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We analyze the transport properties of contacts between unconventional superconductor and normal diffu-
sive metal in the framework of the extended circuit theory. We obtain a general boundary condition for the
Keldysh-Nambu Green’s functions at the interface that is valid for arbitrary transparencies of the interface.
This allows us to investigate the voltage-dependent conductanoeuctance spectryrof a diffusive normal
metal (DN)/ unconventional singlet superconductor junction in both ballistic and diffusive cased-\irave
superconductors, we calculate conductance spectra numerically for different orientations of the junctions,
resistances, Thouless energies in DN, and transparencies of the interface. We demonstrate that conductance
spectra exhibit a variety of features including a V-shaped gaplike structure, zero bias conductarZ®g&ak
and zero bhias conductance dip. We show that two distinct mechanigraeherent Andreev reflectiolCAR)
in DN and (i) formation of midgap Andreev bound state at the interfacel-@fave superconductors, are
responsible for ZBCP, their relative importance being dependent on the arméveen the interface normal
and the crystal axis af-wave superconductors. Fear=0, the ZBCP is due to CAR in the junctions of low
transparency with small Thouless energies. This is similar to the case of diffusive normal metal/insulator/
s-wave superconductor junctions. With increaseaofrom zero tow/4, the MABS contribution to ZBCP
becomes more prominent and the effect of CAR is gradually suppressed. Such complex spectral features shall
be observable in conductance spectra of realistic fiigfunctions at very low temperature.
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[. INTRODUCTION Volkov, Zaitsev, and Klapwijk have obtained the conduc-
tance spectra with ZBCP, origin of which was attributed to
The low-energy transport in mesoscopic superconductingoherent Andreev reflectiofCAR) which induces the prox-
systems is governed by Andreev reflectfampnique process imity effect in diffusive metaf® Several authors studied the
specific to electron scattering at normal metal/charge transport in mesoscopic junctions combining this
superconductor interfaces. The phase coherence between Bundary condition with Usad@lequations that describe su-
coming electrons and Andreev reflected holes persists at Rgreonducting correlations in a diffusive me"}aﬂﬂ-sg.
mesoscopic length scale in the diffusive normal metal, which 1he modified boundary conditions were studied by sev-

5,36 P
enhances interference effects on the probability of Andree\‘?hral au;h0§é7 Ir:npé)rtarllt pr(()jgrhess was”aghll‘e_ved_ b3r/] one of
reflection® The coherence plays an important role at suffi-in€ authors™“who developed the so-called “circuit theory

ciently low temperatures and voltages when the energ%or matrix currents that allows one to formulate boundary

broadening due to either voltage or temperature becomes Pndltlons fpr Usadel-l!ke equations |n_the case of arbltrary
the order of the Thouless enerdgy, of the mesoscopic ransparencies. By using this generalized boundary cond!—

h tion, three of the authors have evaluated the conductance in
structure. As a result, the conductance spectra of mesosco

) . - . : /S junctions and demonstrated how various may be the
junctions may be significantly modified by these interference.,quctance spectf.

effects. A remarkable experimental manifestation of the another mechanism of ZBCP plays the role in ballistic
electron-hole phase coherence is the observation of the ze[pconventional superconductor junctions. The conductance
bias conductance pealZBCP) in diffusive normal metal peak in this situation arises from the formation of midgap
(DN)/superconductofS) tunneling junctions™* Andreev bound state@ABS) at the interfacé**°~*?The
Various theoretical models of charge transport in diffusiveexperimental observation of the ZBCP has been reported for
junctions extend the clean limit theories developed byvarious unconventional superconductors of anisotropic pair-
Blonder, Tinkham, and KlapwiK (BTK) and ZaitseV> In  ing symmetry*>~5"A basic theory of ballistic transport in the
Refs. 16—-21 the scattering matrix approach was used. On th@esence of MABS has been formulated in Refs. 40 and 42.
other hand, the quasiclassical Green’s function method iStimulated by this theory, extensive studies of MABS in un-
nonequilibrium superconductivity is much more powerful conventional superconductor junctions have been performed
and convenient for the actual calculations of conductance foduring the last decade: in the case of broken time reversal
the arbitrary bias voltages. Using the Kuprianov and symmetry stat&®~®in triplet superconductor junctiorf§; "
Lukichev boundary conditidfi for a diffusive SIN interface, in quasi-one-dimensional organic superconductoré
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MABS and Doppler effect>~"® MABS in ferromagnet amplitude of the pair potentiglThe ZBCP becomes promi-
junctions®-®influence of MABS on Josephson effétt®  nent forEr,<Aq andRy/R,<1 (Ry#0). In this case, the
and other related probleni$:1%” However, an interesting ZBCP turns into a zero-bias conductance @BCD) with a
question remained: how two mechanisms of ZB@Re to  further increase oRy/Ry.
CAR and due to MAB$work together, this being relevant ~ (5) We have shown that the conductance spectrum can
for diffusive normal metal/unconventional superconductorvary substantially depending on the parameters. The results
(DN/US) junctions. obtained are important to analyze the actual experimental
To solve this problem, three of the present authors havéata on conductance spectra of higg-cuprate junctions
recently extended the circuit theory to the systems that corsince in th_ls case the diffusive scattering in the normal metal
tain unconventional singlet superconductor junctiffigp- IS Of special relevance. _
plication of this theory for DNd-wave superconductgDN/ The structure of the paper is as follows. We formulate t_he
d) junctions has shown that the formation of MABS strongly mOQeI Inuse in Sec.. Il. We also present thgre the detailed
. o : o derivation of the matrix current and end up with the expres-
competes with the proximity effect that is an essential INgre< o for the normalized conductance. We focus dswave
dient for CAR in DN. The MABS induces the unconven- '

superconductor junctions in Sec. Il and evaluatgeV)

tional channels where quasiparticles are resonantly transmlgnd the measure of the proximity effe for various cases
ted through the interface. The overall contribution of thesew '

[ : e summarize the results in Sec. IV.
channels to the proximity effect is, however, suppressed by
the isotropization, i.e., the angular averaging over momen-
tum directions of injected quasiparticles. However, Ref. 108 Il. FORMULATION
does not contain the necessary technical details of the matrix |, this section we introduce the model and the formalism.

current derivation and presents the results only for low volt\ye consider a junction consisting of normal and supercon-
age limit. To compare with experiment, one has to evaluatgycting reservoirs connected by a quasi-one-dimensional dif-
the conductance spectrum in wide range of bias voltage.  fsjve conductofDN) with a lengthL much larger than the
_In this paper, we present a detailed derivation of the mamean-free path. The interface between the DN conductor and
trix current in DN/US junctions. Although the relation ob- ha US (unconventional superconducta@lectrode has a re-
tained is valid for both singlet and triplet superconductorgisiancer, while the DN/N interface has zero resistance.

