19 research outputs found

    GABAA receptor subtype involvement in addictive behaviour

    Get PDF
    GABAA receptors form the major class of inhibitory neurotransmitter receptors in the mammalian brain. This review sets out to summarise the evidence that variations in genes encoding GABAA receptor isoforms are associated with aspects of addictive behaviour in humans, while animal models of addictive behaviour also implicate certain subtypes of GABAA receptor. In addition to outlining the evidence for the involvement of specific subtypes in addiction, we summarise the particular contributions of these isoforms in control over the functioning of brain circuits, especially the mesolimbic system, and make a first attempt to bring together evidence from several fields to understanding potential involvement of GABAA Receptor Subtypes in addictive behaviour. While the weight of the published literature is on alcohol dependency, the underlying principles outlined are relevant across a number of different aspects of addictive behaviour

    Hot Topics in Interventional Cardiology: Proceedings from the Society for Cardiovascular Angiography and Interventions (SCAI) 2021 Think Tank

    No full text
    The Society for Cardiovascular Angiography and Interventions (SCAI) Think Tank is a collaborative venture that brings together interventional cardiologists, administrative partners, and select members of the cardiovascular industry community annually for high-level field-wide discussions. The 2021 Think Tank was organized into four parallel sessions reflective of the field of interventional cardiology: (a) coronary intervention, (b) endovascular medicine, (c) structural heart disease, and (d) congenital heart disease. Each session was moderated by a senior content expert and co-moderated by a member of SCAI\u27s Emerging Leader Mentorship program. This document presents the proceedings to the wider cardiovascular community in order to enhance participation in this discussion, create additional dialog from a broader base, and thereby aid SCAI, the industry community and external stakeholders in developing specific action items to move these areas forward

    Biofilm formation by the yeast Rhodotorula mucilaginosa: process, repeatability and cell attachment in a continuous biofilm reactor

    No full text
    Yeast biofilms contribute to quality impairment of industrial processes and also play an important role in clinical infections. Little is known about biofilm formation and their treatment. The aim of this study was to establish a multi-layer yeast biofilm model using a modified 3.7 l bench-top bioreactor operated in continuous mode (D = 0.12 h−1). The repeatability of biofilm formation was tested by comparing five bioprocesses with Rhodotorula mucilaginosa, a strain isolated from washing machines. The amount of biofilm formed after 6 days post inoculation was 83 μg cm−2 protein, 197 μg cm−2 polysaccharide and 6.9 × 106 CFU cm−2 on smooth polypropylene surfaces. Roughening the surface doubled the amount of biofilm but also increased its spatial variability. Plasma modification of polypropylene significantly reduced the hydrophobicity but did not enhance cell attachment. The biofilm formed on polypropylene coupons could be used for sanitation studies
    corecore