287 research outputs found

    Influences of Y Addition on Mechanical Properties and Oxidation Resistance of CrN Coating

    Get PDF
    AbstractCr1-xYxN coatings were fabricated by reactive co-sputtering deposition and the Y content was changed by varying the Y target power. The influence of varying amounts of Y addition on the mechanical properties and oxidation resistance of CrN coatings has been studied. The results reveal that Y ions substitute Cr ions in Cr-N lattice forming the solid solution Cr1-xYxN coatings. Y doping has a beneficial effect on the improvements of hardness and adhesion of the coatings. After the oxidation in air at 850°C for 2h, The CrN coating with 1.2 at. % Y addition exhibits superior oxidation resistance than Y-free CrN coating, while over doping of Y produces detrimental effects on oxidation resistance of the coatings

    Investigation of optimal Split ratio for high-speed permanent-magnet brushless machines

    Get PDF
    The split ratio, i.e., the ratio of rotor outer diameter to stator outer diameter, is one of the most vital design parameters for permanent-magnet (PM) machines due to its significant impact on the machine torque or power density. However, it has been optimized analytically in the existing papers with due account only for the stator copper loss, which is reasonable for low-to-medium speed PM machines. For high-speed PM machines (HSPMMs), the negligence of stator iron loss and the mechanical stress on the rotor will lead to a deviation of optimal split ratio and actual torque capability. In this paper, the optimal split ratio of HSPMM is investigated analytically with the consideration of stator iron loss as well as the mechanical stress on the rotor. The influence of air-gap length and rotor pole pairs on the optimal split ratio is elaborated. Both the analytical and finite-element analysis reveal that the optimal split ratio for HSPMM will be significantly reduced, when stator iron loss and mechanical constraints are taken into account

    Zircon records of Miocene ultrapotassic rocks from southern Lhasa subterrane, Tiben Plateau

    Get PDF
    Zircons entrained in mantle-derived magmas offer a prime opportunity to reveal cryptic magmatic episodes in the deep crust. We have investigated zircons from mantle-derived ultrapotassic veins in the Xuena area, southern Lhasa subterrane. Zircons in the Xuena ultrapotassic rocks reveal four major magmatic pulses around <100Ma, 300 ~ 400Ma, 450 ~ 500Ma, and 700 ~ 850Ma. The high U / Yb ratios and low Y contents of these zircons demonstrate their continental origin. Cenozoic-Mesozoic and Late Paleozoic magmatism have been widely identified from the southern Lhasa subterrane, suggesting the contribution from overlying juvenile crust. But similar Proterozoic-Early Paleozoic age distributions (450 ~ 500Ma and 700 ~ 850Ma) between these zircon xenocrysts and those dating records in the Himalayan orogenic belt corroborate the input from underthrusted Indian continental crust. Furthermore, the Increasing (Dy / Yb) N ratio since ~ 60 Ma zircon and Rapid Decreasing epsilon Hf ( t ) values, from + 10 ~ + 5 to -10 ~ -25, are Interpreted to reflect Significant and progressive Crustal Thickening in Response to India-Asia convergence and the contribution from subducted Indian continental crust to postcollisional magmatism in the southern Lhasa sub-terrane

    Zero-bias conductance peak splitting due to multiband effect in tunneling spectroscopy

    Full text link
    We study how the multiplicity of the Fermi surface affects the zero-bias peak in conductance spectra of tunneling spectroscopy. As case studies, we consider models for organic superconductors Îş\kappa-(BEDT-TTF)2_2Cu(NCS)2_2 and (TMTSF)2_2ClO4_4. We find that multiplicity of the Fermi surfaces can lead to a splitting of the zero-bias conductance peak (ZBCP). We propose that the presence/absence of the ZBCP splitting is used as a probe to distinguish the pairing symmetry in Îş\kappa-(BEDT-TTF)2_2Cu(NCS)2_2.Comment: 7 pages, 7 figure

    Theory of charge transport in diffusive normal metal / unconventional singlet superconductor contacts