junctions, we focus on the case of singlet superconductor. Wepe positions of the DN/N interface and the DN/S interface
present detailed numerical calculations of the conductancg.e denoted ag= — L andx=0 respectively. According to

spectra of DN/US junctions fa-wave superconductors. We q circuit theory’” the constriction area<{L,<x<L,) be-
investigate the dependence of the spectra on various paraffjeen DN and US is considered as composed of the diffusive
eters: the height of the barrier at the interface, resist&yce isotropization zone £ L,;<x<—L,), the left side ballistic
in DN, the Thouless energ&Th in DN, and the angle be- zone (_ L2<X<0), the rlght side ballistic zone 60)(
tween the normal to the interface and .the crystal axis of L,), and the scattering zone+0). The scattering zone is
d-wave superconductora). We normalize the voltage- nogeled as an insulating-function barrier with the trans-
dependent conductanees(eV) by its value in the normal parencyT, = 4co@¢l(4co€h+272), whereZ is a dimension-
state,oy, so thator(eV)=os(eV)/oy. less constantg is the injection angle measured from the
Our main resu_lts are as follows: . interface normal to the junction, andis the channel index.
(1) The ZBCP is frequently seen in the shapare{eV).  \ye assume that the sizes of the ballistic and scattering zones

For a#0, the ZBCP is robust, not depending on the diffu- 515ng x axis are much shorter than the superconducting co-
sive resistanc®,. For =0, ZBCP is due to the CAR. herence length.

(2) The appearance of ZBCP is different for MABS and  pere e express insulating barrier as-function model
CAR mechanisms. The first mechanism may lead to arbip 8(x), whereZ is given by Z=2mH/(#?ks) with Fermi
trarily large o1(0). Thesecond mechanism cannot provide momentumke and effective massn. In order to clarify
o1(0) exceeding unity. While for the first mechanism thecharge transport in DN/US junctions, we must obtain
width of the ZBCP is determined by the transparency of thﬁ(eldysh-Nambu Green’s function, which has indices of
junction, it is determined by Thouless energy for the seconqansport channels and the direction of motion aleraxis
one. These two mechanisms compete since the proximiyying into account the proper boundary conditions. For this
effect and trg)es MABS in singlet junctions are generally 5 ,mose it is necessary to extend a general theory of bound-
incompatible’ o ary condition which covers the crossover from ballistic to

(3) In the extreme case = /4 the proximity effect and it sive case¥ formulated for conventional junctions in the
the CAR are absent. Ther(eV) is then given by a simple  framework of the circuit theor$f3” However, the circuit
Ohm’s law: or(eV) = (Ry+ Rg)/(Rr =0+ Rqy) Ry being the  theory cannot be directly applied to unconventional super-
resistance of the interface. conductors since it requires the isotropization. To avoid this

(4) For =0, when MABS are absent fdRy=0, the difficulty we restrict the discussion to a conventional model
ZBCP of o(eV) is attributed to the CAR alone. When the of smooth interfacéy assuming momentum conservation in
transparency of the junction is sufficiently low;(eV) for  the plane of the interface.
leV|<A, is enhanced with the increase Bfj due to the In the following sections, we will show how to derive the
enhancement of the proximity effec§ is the maximum  matrix current in DN/US junctions. Then we will derive the
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retarded and Keldysh components of the matrix current. Fitg get rid of the discontinuity, we deﬁr@",(x,x’) as fol-
nally, we will show how to calculate conductance of the g ys:

junctions.

s Roo’ /:_(r(r' "+ ! i
A. Calculation of the matrix current 2iGy” (xx')=[gn” (x.x") +osgrix=x")f[val. ()

To derive the relation between the matrix current andwe denoteg‘,f”’(0+,0+)=§2 andaﬁf"’(o,,O,)=El, where

Green's functions, we make use of the method proposed i 44dq. satis

Ref. 37. The method puts the older id€a® the framework EZ g1 bt
of Landauer-Bttiker scattering formalism. One expresses
the matrix current in a constriction in terms of one-
dimensional Green'’s functiorﬁw;nrygr(s;x,x’), wheren,

n’ ando,o’==*1 denote the indices of transport channels
and the direction of motion along axis, respectively. The

9,=M'g,M,

using a transfer matrisi .
The derivation of the matrix current

“check” represents the Keldysh-Nambu structure. These 2 2

) - . . 2e — 2e —
Green’s functions have to be expressed in terms of the trans- = —Tr, [3%0,]= —Tr, ,[2%0,] 8
fer matrix that incorporates all information about the scatter- h ' h '

ing, and asymptotic Green’s functions presenting boundary ) . o .
conditions deep in each side of the constriction. Here, wéS given in the Append|§<, where it is shown thap can be
restrict the discussion to a conventional modelsafooth ~ 'epresented as follows!

interface assuming momentum conservation in the plane of . oL

the interface. Within the model, the channel number eventu- lho=2[G1,B]

ally numbers possible values of this in-plane momentum and

the transfer matrix becomes block diagonal in the channeWith

index. Following the treatment developed in Ref. 37, we thus

solve Green's functions,, ... ,(e,X,x') separately for Bo=(—T1a[ Gy H +HIH, — TG H ' H, Gy
each channe@nyg;n,ﬁ,(s,x,x’) can be expressed as

X[Tin(1-HZH+T2.G,HIMH, . 9
Onoons o (£,X,X") = > expliopx—io’pyx’) This is the very equation that was first derived as @g.0f
o0’ =*1 Ref. 108. It should be remarked that this formula of the ma-

trix current is very general since it is available both for sin-
glet and triplet superconductors. For low transparency limit,

i.e., T,<1, T;,<1, i, can be approximated to be

X G (x,X'). ()

The functionsé;{""(x,x’) are varying smoothly at the
scale of 1j,, and obey the following semiclassical equation:

. T, v - .
InOZ?[H+ (1_H—):Gl]- (10

Jd . N
iavn5+H(x))G;’"’ (x,x")=0 (2
Equation (10) can be regarded as an extended version of
with effective HamiltoniarH (x) whereH (x) andHy(x) are  Kuprianov and Lukichev’s boundary conditférfor uncon-

given by ventional superconductor junctions. On the other hand, when
. . . G,,=G,_ is satisfied as in the conventional supercon-
H(X)=Hg(X) = %imp(X), () ductor, since
. .. . 7, O X s 1A 1)
0= oot E00), TZ:( . ) " lim =B YTy,(26,~[H=1,G,] ) +HIH,
0 7, H_—0
In the aboveS,,(x) is a self-energy due to the impurity +T2.GHTH, Gy}

scattering andiimp(x)¢0 is satisfied only forx<0. The

L -1 -
self-energy originating from the superconducting pair poten- =(H +T1nGy) (—Hy +T1,Gy)

tial A(x)=0 for x<0 while E(X) for x>0 is given by and
. A, O . 0 A, T L e . .
K(x)= A=l . 7l lim GiDTGy{Tun(2G,~[H-1Gal ) + THHCTH,
O o _AU' 0 ‘H_HO
G727 (x,x') has discontinuity ak=x’, +é1|:|:1|:|+él}=(é1+T1n|:|+)_l(_T1n|:|++él)

Gr7 (X+0X)=Gj” (x=0x)=~i108,, /|vsl. (6)  are satisfied, then the resultiig, andi is reduced to be
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Tho=2T1n(1+ T2 + Ty [H. ,Gi15) Y [H. Gy,

. 2¢? . U
(=2 (L4 T3+ TulHy Galo) '[HL Gy,

n

(11)

which is identical to Eq(36) of Ref. 37. In the above, the
definition of D is given in the Appendix.

