281 research outputs found

    Direct observation of membrane insertion by enveloped virus matrix proteins by phosphate displacement

    Get PDF
    Enveloped virus release is driven by poorly understood proteins that are functional analogs of the coat protein assemblies that mediate intracellular vesicle trafficking. We used differential electron density mapping to detect membrane integration by membrane-bending proteins from five virus families. This demonstrates that virus matrix proteins replace an unexpectedly large portion of the lipid content of the inner membrane face, a generalized feature likely to play a role in reshaping cellular membranes

    Forces During Bacteriophage DNA Packaging and Ejection

    Get PDF
    The conjunction of insights from structural biology, solution biochemistry, genetics and single molecule biophysics has provided a renewed impetus for the construction of quantitative models of biological processes. One area that has been a beneficiary of these experimental techniques is the study of viruses. In this paper we describe how the insights obtained from such experiments can be utilized to construct physical models of processes in the viral life cycle. We focus on dsDNA bacteriophages and show that the bending elasticity of DNA and its electrostatics in solution can be combined to determine the forces experienced during packaging and ejection of the viral genome. Furthermore, we quantitatively analyze the effect of fluid viscosity and capsid expansion on the forces experienced during packaging. Finally, we present a model for DNA ejection from bacteriophages based on the hypothesis that the energy stored in the tightly packed genome within the capsid leads to its forceful ejection. The predictions of our model can be tested through experiments in vitro where DNA ejection is inhibited by the application of external osmotic pressure

    LRRK2 secretion in exosomes is regulated by 14-3-3

    Get PDF
    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset Parkinson's disease (PD). Emerging evidence suggests a role for LRRK2 in the endocytic pathway. Here, we show that LRRK2 is released in extracellular microvesicles (i.e. exosomes) from cells that natively express LRRK2. LRRK2 localizes to collecting duct epithelial cells in the kidney that actively secrete exosomes into urine. Purified urinary exosomes contain LRRK2 protein that is both dimerized and phosphorylated. We provide a quantitative proteomic profile of 1673 proteins in urinary exosomes and find that known LRRK2 interactors including 14-3-3 are some of the most abundant exosome proteins. Disruption of the 14-3-3 LRRK2 interaction with a 14-3-3 inhibitor or through acute LRRK2 kinase inhibition potently blocks LRRK2 release in exosomes, but familial mutations in LRRK2 had no effect on secretion. LRRK2 levels were overall comparable but highly variable in urinary exosomes derived from PD cases and age-matched controls, although very high LRRK2 levels were detected in some PD affected cases. We further characterized LRRK2 exosome release in neurons and macrophages in culture, and found that LRRK2-positive exosomes circulate in cerebral spinal fluid (CSF). Together, these results define a pathway for LRRK2 extracellular release, clarify one function of the LRRK2 14-3-3 interaction and provide a foundation for utilization of LRRK2 as a biomarker in clinical trial

    Attenuation of porcine reproductive and respiratory syndrome virus by molecular breeding of virus envelope genes from genetically divergent strains

    Get PDF
    Molecular breeding via DNA shuffling can direct the evolution of viruses with desired traits. By using a positive-strand RNA virus, porcine reproductive and respiratory syndrome virus (PRRSV), as a model, rapid attenuation of the virus was achieved in this study by DNA shuffling of the viral envelope genes from multiple strains. The GP5 envelope genes of 7 genetically divergent PRRSV strains and the GP5-M genes of 6 different PRRSV strains were molecularly bred by DNA shuffling and iteration of the process, and the shuffled genes were cloned into the backbone of a DNA-launched PRRSV infectious clone. Two representative chimeric viruses, DS722 with shuffled GP5 genes and DS5M3 with shuffled GP5-M genes, were rescued and shown to replicate at a lower level and to form smaller plaques in vitro than their parental virus. An in vivo pathogenicity study revealed that pigs infected with the two chimeric viruses had significant reductions in viral-RNA loads in sera and lungs and in gross and microscopic lung lesions, indicating attenuation of the chimeric viruses. Furthermore, pigs vaccinated with the chimeric virus DS722, but not pigs vaccinated with DS5M3, still acquired protection against PRRSV challenge at a level similar to that of the parental virus. Therefore, this study reveals a unique approach through DNA shuffling of viral envelope genes to attenuate a positive-strand RNA virus. The results have important implications for future vaccine development and will generate broad general interest in the scientific community in rapidly attenuating other important human and veterinary viruses

    Genetic dissection of complete genomes of Type 2 PRRS viruses isolated in Denmark over a period of 15 years

    Get PDF
    AbstractType 2 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) was first detected in Europe in 1996 co-incident with the introduction of a live attenuated vaccine. Since then, only limited ORF5 and ORF7 sequences of Type 2 PRRS viruses have been reported throughout Europe. In the present study, the genetic and antigenic diversity of 11 complete genomes and 49 ORF5 and 55 ORF7 nucleotide sequences obtained from 57 viruses in Denmark from 2003 to 2012 were examined. The genetic identity of the 11 complete genomes to the vaccine strain (Ingelvac PRRS MLV) ranged between 93.6 and 99.6% while the 49 ORF5 sequences examined were 94.0–99.8% identical to the vaccine strain. Among the Danish sequences, the pairwise nucleotide identity was 90.9–100% and 93.0–100.0% for ORF5 and ORF7, respectively. Analysis of the genetic region encoding NSP2 revealed high diversity among the Danish viruses with an 86.6–98.9% range in similarity. Furthermore, several of the sequenced viruses harbored deletions in the NSP2 coding region. Phylogenetic analysis in a global Type 2 PRRSV framework classified all Danish isolates to a single cluster (sub-lineage 5.1) which comprised strains closely-related to the Type 2 prototype isolate VR2332

    RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae

    Get PDF
    RNA chaperone proteins are essential partners of RNA in living organisms and viruses. They are thought to assist in the correct folding and structural rearrangements of RNA molecules by resolving misfolded RNA species in an ATP-independent manner. RNA chaperoning is probably an entropy-driven process, mediated by the coupled binding and folding of intrinsically disordered protein regions and the kinetically trapped RNA. Previously, we have shown that the core protein of hepatitis C virus (HCV) is a potent RNA chaperone that can drive profound structural modifications of HCV RNA in vitro. We now examined the RNA chaperone activity and the disordered nature of core proteins from different Flaviviridae genera, namely that of HCV, GBV-B (GB virus B), WNV (West Nile virus) and BVDV (bovine viral diarrhoea virus). Despite low-sequence similarities, all four proteins demonstrated general nucleic acid annealing and RNA chaperone activities. Furthermore, heat resistance of core proteins, as well as far-UV circular dichroism spectroscopy suggested that a well-defined 3D protein structure is not necessary for core-induced RNA structural rearrangements. These data provide evidence that RNA chaperoning—possibly mediated by intrinsically disordered protein segments—is conserved in Flaviviridae core proteins. Thus, besides nucleocapsid formation, core proteins may function in RNA structural rearrangements taking place during virus replication

    First-Step Mutations for Adaptation at Elevated Temperature Increase Capsid Stability in a Virus

    Get PDF
    The relationship between mutation, protein stability and protein function plays a central role in molecular evolution. Mutations tend to be destabilizing, including those that would confer novel functions such as host-switching or antibiotic resistance. Elevated temperature may play an important role in preadapting a protein for such novel functions by selecting for stabilizing mutations. In this study, we test the stability change conferred by single mutations that arise in a G4-like bacteriophage adapting to elevated temperature. The vast majority of these mutations map to interfaces between viral coat proteins, suggesting they affect protein-protein interactions. We assess their effects by estimating thermodynamic stability using molecular dynamic simulations and measuring kinetic stability using experimental decay assays. The results indicate that most, though not all, of the observed mutations are stabilizing

    Dengue Virus Capsid Protein Usurps Lipid Droplets for Viral Particle Formation

    Get PDF
    Dengue virus is responsible for the highest rates of disease and mortality among the members of the Flavivirus genus. Dengue epidemics are still occurring around the world, indicating an urgent need of prophylactic vaccines and antivirals. In recent years, a great deal has been learned about the mechanisms of dengue virus genome amplification. However, little is known about the process by which the capsid protein recruits the viral genome during encapsidation. Here, we found that the mature capsid protein in the cytoplasm of dengue virus infected cells accumulates on the surface of ER-derived organelles named lipid droplets. Mutagenesis analysis using infectious dengue virus clones has identified specific hydrophobic amino acids, located in the center of the capsid protein, as key elements for lipid droplet association. Substitutions of amino acid L50 or L54 in the capsid protein disrupted lipid droplet targeting and impaired viral particle formation. We also report that dengue virus infection increases the number of lipid droplets per cell, suggesting a link between lipid droplet metabolism and viral replication. In this regard, we found that pharmacological manipulation of the amount of lipid droplets in the cell can be a means to control dengue virus replication. In addition, we developed a novel genetic system to dissociate cis-acting RNA replication elements from the capsid coding sequence. Using this system, we found that mislocalization of a mutated capsid protein decreased viral RNA amplification. We propose that lipid droplets play multiple roles during the viral life cycle; they could sequester the viral capsid protein early during infection and provide a scaffold for genome encapsidation

    LRRK2 secretion in exosomes is regulated by 14-3-3

    Get PDF
    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset Parkinson's disease (PD). Emerging evidence suggests a role for LRRK2 in the endocytic pathway. Here, we show that LRRK2 is released in extracellular microvesicles (i.e. exosomes) from cells that natively express LRRK2. LRRK2 localizes to collecting duct epithelial cells in the kidney that actively secrete exosomes into urine. Purified urinary exosomes contain LRRK2 protein that is both dimerized and phosphorylated. We provide a quantitative proteomic profile of 1673 proteins in urinary exosomes and find that known LRRK2 interactors including 14-3-3 are some of the most abundant exosome proteins. Disruption of the 14-3-3 LRRK2 interaction with a 14-3-3 inhibitor or through acute LRRK2 kinase inhibition potently blocks LRRK2 release in exosomes, but familial mutations in LRRK2 had no effect on secretion. LRRK2 levels were overall comparable but highly variable in urinary exosomes derived from PD cases and age-matched controls, although very high LRRK2 levels were detected in some PD affected cases. We further characterized LRRK2 exosome release in neurons and macrophages in culture, and found that LRRK2-positive exosomes circulate in cerebral spinal fluid (CSF). Together, these results define a pathway for LRRK2 extracellular release, clarify one function of the LRRK2 14-3-3 interaction and provide a foundation for utilization of LRRK2 as a biomarker in clinical trials
    corecore