    Get PDF
    We analyze the transport properties of contacts between unconventional superconductor and normal diffusive metal in the framework of the extended circuit theory. We obtain a general boundary condition for the Keldysh-Nambu Green's functions at the interface that is valid for arbitrary transparencies of the interface. This allows us to investigate the voltage-dependent conductance (conductance spectrum) of a diffusive normal metal (DN)/ unconventional singlet superconductor junction in both ballistic and diffusive cases. For d-wave superconductor, we calculate conductance spectra numerically for different orientations of the junctions, resistances, Thouless energies in DN, and transparencies of the interface. We demonstrate that conductance spectra exhibit a variety of features including a VV-shaped gap-like structure, zero bias conductance peak (ZBCP) and zero bias conductance dip (ZBCD). We show that two distinct mechanisms: (i) coherent Andreev reflection (CAR) in DN and (ii) formation of midgap Andreev bound state (MABS) at the interface of d-wave superconductors, are responsible for ZBCP, their relative importance being dependent on the angle α\alpha between the interface normal and the crystal axis of d-wave superconductors. For α=0\alpha=0, the ZBCP is due to CAR in the junctions of low transparency with small Thouless energies, this is similar to the case of diffusive normal metal / insulator /s-wave superconductor junctions. With increase of α\alpha from zero to π/4\pi/4, the MABS contribution to ZBCP becomes more prominent and the effect of CAR is gradually suppressed. Such complex spectral features shall be observable in conductance spectra of realistic high-TcT_c junctions at very low temperature

    Temperature-dependence of spin-polarized transport in ferromagnet / unconventional superconductor junctions

    Full text link
    Tunneling conductance in ferromagnet / unconventional superconductor junctions is studied theoretically as a function of temperatures and spin-polarization in feromagnets. In d-wave superconductor junctions, the existence of a zero-energy Andreev bound state drastically affects the temperature-dependence of the zero-bias conductance (ZBC). In p-wave triplet superconductor junctions, numerical results show a wide variety in temperature-dependence of the ZBC depending on the direction of the magnetic moment in ferromagnets and the pairing symmetry in superconductors such as pxp_{x}, pyp_{y} and px+ipyp_{x}+ip_{y}-wave pair potential. The last one is a promising symmetry of Sr2_2RuO4_4. From these characteristic features in the conductance, we may obtain the information about the degree of spin-polarization in ferromagnets and the direction of the dd-vector in triplet superconductors

    Partial Wave Analysis of J/ψ→γ(K+K−π+π−)J/\psi \to \gamma (K^+K^-\pi^+\pi^-)

    Full text link
    BES data on J/ψ→γ(K+K−π+π−)J/\psi \to \gamma (K^+K^-\pi^+\pi^-) are presented. The K∗Kˉ∗K^*\bar K^* contribution peaks strongly near threshold. It is fitted with a broad 0−+0^{-+} resonance with mass M=1800±100M = 1800 \pm 100 MeV, width Γ=500±200\Gamma = 500 \pm 200 MeV. A broad 2++2^{++} resonance peaking at 2020 MeV is also required with width ∼500\sim 500 MeV. There is further evidence for a 2−+2^{-+} component peaking at 2.55 GeV. The non-K∗Kˉ∗K^*\bar K^* contribution is close to phase space; it peaks at 2.6 GeV and is very different from K∗K∗ˉK^{*}\bar{K^{*}}.Comment: 15 pages, 6 figures, 1 table, Submitted to PL

    Measurement of the Atmospheric Muon Spectrum from 20 to 3000 GeV

    Get PDF
    The absolute muon flux between 20 GeV and 3000 GeV is measured with the L3 magnetic muon spectrometer for zenith angles ranging from 0 degree to 58 degree. Due to the large exposure of about 150 m2 sr d, and the excellent momentum resolution of the L3 muon chambers, a precision of 2.3 % at 150 GeV in the vertical direction is achieved. The ratio of positive to negative muons is studied between 20 GeV and 500 GeV, and the average vertical muon charge ratio is found to be 1.285 +- 0.003 (stat.) +- 0.019 (syst.).Comment: Total 32 pages, 9Figure

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
    • …
    corecore