B. Calculation of the retarded part of the matrix current

In order to calculate the retarded part of the matrix cur-

rent, we denote Keldysh-Nambu Green's funct®p, G.,. ,
Ry K

Rp- Ko
0 A A

é]_: 0

. Gou

) , (12

Az

where the Keldysh componert,,. is given by K.

=Ry (20)F1(2)(0) = T1(2)(0)A; 24y with the retarded compo-
nentR; ;. and the advanced componehi ,. using distri-

bution functionf,,)(0). In theabove,R,.. is expressed by

Rys=(guemstfery)

with g.=e/\e?—AZ, f.=A./\JA2-&% and A,.

measured from the Fermi energy.f,(0)="f,s(0)

— 73R}, 75, where & denotes the quasiparticle energy

—2T,[cos Op(f +f_)—sinfy(g,.+9g_)]

PHYSICAL REVIEW B 69, 144519 (2004

=tanhe/(2kgT)] in thermal equilibrium with temperaturg
Here, we put the electrical potential zero in the US electrode.

We also denotéd, , H_, B,, I as follows:

- (R Ry, o [Re Ry
H+ ~ ’ H,— ~ )
0 A, 0 A,
. [Br Bk|  [Ir Ik
B,= ], 0= . (13
0 B, 0 1,

Hereafter, in the present paper, we focus on the singlet su-
perconductor junction case without broken time reversal
symmetry state§BTRSS. For triplet case or singlet one
with BTRSS, the situation becomes much more comifex
and we will discuss it in a forthcoming paper in detail. In

singlet superconductors, we can choo$g=cos 6,73
+sin fy7, to satisfy the boundary condition at the interface.
After some algebra, we can obtdiy as follows:

Br=—Ti[1+T5,+ Tin(RiR, 1Ry R) ]
X[T1R+RSM,
where we have used the relation
RyR IR, + R MRyR, = 0.

The resultingl g can be written as

. 2€?
| o=—vo
R™h ; 2-T,

This is one of the central results of this paper.

C. Calculation of the Keldysh part of the matrix current

Next, we focus on the Keldysh component. We define

2

|b=% 2, Tiicrs]. (15)

After straightforward calculations,, is given by

2
e A A oA ~ta
=g 2 Tr{7a(RiBc+RIBY)

—[73(R]B&+BrR; +BER, + RIBR) 1T on(0)
—[(Ry+R}) (Br+BR)Ifan(0)}
with - Ky=Rf1(0)=F1(0)A;  11(0)="fon(0)+fan(0)7s.
SinceBg andR; are proportional to the linear combination

of 7, and 75, the second term which is proportional to

fon(0) disappears. It is necessary to obtég which is
given by

J(1+9g,9-+f f )+ Ty[cosby(gs+g-)+sindy(f +f_)]

(14

T3To.

BK:f)l;lNK_f)alf)Kf)glNA (16)

with

6: _Tln[él,ﬁ:l]‘FH:1H+_T§nélﬁ:lﬁ+él,

Dr Dk

0 b,

whereNy andN, are the Keldysh and advanced partshbf
given by

[\ NK)

0 N,/

We can expres&lK and I5K as linear combination of distri-
bution functionsfyg(0), fon(0), andf;y(0) as follows:

N: _TlnH:l'f' Tiné1H:1H+

Ny = C1fos(0) + Caf gn(0) + C3fan(0),

D= Cyfos(0)+Csfon(0)+Cefan(0),
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by 2>A<2 rAnatrii< C; Si :1: e ,6‘1). 'E}king accE)untAofAtheAfact |5/§1NA= _ T3|§;73' Am(p): _;3§L(p);3’
that D;'C,, DR'C,, DR'C4DA'N,, andDR*CsD A Na
car? b(? _elxpresseg _blyA trle_llirjear combinat_ionr@fand 73, DY —T1n§51+T§n§1§51§p): Br,
while Dy "C3 andDg "CgD, "N, are proportional to the lin- I, is given by
L . - b
ear combination of lJand r{, we can expresk, as follows:
2
e \ aa A s
& o lo=1 2 [~ (Ri+RDBr(Ri+R)BL
b= 2 TH(Ri+RD[Brems— (Ba+ BRIfan(0)},
—(Ryi+R])(Br+BR)
Bke=Dr'[Cs—CeDa Nl +TE(Ri+ RDDRY(Ri+RD(RY) 'R
with + TR+ RDDRY(R, + R (R 1B,
Cy=T2(Ry7s— 7sADAGIA,, +T50(Re+RDDR MRy + R (RY) *RIRIBL]fan(0).
(18)
Ce=Tinl — (RiTs— TADA 1+ R YRy 73— T3A,) After a simple manipulation, we can show
_Tln(ﬁl;s—ATsAl)ArquApAl_Tln@lﬁr;lﬁp BR(ﬁr;ll"_Tlnﬁlﬁpﬁr;l)_Tlnﬁr;lﬁp
X (ﬁl;—:’)_ ;318\1)] (17) = _T1n|5|;1: d;lTlnﬁ{mﬁgl (19)

Since the following equations are satisfied: with

_(1+Tfn)(l+g+g,+f+f,)+2T1n[cos¢90(g++g,)+sin Oo(f.+f_)]
R 1+g,g_+f, f_ '

Then the resultindy, is given by
e? e A A e mw A ae A a A e m A A
=7 2 [~ (Ri+RDBR(Ry+RDBR— (Ry+R)(Bt BY ~ Ti(Ry+ R)DR H(Ri+ RD(DR) fan(0). (20
SinceBg, is given asBgr="b,7,+ b, 73 with

B — T [TinsinOo(1+g g +f.f_)+f, +f_]
(1+T2)(1+g,g_+f,f_)+2T;[cosy(g.+9g_)+sinby(f +f_)]

b,

_ — T4 T1nC0SO(1+9.g_+ff)+g.+g_]
(L+T2)(1+g,g + 1, f_)+2T;[c0SO(g +g_)+sindo(f. +F_)]’

bs (21)

final expression of, is given by the following equation:

