2,261 research outputs found

    An Enchanting Witchcraft: Masculinity, Melancholy, and the Pathology of Gaming in Early Modern London

    Full text link
    In seeking to illuminate the ways in which inchoate models of addiction emerged alongside the unprecedented popularity of gambling in Stuart London, this paper will explore the intersections between a rudimentary pathology of addiction and transformations in the epistemology of reason, the passions, and humoral psychology in the seventeenth century. By exploring the connections between endogenous and exogenous categories of mental illness, this study will examine the ways in which medicine, social expectations, and religion intersected in the seventeenth century alongside the historical relationship between evolving concepts of mental illness, stigma and the politics of blame and responsibility in the early modern period

    Fault-tolerant magic state preparation with flag qubits

    Get PDF
    Magic state distillation is one of the leading candidates for implementing universal fault-tolerant logical gates. However, the distillation circuits themselves are not fault-tolerant, so there is additional cost to first implement encoded Clifford gates with negligible error. In this paper we present a scheme to fault-tolerantly and directly prepare magic states using flag qubits. One of these schemes uses a single extra ancilla, even with noisy Clifford gates. We compare the physical qubit and gate cost of this scheme to the magic state distillation protocol of Meier, Eastin, and Knill, which is efficient and uses a small stabilizer circuit. In some regimes, we show that the overhead can be improved by several orders of magnitude.Comment: 26 pages, 17 figures, 5 tables. Comments welcome! v2 (published version): quantumarticle documentclass and expanded discussions on the fault-tolerant scheme

    Error suppression via complementary gauge choices in Reed-Muller codes

    Get PDF
    Concatenation of two quantum error correcting codes with complementary sets of transversal gates can provide a means towards universal fault-tolerant computation. We first show that it is generally preferable to choose the inner code with the higher pseudo-threshold in order to achieve lower logical failure rates. We then explore the threshold properties of a wide range of concatenation schemes. Notably, we demonstrate that the concatenation of complementary sets of Reed-Muller codes can increase the code capacity threshold under depolarizing noise when compared to extensions of previously proposed concatenation models. We also analyze the properties of logical errors under circuit level noise, showing that smaller codes perform better for all sampled physical error rates. Our work provides new insights into the performance of universal concatenated quantum codes for both code capacity and circuit level noise.Comment: 11 pages + 4 appendices, 6 figures. In v2, Fig.1 was added to conform to journal specification

    Flag fault-tolerant error correction with arbitrary distance codes

    Full text link
    In this paper we introduce a general fault-tolerant quantum error correction protocol using flag circuits for measuring stabilizers of arbitrary distance codes. In addition to extending flag error correction beyond distance-three codes for the first time, our protocol also applies to a broader class of distance-three codes than was previously known. Flag circuits use extra ancilla qubits to signal when errors resulting from vv faults in the circuit have weight greater than vv. The flag error correction protocol is applicable to stabilizer codes of arbitrary distance which satisfy a set of conditions and uses fewer qubits than other schemes such as Shor, Steane and Knill error correction. We give examples of infinite code families which satisfy these conditions and analyze the behaviour of distance-three and -five examples numerically. Requiring fewer resources than Shor error correction, flag error correction could potentially be used in low-overhead fault-tolerant error correction protocols using low density parity check quantum codes of large code length.Comment: 29 pages (18 pages main text), 22 figures, 7 tables. Comments welcome! V3 represents the version accepted to quantu

    Présentation

    Get PDF
    • …
    corecore