaged in additional

mice.

Probasin-Cre4:Pten™ mouse tumor model: A conditional GEMM for Pten-deficient
prostate cancer, where loss of Pten expression is driven by the Probasin promoter. These
mice develop prostatic intraepithelial neoplasia (PIN) lesions that progress to invasive

adenocarcinomas.

Platinum compounds: A class of platinum-containing chemotherapy drugs that binds and
crosslinks DNA, resulting in apoptosis. Examples of platinum compounds are cisplatin,

carboplatin and oxaliplatin.

RIP1-Tag5 mouse tumor model: A conditional GEMM of pancreatic cancer, in which the
Rat Insulin Promoter drives sporadic expression of SV40 large T antigen in a subset of
pancreatic beta cells. Unlike RIP-Tag2 mice that are systemically tolerant to SV40 large T
antigen, these mice develop an autoimmune response against the oncogene-expressing

beta cells.

Taxanes: A class of chemotherapy drugs that disrupts microtubule function, and thus inhibits
mitosis. Taxanes were first derived from plants of the yew tree. Examples of taxanes are

paclitaxel and docetaxel.

Tumor microenvironment: Besides cancer cells, many ‘normal’ cells are recruited to and
activated in tumors. The tumor microenvironment is composed of many different types of
immune cells, fibroblasts (referred to as cancer-associated fibroblasts), endothelial cells and
other cells that normally reside in the organ afflicted by the tumor (e.g. adipocytes in breast
cancer), soluble mediators and extracellular matrix (ECM). Throughout cancer progression,
there is extensive crosstalk between normal cells, soluble mediators and cancer cells. These
interactions largely dictate tumor behavior and therapy response. Each tumor type and each

tumor stage is characterized by a unique tumor microenvironment.
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Figure Legends

Figure 1. Categories of anti-cancer therapies and their targets. One of the first anti-
cancer therapies, chemotherapy, was designed to target highly proliferating cancer cells, but
over the last few decades, the arsenal of anti-cancer weapons has increased and now also
includes stromal cell targets within the tumor microenvironment. Currently, cancer cells and
stromal cells are targeted with chemotherapy, radiotherapy, targeted therapy — specific for
oncogenes or hyperactive signaling pathways — vascular-targeting agents, T cell checkpoint
inhibitors and immunomodulatory agents, among others. Examples are given of each anti-
cancer therapy category based on their mention in the text, and the list is not inclusive of
every anti-cancer therapy being tested in pre-clinical or clinical trials. As tumors are a
collection of cancer and stromal cells, targeted cells responding to any given anti-cancer
therapy through secretion of molecules or death may also affect their cellular neighbors

within the tumor microenvironment indirectly.

Figure 2. The effects of anti-cancer therapies on immune cells. Anti-cancer therapies,
such as chemotherapy, radiotherapy, targeted therapy and vascular-targeting agents, have
been shown to modulate various immune cell populations in different ways. These include
both indirect and direct effects and a few examples are illustrated. (*The importance of
immunogenic cell death processes and CD8" T cell function in response to oxiliplatin and
anthracyclines is largely based on transplantable tumor models [59, 60, 81], whereas
response to oxiliplatin and anthracyclines in some GEMMs is not dependent on immunogenic
cell death processes or CD8" T cell function [22, 23, 85].

Figure 3. Immune cell participation in metastasis at the primary tumor site and distant
organs: potential therapeutic targets. Metastasis occurs through a cascade of events in
which cancer cells escape from the primary tumor site, travel through the blood or lymph
system, seed in distant organs or lymph nodes and grow out. Based on this cascade,
experimental and clinical investigations are attempting to counteract metastasis by two major
strategies that include preventing metastasis from occurring or combating established
metastatic lesions. Pre-clinical evidence indicates that immune cells are important mediators
of the metastatic cascade [17, 197], providing additional opportunities to incorporate
immunotherapy and/or immunomodulatory agents into conventional treatment regimens. This
figure highlights the studies we reference in the text regarding the role of immune cells in
metastasis formation and the specific anti-cancer therapies used to block or reduce
metastasis in mouse models. These studies show that immune cells promote or prevent
metastasis at the primary tumor site or in distant organs. In GEMM and transplantable

models of breast cancer, paclitaxel in combination with the TAM targeted antibody, anti-

25



CSF1R, as well as radiotherapy and anti-CTLA4 inhibits the formation of spontaneous
metastasis [22, 23, 175, 202]. Neutralization of Angiopoietin 2 (ANGPT2) also reduces
metastasis in breast cancer models by preventing TAM association with endothelial cells and
angiogenesis [140] as well as CCL2-dependent recruitment of monocytes to metastatic
lesions in lung [144, 145]. TAMs resident in pancreatic tumors suppress CD8" T cell
functions, and targeting TAMs via anti-CSF1R together with gemcitabine decreases liver
metastasis through reactivation of CD8" T cells [29]. Experiments carried out in melanoma
metastasis models have shown that the BRAF inhibitor, PLX4720, and the cKIT inhibitor,
imatinib, are effective against lung metastases via an NK cell-dependent mechanism [123,
128]. In addition, other mechanistic studies have identified several putative targets that may
be effective at combating metastasis, including IL17-producing yd T cells [49] and pro-

metastatic neutrophils [48, 49].

Table 1. Beneficial and antagonistic roles of immune cells in anti-cancer therapy
response of various cancer mouse models. A checkmark indicates a confirmed role for an

immune cell, whereas a dash represents a tested but unimportant role.
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