C0f3N(0)
(2= To)(1+9g.g-+f,f )+ To[costo(g, +g-)+sinb(f,+f )]*

262 T
=2

Co=Tn(1+[coso|*+[sinbo|*)[|g+ +g-[*+|f +f [*+]1+f f +g.g [*+]f.g —g.f |°]
+2(2—-T)Re(1+g%g* + 1% *)[(coshy+cosy) (g, +g_)+(sindy+sindf)(f. +f_ )]}

+4T,Im(cosbgsin 3 )Im[(f. +f_)(g} +g*)]. (22
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T.his is a very general expression which is qvailable fqr any The boundary condition fo6y(X) at the DN/S interface
singlet superconductor without BTRSS. This expression iss given by

also one of the central results of this paper. For isotropic

limit wheref , =f_ andg,=g_ is satisfied, we obtain

s T2A 1+ 2T (2— T A,
n 2[(2—T,)+Ta[g.cosbp+f.sindy]|2

ly=

2¢e?
h

Ay=(1+]cosbo|*+|sinbo|*) (|9 |>+]f [*+1)
+41m[ f g% ]Im[cosfysin 5 1, (23

which is identical to Eq(11) of Ref. 37. On the other hand
for the ballistic limit, wheref,=0 is satisfied, we can repro-
duce the generalized BTK formuf8,

262 Tn[1+Tn|F+|2+(Tn_1)|r+rf|2]
b= 2 ; (24
n |1+ (T =D, T |
with
A A
l=———, I_=

e+ \/sz—Az’ et+\e2-A%'

where the following equations are satisfied:

g.+g_ _1+F+F_
1+g,g9_+f,f_ 1-T T’

fo+f_ i 4T
1+g,9_+f,f_ 1-T,.I_"

D. Calculation of the conductance

In the following, we apply the quasiclassical Keldysh for-
malism for calculation of the conductance. The spatial de-

pendence of &4 Green’s function in DNGy(x) which is
expressed in the matrix form as
( |AQN(X) RN(X)

G =
v 0 AN(X)

should be determined. The Keldysh compon&mi(x) is
given by Ky(x)=Ry(X)f1(x) = f1(X)Ay(X) with retarded
componenRy(x), advanced componehiy(x) using distri-
bution functionf,(x). We put the electrical potential zero in

the Selectrode. In this case the spatial dependendvé,\g(ﬁ()
in DN is determined by the static Usadel equation,

d

AGN(X)
D3

o +i[H,Gy(x)]=0

éN(X)

(29

with the diffusion constanb in DN, whereH is given by

. [F, O
H:
0 0

)

W|th HOZ 8;3.

aéN(x)
IX

h o
—_ zeszu)_ (26)

éN(X)

L
Rd x=0_

The average over the various angles of injected particles at
the interface is defined as

- 2 o /2
<l(¢)>=f de cos¢l(¢)/ J d¢T(¢)cose
—ml2 —7l2
(27)
with [(¢)=1 andT(¢)=T,. The resistance of the interface
Ry is given by

h 2

Rb:_ . .
2¢? f ? 46T(d)coss
w2

Gy(—L) coincides with that in the normal state. The electric
current is expressed usirgy(x) as

le1=

aéN(x) «
X ) } (28)

—L (» (
4eRdf0 deTr T3 GN(X)

where {Gy(X)[ 9Gn(X)/x]}¢ denotes the Keldysh compo-

nent of {Gn(X)[ dGy(X)/dx]}. In the actual calculation, we
introduce a parametet(x) which is a measure of the prox-
imity effect in DN where we denoted(0)= 6, in the previ-

ous subsections. Using(x), Ry(x) can be denoted as

Rn(X) = 73C0S6(X) + 75Sin (). (29)

An(X) and Ky(x) satisfy the following equationsAy(X)

== m3R{(X) 73, andK(x) = Ry(x) F1() — F1(x) A(x) with

the distribution functionf;(x) which is given by f,(x)
=fon(X) + T3fan(X). In the above,fzy(x) is the relevant
distribution function which determines the conductance of
the junction we are now concentrating on. From the retarded
or advanced component of the Usadel equation, the spatial
dependence of(x) is determined by the following equation:

02
D— 6(x) +2ie si 6(x)]=0, (30
X
while for the Keldysh component we obtain
d | 9fan(X)
D Tcosﬁaimag(x) =0 (31

With Oimag(X)=1Im[ 6(x)]. At x=—L, since DN is attached
to the normal electroded(—L)=0 and fa(—L)="f is
satisfied with

fio=>3{tant (¢ +eV)/(2kgT)]—tanH (¢ —eV)/(2kgT)1},

144519-6
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whereV is the applied bias voltage. Next, we focus on the
boundary condition at the DN/S interface. Taking the re-

tarded part of Eq(26), we obtain

PHYSICAL REVIEW B 69, 144519 (2004

L d6(x)
Ry dx

_F
Ry’

2T [cosOy(f, +f_)—sinby(g,+g_)]

e 2= To(17g.0 +f.f )T To[cOSOo(g, T )T sinbo(fs+f)]" (32
On the other hand, from the Keldysh part of EB6), we obtain
L [dfsn (Ibo) Fan(0-)
R_d(a_x COSH@O o =—- R—b,
| _Th Cofan(0-)
bo__ . L
2 [(2=T)(1+g4g-+f.f_)+T[cosby(g: +9-)+sinfo(f. +f_)]?
Co=Tn(1+][cosbo|*+[sinGo|*)[[g,+g-|*+|f +f_[*+[1+f f_+g.g_|*+|f g_—g.f_|?]
+2(2-T,)Re{(1+g%g* +f1f*)[(cosby+cosbf)(g.+g_)+(sindy+singg)(f,+f_)]}
+4T,Im(coséysiny ) Im[(f, +f_)(g%+g*)]. (33

After a simple manipulation, we can obtain
Rpfio

Ry(l 0 dx
Ry o b0>f
L ~L coSH fimag(X)

fan(0-)=

Since the electric currert, can be expressed vig, in the
following form:

cosH[Im(6,)]de,

X

[ = — —— _3N
¢! eRyJo

we obtain the following final result for the current:

_l * ftO
|e|—— d8 (34)
€Jo Rb Rd 0 dx

(o) L

Then the total resistand® at zero temperature is given by

~L oSt i mag(X)

R Ry (O dx
R b df

= 4+ — _ 35
(oo Lot coSH b mag(X) (39

In the following section, we will discuss the normalized con-

ductanceor(eV)=og(eV)/ay(eV) whereogy(eV) is the
voltage-dependent conductance in the supercondugtiog
mal) state given byrg(eV)=1/R and on(eV)=on=1/(Ry
+Ry), respectively.

