13 research outputs found

    Amyloid-b peptide on sialyl-LewisX-selectin-mediated membrane tether mechanics at the cerebral endothelial cell surface

    Get PDF
    Increased deposition of amyloid-b peptide (Ab) at the cerebral endothelial cell (CEC) surface has been implicated in enhancement of transmigration of monocytes across the brain blood barrier (BBB) in Alzheimer’s disease (AD). In this study, quantitative immunofluorescence microscopy (QIM) and atomic force microscopy (AFM) with cantilevers biofunctionalized by sialyl-Lewisx (sLex) were employed to investigate Ab-altered mechanics of membrane tethers formed by bonding between sLex and p-selectin at the CEC surface, the initial mechanical step governing the transmigration of monocytes. QIM results indicated the ability for Ab to increase p-selectin expression at the cell surface and promote actin polymerization in both bEND3 cells (immortalized mouse CECs) and human primary CECs. AFM data also showed the ability for Ab to increase cell stiffness and adhesion probability in bEND3 cells. On the contrary, Ab lowered the overall force of membrane tether formation (Fmtf), and produced a bimodal population of Fmtf, suggesting subcellular mechanical alterations in membrane tethering. The lower Fmtf population was similar to the results obtained from cells treated with an F-actin-disrupting drug, latrunculin A. Indeed, AFM results also showed that both Ab and latrunculin A decreased membrane stiffness, suggesting a lower membrane-cytoskeleton adhesion, a factor resulting in lower Fmtf. In addition, these cerebral endothelial alterations induced by Ab were abrogated by lovastatin, consistent with its anti-inflammatory effects. In sum, these results demonstrated the ability for Ab to enhance p-selectin expression at the CEC surface and induce cytoskeleton reorganization, which in turn, resulted in changes in membrane-cytoskeleton adhesion and membrane tethering, mechanical factors important in transmigration of monocytes through the BBB.This work was supported by Alzheimer Association Grant NIRG-06-24448; NIH Grant 1P01 AG18357, R21NS052385, 5R21AG032579 and in part by 1P01HL095486 and AHA 0835676N; ‘‘Bolashak’’ scholarship and Ministry of Education and Science of the Republic of Kazakhstan 1029/GF2. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins

    Get PDF
    Copyright © 2012, American Society for Microbiology. All Rights Reserved.Dengue virus (DENV) affects millions of people, causing more than 20,000 deaths annually. No effective treatment for the disease caused by DENV infection is currently available, partially due to the lack of knowledge on the basic aspects of the viral life cycle, including the molecular basis of the interaction between viral components and cellular compartments. Here, we characterized the properties of the interaction between the DENV capsid (C) protein and hepatic lipid droplets (LDs), which was recently shown to be essential for the virus replication cycle. Zeta potential analysis revealed a negative surface charge of LDs, with an average surface charge of -19 mV. The titration of LDs with C protein led to an increase of the surface charge, which reached a plateau at +13.7 mV, suggesting that the viral protein-LD interaction exposes the protein cationic surface to the aqueous environment. Atomic force microscopy (AFM)-based force spectroscopy measurements were performed by using C protein-functionalized AFM tips. The C protein-LD interaction was found to be strong, with a single (un)binding force of 33.6 pN. This binding was dependent on high intracellular concentrations of potassium ions but not sodium. The inhibition of Na+/K+-ATPase in DENV-infected cells resulted in the dissociation of C protein from LDs and a 50-fold inhibition of infectious virus production but not of RNA replication, indicating a biological relevance for the potassium-dependent interaction. Limited proteolysis of the LD surface impaired the C protein-LD interaction, and force measurements in the presence of specific antibodies indicated that perilipin 3 (TIP47) is the major DENV C protein ligand on the surface of LDs.This work was supported by FP7-PEOPLE IRSES (International Research Staff Exchange Scheme) project MEMPEPACROSS (European Union), by the Fundação para a Ciência e a Tecnologia—Ministério da Educação e Ciência (FCT-MEC, Portugal) (projects PTDC/QUI-BIQ/112929/2009 and PTDC/QUI/69937/2006), by Fundação Calouste Gulbenkian (Portugal), by the FCT-CAPES Portugal-Brazil joint cooperation projects, and by the Brazilian funding agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Carlos Chagas Filho de Amparo a` Pesquisa do Estado do Rio de Janeiro (FAPERJ), Financiadora de Estudos e Projetos (FINEP), and National Institute of Science and Technology in Dengue (INCT-Dengue). I. C. Martins also acknowledges consecutive postdoctoral funding from a Marie Curie International Outgoing Fellowship (MC-IOF-237373) and FCT-MEC postdoctoral fellowships (SFRH/BPD/46324/2008 and SFRH/BPD/74287/2010). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Atomic force microscopy-based force spectroscopy - biological and biomedical applications

    No full text
    © 2012 IUBMBThe use of atomic force microscopy (AFM) applied to biological systems to generate high resolution images is gaining a wider acceptance. However, the most remarkable advances are being achieved on the use of the AFM to measure inter- and intramolecular interaction forces with piconewton resolution, not only to demonstrate this ability but also actually to solve biological and biomedical relevant questions. Single-molecule force spectroscopy recognition studies enable the detection of specific interaction forces, based on the AFM sensitivity and the possibility of manipulating individual molecules. In this review, we describe the basic principles of this methodology and some of the practical aspects involved. The ability to measure interactions at the single-molecule level is illustrated by some relevant examples. A special focus is given to the study of the fibrinogen–erythrocyte binding and its relevance as a cardiovascular risk factor. An approach to the latter problem by single-molecule force spectroscopy allowed the molecular recognition, characterization, and partial identification of a previously unknown receptor for fibrinogen on human erythrocytes.This work was supported by Fundação para a Ciência e a Tecnologia—Ministério do Ensino e Ciência (FCT-MEC, Portugal) and by Fundação Calouste Gulbenkian (Portugal)

    Single and multiple bonds in (strept)avidin-biotin interactions

    No full text
    International audienceThanks to Dynamic Force Spectroscopy (DFS) and developments of massive data analysis tools, such as YieldFinder, Atomic Force Microscopy (AFM) becomes a powerful method for analyzing long lifetime ligand–receptor interactions. We have chosen the well‐known system, (strept)avidin–biotin complex, as an experimental model due to the lack of consensus on interpretations of the rupture force spectrum (Walton et al. , 2008 ). We present new measurements of force–displacement curves for the (strept)avidin–biotin complex. These data were analyzed using the YieldFinder software based on the Bell‐Evans formalism. In addition, the Williams model was adopted to interpret the bonding state of the system. Our results indicate the presence of at least two energy barriers in two loading rate regimes. Combining with structural analysis, the energy barriers can be interpreted in a novel physico‐chemical context as one inner barrier for H‐bond ruptures ( γ < 1 Å), and one outer barrier for escaping from the binding pocket which is blocked by the side chain of a symmetry‐related Trp120 in the streptavidin tetramer. In each loading rate regime, the presence of multiple parallel bonds was implied by the Williams model. Interestingly, we found that in literature different terms created for addressing the apparent discrepancies in the results of avidin–biotin interactions can be reconciled by taking into account multiple parallel bond
    corecore