422 research outputs found
Comparative Genomics of Marine Bacteria from a Historically Defined Plastic Biodegradation Consortium with the Capacity to Biodegrade Polyhydroxyalkanoates
Biodegradable and compostable plastics are getting more attention as the environmental impacts of fossil-fuel-based plastics are revealed. Microbes can consume these plastics and biodegrade them within weeks to months under the proper conditions. The biobased polyhydroxyalkanoate (PHA) polymer family is an attractive alternative due to its physicochemical properties and biodegradability in soil, aquatic, and composting environments. Standard test methods are available for biodegradation that employ either natural inocula or defined communities, the latter being preferred for standardization and comparability. The original marine biodegradation standard test method ASTM D6691 employed such a defined consortium for testing PHA biodegradation. However, the taxonomic composition and metabolic potential of this consortium have never been confirmed using DNA sequencing technologies. To this end, we revived available members of this consortium and determined their phylogenetic placement, genomic sequence content, and metabolic potential. The revived members belonged to the Bacillaceae, Rhodobacteraceae, and Vibrionaceae families. Using a comparative genomics approach, we found all the necessary enzymes for both PHA production and utilization in most of the members. In a clearing-zone assay, three isolates also showed extracellular depolymerase activity. However, we did not find classical PHA depolymerases, but identified two potentially new extracellular depolymerases that resemble triacylglycerol lipases
On Nonlinear Bosonic Coherent States
Nonlinear coherent states are an interesting resource for quantum
technologies. Here we investigate some critical features of the single-boson
nonlinear coherent states, which are theoretically constructed as eigenstates
of the annihilation operator and experimentally realized as stationary states
of a trapped laser-driven ion. We show that the coherence and the
minimum-uncertainty properties of such states are broken for values of the
Lamb-Dicke parameter corresponding to the roots of the Laguerre polynomials,
which enter their explicit expression. The case of the multiboson nonlinear
coherent states is also discussed.Comment: published versio
Additional Nucleon Current Contributions to Neutrinoless Double Beta Decay
We have examined the importance of momentum dependent induced nucleon
currents such as weak-magnetism and pseudoscalar couplings to the amplitude of
neutrinoless double beta decay in the mechanisms of light and heavy Majorana
neutrino as well as in that of Majoron emission. Such effects are expected to
occur in all nuclear models in the direction of reducing the light neutrino
matrix elements by about 30%. To test this we have performed a calculation of
the nuclear matrix elements of the experimentally interesting nuclei A = 76,
82, 96, 100, 116, 128, 130, 136 and 150 within the pn-RQRPA. We have found that
indeed such corrections vary somewhat from nucleus to nucleus, but in all cases
they are greater than 25 percent. In the case of heavy neutrino the effect is
much larger (a factor of 3). Combining out results with the best presently
available experimental limits on the half-life of the neutrinoless double beta
decay we have extracted new limits on the effective neutrino mass (light and
heavy) and the effective Majoron coupling constant.Comment: 31 pages, RevTex, 3 Postscript figures, submitted to Phys. Rev.
Recent advances in neutrinoless double beta decay search
Even after the discovery of neutrino flavour oscillations, based on data from
atmospheric, solar, reactor, and accelerator experiments, many characteristics
of the neutrino remain unknown. Only the neutrino square-mass differences and
the mixing angle values have been estimated, while the value of each mass
eigenstate still hasn't. Its nature (massive Majorana or Dirac particle) is
still escaping. Neutrinoless double beta decay (-DBD) experimental
discovery could be the ultimate answer to some delicate questions of elementary
particle and nuclear physics. The Majorana description of neutrinos allows the
-DBD process, and consequently either a mass value could be measured or
the existence of physics beyond the standard should be confirmed without any
doubt. As expected, the -DBD measurement is a very difficult field of
application for experimentalists. In this paper, after a short summary of the
latest results in neutrino physics, the experimental status, the R&D projects,
and perspectives in -DBD sector are reviewed.Comment: 36 pages, 7 figures, To be publish in Czech Journal of Physic
A Model for the Development of the Rhizobial and Arbuscular Mycorrhizal Symbioses in Legumes and Its Use to Understand the Roles of Ethylene in the Establishment of these two Symbioses
We propose a model depicting the development of nodulation and arbuscular mycorrhizae. Both processes are dissected into many steps, using Pisum sativum L. nodulation mutants as a guideline. For nodulation, we distinguish two main developmental programs, one epidermal and one cortical. Whereas Nod factors alone affect the cortical program, bacteria are required to trigger the epidermal events. We propose that the two programs of the rhizobial symbiosis evolved separately and that, over time, they came to function together. The distinction between these two programs does not exist for arbuscular mycorrhizae development despite events occurring in both root tissues. Mutations that affect both symbioses are restricted to the epidermal program. We propose here sites of action and potential roles for ethylene during the formation of the two symbioses with a specific hypothesis for nodule organogenesis. Assuming the epidermis does not make ethylene, the microsymbionts probably first encounter a regulatory level of ethylene at the epidermisâoutermost cortical cell layer interface. Depending on the hormone concentrations there, infection will either progress or be blocked. In the former case, ethylene affects the cortex cytoskeleton, allowing reorganization that facilitates infection; in the latter case, ethylene acts on several enzymes that interfere with infection thread growth, causing it to abort. Throughout this review, the difficulty of generalizing the roles of ethylene is emphasized and numerous examples are given to demonstrate the diversity that exists in plants
Study of Inclusive Strange-Baryon Production and Search for Pentaquarks in Two-Photon Collisions at LEP
Measurements of inclusive production of the Lambda, Xi- and Xi*(1530) baryons
in two-photon collisions with the L3 detector at LEP are presented. The
inclusive differential cross sections for Lambda and Xi- are measured as a
function of the baryon transverse momentum, pt, and pseudo-rapidity, eta. The
mean number of Lambda, Xi- and Xi*(1530) baryons per hadronic two-photon event
is determined in the kinematic range 0.4 GeV < pt< 2.5 GeV, |eta| < 1.2.
Overall agreement with the theoretical models and Monte Carlo predictions is
observed. A search for inclusive production of the pentaquark theta+(1540) in
two-photon collisions through the decay theta+ -> proton K0s is also presented.
No evidence for production of this state is found
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV
Results are presented from a search for a W' boson using a dataset
corresponding to 5.0 inverse femtobarns of integrated luminosity collected
during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV.
The W' boson is modeled as a heavy W boson, but different scenarios for the
couplings to fermions are considered, involving both left-handed and
right-handed chiral projections of the fermions, as well as an arbitrary
mixture of the two. The search is performed in the decay channel W' to t b,
leading to a final state signature with a single lepton (e, mu), missing
transverse energy, and jets, at least one of which is tagged as a b-jet. A W'
boson that couples to fermions with the same coupling constant as the W, but to
the right-handed rather than left-handed chiral projections, is excluded for
masses below 1.85 TeV at the 95% confidence level. For the first time using LHC
data, constraints on the W' gauge coupling for a set of left- and right-handed
coupling combinations have been placed. These results represent a significant
improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
- âŚ