It should be remarked that in the present circuit theory,

R4/Ry can be varied independently @f,, i.e., of Z, since

Ta(L/1), whereT,, is the averaged transmissivity ahds
the mean-free path in the diffusive region, respectively.
Based on this fact, we can chooRg/R, andZ as indepen-
dent parameters.

Ill. RESULTS

In this subsection, we focus on the line shapes of the
conductance wherd-wave symmetry is chosen as a pairing
symmetry of unconventional superconductor. The pair poten-
tials A are given byA.. =Ayco§2(¢+ a)] wherea denotes
the angle between the normal to the interface and the crystal
axis ofd-wave superconductors adqg, is the maximum am-
plitude of the pair potential. In the aboveé), denotes the
injection angle of the quasiparticle measured fromxfais.

It is known that quasiparticles with injection angde with
mld—|a|<|p|<ml4+]|a| feel the MABS at the interface
which induces ZBCP.

eV/Ao

eV/A,y

FIG. 1. Normalized conductance;(eV) for Z=10, and «

we can change the magnitude of the constriction area inde=0. (a) E;p,=A,. (b) E1,=0.01A,. a R4/R,=0; b, Ry/R,

pendently. In other word®},4 /R, is no more proportional to

:01, C, Rd/szl, d, Rd/szz, ande, Rd/Rb:].O
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o=0 Z=1 o=0 ETthO
1 5@ Exghg (b) Er=0.014, Z=10 Z=0
PRAY: | —_
o A k 0.4""»\0
3 g
; o«
1 g
&
g
eV/ A, eV/Ay £
FIG. 2. Normalized conductanae;(eV) for Z=1, anda=0. _
(@ Etn=A4¢. (b) Ery=0.01A,. &, Ry/R,=0; b, Ry/R,=0.1; c, QL g
Ry/Ry=1: d, Ry/Ry=2; € Ry/Ry=10. O 'O en !

FIG. 4. Real(upper panelsand imaginary partlower panels
of 6, are plotted as a function &f. Z=10 (left panel$ andZ=0
Let us first chooser=0 where ZBCP due to the MABS is  (right panel$ with Er,/Ag=1 and a=0. a, Ry/R,=0.1; b,
absent. We choose relatively strong barder 10 (Fig. 1) for R4/Ry=1; andc, Ry/R,=10.
variousRy /Ry, . For Erp=A, [see Fig. 18], the magnitude

of o(eV) for |eV|<A, increases with the increase of L ;
. . For transparent limiZ=0, the magnitude of(eV) de-
R4/Ry, . First, the line shape of the voltage-dependent CON% oases witrF: the increase Bf/R (gee Fig ;&T(F(;/r)E
ductance remains to be V shaped and only the height of tth o-(eV) has a broad ZBCPfgr sma /R' HowevTehr
H R0 YT d b- ’
bottom value lls'enhance(aturvesb gnd ¢). The V shaped with the increase oRy /Ry, o(eV) for [eV| <A, is reduced
line shape originates from the existence of nodes of th%nd becomes nearly constant. ey, =0.01A  with Ry/R
d-wave pair potential. Then, with a further increase ofZ, finy ZBCD ai;pear$cur\./e o gf Fi.g 3(Ob)] As (éonin)-
S)dllljobr, Ea ri‘:)”gff b[cl):tig)ml(Z%ui;gemzzﬂiﬁggvséd(:\'})d pared to the corresponding case of swave junction(see
. Th— V. 0 . y T . . . . _
has a ZBCP once the magnitude Rf/R,, deviates slightly Ecl)gn':' of Ref. 3§, ZBCD is hard to be seen i-wave junc
frpm Ob' 'II'Ehe ord_erﬂc])f the m(aﬁ%]nltude_ of tt_he 588\;5 W'tdhth S tis interesting to study how various parameters influence
given DyEr, as In the case g-wave Junctions. eNine e proximity effect. The measure of the proximity effect at
magnitude ofRq/R, excee_ds _umty, therT(e\/)_ acquires a e pN/US interfaced, is plotted forz=0 andZ=10 with
ZBCD (curve g). The qualitative fgatures O.f Ilne_ shapes of corresponding parameters in Figs. 1 an¢s&e Figs. 4 and
aT(e\/) are d[ﬁerent from those irswave junctlons(see. 5). For Ry/R,=0, 6,=0 is satisfied for anyEry, and Z.
Figs. 1 and 2 in Re_f. 38.“ should be remarked that even in Besides this fact, at=0, 6, always becomes a real number.
the_ case oft-wave JunCt.'()nS We can expect ZBCP by CAR These features are consistent with those srwave
as in the case afwave junction fora:=0. _junctions® First, we study the case &r,/A,=1 (Fig. 4
On the pther hand, for much more transparent case W'.t here the same values Bf;/R,, are chosen as in Figs. 1 and
Z=1 the line shapes .Of the conductancg hecome quite d'fé. The real part of), is enhanced with an increaseRy /R,
ferent. ForET.“:AO [F_|g. 2a), the magmtud_e orr(eV) and decreases as a functionsofAt the same time, the imagi-
decreases with the increase of the magnitudeRgfR, nary part off, is an increasing function of for s<A,.

where the bottom parts of all curves are V shaped structure . :
On the other hand, foE,=0.01A,. or(eV) has a ZBCD Both real and imaginary parts have a sudden change at

even for a small magnitude d&®y/R,. Both for Figs. 2a)
and 4b), the magnitude otrr(eV) for |eV|<A, decreases
with the increase oRy/R,. These features are quite differ-
ent from those shown in Fig. 1.

A. a=0 without MABS

o=0 Z=0
(&) Em=a (b) E;=0.014,

FIG. 5. Real(upper panelsand imaginary part§ower panels

FIG. 3. Normalized conductanaer(eV) for Z=0, anda=0. of 6, are plotted as a function &f. Z=10 (left panel$ andZ=0
(@ Etp=Aq. (b) Erp=0.01A,. a, R4/R,=0; b, Ry/R,=0.1; c, (right panel$ with E,/A;=0.01 anda=0. a, Ry/R,=0.1; b,
Rd/szl, d, Rd/szz, ande, Rd/szlo Rd/szl, andC, Rd/Rb=10
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o=m/8 Z=10 o=n/8 Z=0
(@) Em=4, (b) Er0.014, (@) Em=4y (b) Ep=0014,

R R R R R R
eV/A, eV/A, eV/A, eV/A,
FIG. 6. Normalized conductance;(eV) for a= /8. (&) Ety, FIG. 7. Normalized conductance(eV) for Z=0, and «
=A,. (b) E;p,=0.01A,. a, Ry/Ry=0; b, Ry/Ry,=1; and c, =7/8. (8) Etp=A,. (b) E{,=0.014,. a, Ry4/R,=0; b, Ry/R,
Rd/Rb:lO :1, andc, Rd/Rb:10

=A,, WhereA, is the magnitude of the pair potential felt by ZBCD. However, the amplitude of dip is reduced since the
quasiparticles with the perpendicular injection. It is remark-magnitude offy, becomes small due to the sign change of
able that the magnitude of Re(In9)) is reduced with the F(¢).

decrease oZ. Next, we discuss the line shapes @f for

E+n/Ag=0.01. Ref,) has a peak at zero voltage and de- B. a#0 with MABS

creases with the increase ef Im(6y) increases sharply
from O and has a peak at abatt-E1,,, except for a suffi-
ciently large value oRy. These features are consistent with
swave junctions(see Fig. 7 of Ref. 38 Besides this, both
real and imaginary parts have a sudden change=ak, as

In this subsection, we focus any(eV) and ¢, for a#0
(O<a</4). First we focus orw= 7/8, where MABS is
formed for 7/8<|¢|<3w/8. In the low transparent case,
i.e.,, Z=10, o1(eV) has a ZBCP due to the formation of
MABS at the DN/US interface. The height of ZBCP is re-

in the case oEq/Ap=1. Also in this case, the magnitude of d : : ;
: . ) uced with the increase &y/R, (see Fig. . Contrary to
Re(Im)(6y) is reduced with the decrease of This feature the corresponding case afwave junctions(see Fig. 1,

can be gualitatively explained as follows. We concentrate on . ; :
the Iimit?ng cases =yO fgr simplicity. o1(eV) is almost independent &+r,. ForZ=0 (see Fig. 7,

. N . . or(eV) has a broad ZBCP both foE;,=A, and Eq,
| The magrsltl;l{:ie OfGEO(?:gz_)]‘_QOO is determined by the fol- =0.01A,. With the increase oRy/R,, only the magnitude
owing equation see £q. ' of o(eV) is reduced and ZBCD does not appear.

o It is also interesting to see ho#y is influenced by various

cospF(p)de parameters. In Fig. 8, line shapes &f for E1,/Ay=1 are
Ooo —ml2 plotted for various parameters. Far=10, the magnitude of
R_d =(F(¢#))= 2 ' Re(6,) is drastically suppressed at-0 and is an increasing
RbJ ﬁ/ZCOSf/’T((ﬁ)dﬁb function ofe contrary to the case @i=0. Im(6,) has a peak

around ¢ ~0.7Ay~ Ay cos(2), where Aycos(Zy) is the
magnitude of the pair potential felt by quasiparticles with
F(¢)= 2T,C0S000 T.=T() (36) perpendicular injection. FOEZ=0, & dependence of), is
2—=T,+T,Sin6yed’ n qualitatively similar to the corresponding casewf 0 (see
Fig. 4), since the role of MABS is not important. For
sincef,=f_=¢6 andg,=g_=0 are satisfied witb=1  E;, /A;,=0.01, the magnitude of R€f) at e~0 is sup-
(—1) for —mla<op<mld (mwld<|¢p|<ml2). The sign
change nature of originates fromd-wave profile of the pair a=n/8 Eq,=A
potential. This sign change reduces the magnitude of the 0.4 Z=10 _ Z=0
right-hand side of Eq.36), and the resultingy is small. For
the case of large magnitude &f the degree of the reduction
due to the sign change @f i.e.,F(¢) is not significant. For
large magnitude oZ due to the existence of the factd,
(T,<1) proportional to cdsp, only the small value o can
contribute to the integral of numerator whefe-1. This is
the reason why the obtained measurégffor Z=0 is much
smaller than that foz = 10.

Although the magnitude ob, i.e., the measure of the | ‘
proximity effect, is enhanced with increasiRy /R, its in- “0 oa 10 e/,
fluence ono(eV) is different for low and high transparent 0
junctions. In the low transparent junctions, the increase in the FIG. 8. Real(upper panelsand imaginary part§lower panels
magnitude ofdy by Ry/R, can enhance the conductance of ¢, are plotted as a function af. Z=10 (left panel$ andZ=0
or(eV) for eV~0 and produce a ZBCP, whereas in high (right panely with E;,/A;=1 and a==/8. a, Ry/R,=0.1; b,
transparent junctions the enhancementégfproduces the Ry/R,=1; andc, Ry/R,=10.

1
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0=n/8 E,=0.01A,

0.4 Z=10 . Z=0
¥
&
= 0.2r i~
@ [: ¢
x LA p <.
0.3 R EN e
€ 01 LG,
& T b
£ oFFETT—ry
£ 0114
- Ve ‘
0 10 1
&/ Ay /A,

FIG. 9. Real(upper panelsand imaginary partfower panels
of 8, are plotted as a function &f. Z=10 (left panel$ andZ=0
(right panel$ with E1,,/A;=0.01 anda= /8. a, R4y/R,=0.1; b,
Rd /Rb: 1, andC, Rd/Rb: 10.

pressedsee Fig. 9 for Z=10. Im(#,) has a peak around

£~0.7A, as in the case dE/Ap=1. On the other hand,
for high transparent case, i.&Z=0, Re(f,) has a peak at
£=0 and decreases with the increaseofm(6,) increases
sharply from 0 and has a peak at abeutE,,, except for a

sufficiently large value ofRy. These features are qualita-

tively consistent witha=0 (see Fig. 5.

PHYSICAL REVIEW B 69, 144519 (2004

2=10 Emn=4,

eV/Ag

FIG. 10. Normalized conductanae;(eV) for Z=10, E,/A,
=1 anda=m/4. a, R4/R,=0; b, Ry/Ry,=1; andc, Ry/R,=10.
In this caseg(eV) is completely independent of the magnitude of
ETh.

note that from the conventional channel without MABS. For
low transparent casd,(#)<<1, the magnitude ofg; domi-
nates over those dfs, and fg; and 6y, is determined by

- Zﬁtaneoosina
Rofn '

oo _
Ry

(39

_In order to understand these profiles, we focus on the cag@en the resultingy, is reduced to be almost zero. As seen
with e=0. 6y is determined by the following relation for from this, MABS and proximity effect strongly compete

a#+0:
o0 _(F())
Ry Ry '
2T(¢)cosbyo .
2—T(¢)+T(¢)sinboo’ 0<|¢|< 74— a
F(¢): _2tan000: 77/4_a<|¢|<77/4+a
—2T()cosbng

mla+ a<|d|<ml2.

2-T(¢)—T(¢)sinboo’

(37)
After simple algebra, we obtain
Ry Rofn '
fSl: - 2\/§tan0008in a,
‘ J‘ﬂ'/4*a 2T( ¢)C05000
= cos . ;
2= |, P2 T (@) + T(P)sinbog
2 2T(¢p)cosbyg
foga=— f cos - ,
977 ] 4221 - T(Psin e 7
/2
fN=f T(¢p)cosepdae. (38
0

In the above,fg, denotes the contribution t&F(¢)) from
the unconventional channel with MABS alffig, andfg; de-

each other. While for high transparent limit(¢)=1, the
magnitude off 5; becomes the same order as thoségfand
fs3. Then from the contribution by conventional channel,
i.e., g, andfg;, the magnitude oByq is much larger than
that forZ=10.

For a=m/4, wherefg,=fg3=0 is satisfied, only the un-
conventional channdlg; can contribute tgF(¢)). Not only
0o but 6, for any ¢ is exactly zero. Then the total resistance
R can be given b¥f®

Ry
R:m'f-Rd:RRd:o-F Ry (40

and the resultingr(eV) is given by

Rg+ Ry
I
One of the typical examples is plotted in Fig. 10.
The effect ofRy is significant for the resultingrr(eV).
For the actual quantitative comparison with tunneling experi-
ments, we must take into account the effecRgf.

C. a dependence of zero-voltage conductance

Finally, we study the dependence @f(0) on the angle
a. In this caseo+(0) is independent oE+y,. For all situa-
tions shown in Figs. 11-13),,=0 is satisfied fora= /4,
due to the complete absence of proximity effect where only
the unconventional channel with MABS exists. For0,

144519-10
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Z=0 Z=10

B
) b =) 0.1 A
b’— .......... C ........... - = . I
e e S N A A of 20
ol d ] 0 B mm a
0 01 02 0 01 02 0 01 02
o/n o/n o/n
FIG. 11. Normalized conductance at zero voltagg0) for FIG. 13. Normalized conductance at zero voltagg0) for
variousa with Z=0. In this caser{(0) is independent oE+,. a, variousa with Z=10. In this caser{(0) is independent dEt,. a,
Rd/szo, b, Rd/szol, C, Rd/szl, andd, Rd/Rb=10 Rd/szo, b, Rd/Rb=Ol, C, Rd/szl, andd, Rd/Rb:lO

o1(0) is almost constant with the change @falthoughfy,;  most 0.1 as seen from Fig. (1, the difference between the

is a decreasing function af (see Fig. 1L two cases is small. Then we can expect #hat0) is almost
ForZ=1, o(0) is an increasing function af, while 6,  constant as a function @f. On the other hand, fa+ 0, the

is a decreasing functiofsee Fig. 12 For Z=10, o1(0) is  contribution from the unconventional channel becomes sig-

enhanced much more rapidly as compared to the casg for nificant and the resultindl ,) can be approximated to be

=1, while with the increase oRy/R,, o1(0) becomes

nearly constantsee Fig. 13 As seen from Figs. 12 and 13, (I b0>~2\/§sinase8000/In.
:gﬁtlnfluence OR4/Ry on theo(0) is significantly impor- 5 o, increasing function ofr, and the resultingr(0) is

In order to understand these features we lookgtin also an increasing function f (see Figs. 12 and }3

detail. In general, foe=0, (I can be expressed b
g < b0> P y IV. CONCLUSIONS

(o) = m In the present paper, detailed theoretical investigation of
In the voltage-dependent conductance of DN/US junctions is
. presented. We have provided the detailed derivation of the
b1 =212 sinaseC g, expression for the matrix current presented in our previous
papert®® For the reader’s convenience, we explicitly present
o fﬂmwco 2T(P)[T(p)+{2—T(¢p)}sinOyg] the retarded and the Keldysh parts of the matrix current for
b2™ _ : ' the case when the US has a singlet parity. Applying these
2—T(¢)+T(p)sinbyg?
| () +T(¢) 00 expressions to DNkwave junctions, we have obtained the
: following main results.
lps= fﬂlz cos 2T(HIT(¢)~ {2 T(#)}sin 000]’ (1) There are two kinds of ZBCP, i.e., ZBCP due to the
wlh+ o |2—T(p)—T(p)sinbyg? CAR by proximity effect in DN and that due to the formation

of MABS at interfaces ofd-wave superconductors. ZBCP
2 frequently appears in the line shapes®f(eV). For low
In= fo T(¢)cosgde. (42) transparent junctions with small Thouless enekgy, we al-
ways expect ZBCP independent @f
I 1 denotes the contribution from the unconventional channel (2) The nature of ZBCP due to the MABS and that by
while I,, and 1,3 denote those from the conventional chan-CAR is significantly different. The corresponding(0) for
nel. ForZ=0, the integral can be performed analytically. For the former case can take arbitrary values exceeding unity. On
a=0, (lyo) becomes 2s86yd 1—(\2—1)sindy] for @  the other handg(0) for the latter case never exceeds unity.
=0 and 2 setly, for a= /4. Since the order 0By, is at  The width of the ZBCP in the former case is determined by
the transparency of the junction while the width for the latter
Z=1 case is determined by the Thouless energy. These two
ZBCP’s compete each other since the proximity effect and

3 the existence of MABS are incompatible in singlet
ol B 5 junctions!®
S & - (3) For the extreme casey= /4, where the proximity
S | effect is absent and the CAR is canceleg(eV) is given by

0 . or(eV)=(Ry+ Rd)/(RRd:0+ Ry) with the resistance at the

0 01 wr? 2 interfaceRy, .

(4) Only whena=0 MABS is absent folRg=0. Then

FIG. 12. Normalized conductance at zero voltagg{0) for ~ CAR influences significantlyr(eV), similarly to the case
variousa with Z=1. In this caser(0) is independent oE;,. a,  Of ans-wave junction. When the transparency of the junction
R4¢/R,=0; b, Ry/R,=0.1; ¢, Ry/R,=1; andd, Ry/R,=10. is sufficiently low, o(eV) for |[eV|<A, is enhanced with
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the increase oR, due to the enhancement of the proximity an extension of the circuit theory to S/N/S junctions with

effect assisted by CAR. The ZBCP becomes prominent founconventional superconductors.

Eth<A andRy/R,<1. In such a case, with a further in-  There are two kinds of ZBCP’s considered in the present

crease ofRy /Ry, the ZBCP changes into a ZBCD. paper. We expect that the response to the magnetic field
(5) We have clarified various line shapes of the conducshould be significantly different in these two cases. The

tance including ZBCP. The obtained results serve as an imZBCP originating from MABS is rather robust against the

portant guide to analyze the actual experimental data of thenagnetic field while that from CAR is much more sensitive.

tunneling spectra of highi cuprate junctions. We want to We want to clarify this feature in actual calculations.

stress that the height of ZBCP is strongly suppressed by the In the present paper, since we follow the quasiclassical

existence of DN and the resulting(0) is not so high as Green’s function formalism, the impurity scattering is taken

obtained in the ballistic regim¥. In the actual fit of the into account within the self-consistent Born approximation.

experimental data, we strongly hope to take into account thé is a challenging problem to study the weak localization

effect of Ry. When the transparency of the junction is low effects.

and a# 0, the contribution of unconventional channel be-

comes important and that from conventional channel is neg- ACKNOWLEDGMENTS

ligible. In such a case without solving Usadel equation ] ] ] ]
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<I b0> = 2 )
f cos¢pT(p)do APPENDIX
—7l2

The matrix current is expressed as

T(A{L+T(PH)T L2+ [T(p)— 11T, T_|%} 2 2

2e 2e

o=

11+[T(¢)— 10T _|? ! = =T [3%0)= T [3702). (AL

A, A To find the matrix current, we have to evaluﬁgz). For

F+:8+ \/mz— F—:8+ m this purpose, we shall consider the behavimé(ﬂf’/(x,x’)
. o

in the isotropization zone in DN side—(L;<Xx,x'<—L,)
and in the ballistic zone of right sidexx’ >0). In the iso-
_ h 2 tropic zone, since the effect of impurity scattering is domi-
Ry=— (42) - : v
2e? f”’z dT($)cosd nant and H can be approximated to be-Xy,,(x)
—l2 =G1/(27imp) for x<0. G, is the Keldysh-Nambu Green’s
function in DN atx=—L, with £&,>L>v 7, andé,>1,

with A =Aqc042(¢+a)] ande=eV. This expressionis a —|,>yr,, whereé;=/D/27T is the coherence length of

convenient one for the fit of the experimental data. Howevert]he Green's function in DN. Due to this conditic, can be

for the quantitative discussions including much more genera . v - v
cases, one must solve the Usadel equation as was done in figproximated to b&, =Gn(—L1)~Gn(0-), where,GN(x) .
beys the Usadel equation in DN. The Green’s function

present paper. It is an interesting future problem to compar8 /

the present results with experiments since recent experimefn (X,X') is expressed by

tal results show the existence of mesoscopic coherence in , L _

high T¢ cuprate junctions®® GI7 (x,x")=P(x)[g1+sgr(x—x")Z?P(—x"),
There are several problems which are not discussed in the

present paper. In the present study, we have focused on N/S

junctions. The extension of the circuit theory to long diffu- P(x)= = {exd X/ (20 Timp) 1(1—2%G,)

sive S/N/S junctions has been performed by Bezugiyal > 2\2vyi

In S/N/S junctions, the mechanism of multiple Andreev re- — =

flections produces the subharmonic gap structures-oh +exd =X/ (200 7imp) (1 +2°Gy)} (A2)
curves™’and the situation becomes much more complexyith

as compared to N/S junctions. Moreover, in S/N/S junctions

with unconventional superconductors, MABS leads to the S, 0 i o0
anomalous current-phase relation and temperature depen- G,= ! ] 3= 2. (A3)
dence of the Josephson curr@hAn interesting problem is 0 G; 0 -1
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To ensure thaGJ” (x,x’) does not grow with decreasing (3740,)(3%—G,)=0. (A5)

andx” in the isotropic zone in DN, we shall require On the other hand, in the US side>*0) it is not simple to

obtain ég"'(x,x’) since it has directional dependence.

(324 G,) (37— g,)=0, (A4)  G77(x,x’) is given by
|
oo’ ’ D/ o NS 21D, ’ D/ D a = I‘:’)1(2)+ 6
G (X,X")=P(X)[g2+sgnx—x")Z?IP(=X"), P(X)=P1(X)+Pa(X), Pip(X)= 5 B : (A6)
1(2)~
. 1 [ 72(1FRpe) Foly=(1FRps) = v (15 Ag)]
Pi-(x)= - A ,
2V2v,,i 0 Yi(1FA;L)
v 1 ;1(1i§2i) fo[;t(liﬁzr)_;i(li'a\zr)]
Py (X)= - — ~
2\2v 0 yi(1£Az.)
|
with should be satisfied. Then following four equations must be
satisfied for any:
N(e+id)?—A% L . L
Y==exg —I TX y+(1-Rop)a+fo[y (1-Rpy)—¥5(1—-A,1)]b=0,
and ¥ (1-A,,)b=0,
_ V(e+i8)2—A% _ A Vd=
fivey

R R 1-Ry,)C+f 1-Ryy)— ¥ (1-A,,)]d=0.

In the aboveR,. andA,. are retarded and advanced com- v+(1=Re)et fol v+ (17Re ) =73 (1= Az )]

ponents of Keldysh-Nambu Green’s functi@y. at the in-  Thus we obtain

terface of US where: denotes the direction of motion along R R R o

x axis. G,, andG,_ are given byG,.=Gs.(0,) where (1-Rpy)  fo[ —Ray +Az)] (a C) 0

b d

Applying the similar discussions for other components, we

also obtain the following equations:

0 (1_A2+)

Gs. (X) is a quasiclassical Green's function in US. It does
depend on the direction of motiom. Here we neglect the

spatial dependence for simplicity and we assuf@e.
=Gg. (X)=Gs. (). Sincey. and y* are glowing func-

tions with the increase of, the term that include_s this com- £ 0 A G
ponent should be eliminated by multiplyinfgg,+ sgn ( § . . . |=0
—x')37]. For convenience, we denote 0O E_/\B D
v . with
_ — [A C
go+sgnx—x")2*=| . 5

. :((1—?224 fol = Rox +Ag.)]
) 0 (1-Az)

In order to eliminate the divergence terms with the increase

of x (x>0), The resulting equation is identical to E@O0) of Ref. 37.
(y+(1—ﬁz+) fol ¥+ (1= Ry ) — ¥4 (1= Az)] (é c (32— G,)(gp+37)=0. (A7)
0 Yi(1-Ay) b d Applying similar discussion for the case with increasiig
4 e (x'>0), we can also obtain
=0, A=|. ) o
b d (g,—2%)(2*+G,)=0.
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To find explicit expression 062 we multiply Eq.(A4) by
MT from the left and byM from the right. By introducing the
matrix Q=M "M, we derive

92=(QG,+Gy) 42Q+(G;-QG,)3%  (A8)
with
6— é2+ 0
=1 ¢ é27'

To evaluate matrix currefit we rewriteg, in the basis com-
posed of eigenvectors aand Keldysh-Nambu indices. For
each eigenvectaz,, with eigenvalueg,>1, the vectors,%c,,

is also an eigenvector @ with eigenvalueqrjl,

5 (qn 0) - 01 9)
= _ s =\ . . A
0 g, io
The resultingg,, is given by
— (QnHJr"’él anL o
9= g o~ .
gy H- gy *H +G,y
qn(2—|:|,) é1_in:|+
S (A10)
Gl_qn H: 0, (2=H.)

with H. = (G,, +G,_)/2. Then the matrix curreritcan be
expressed as

.28 .
= 2 T,

Tno=[H_—(guH++G)H *(H, /g,+ G 1(2—H_)
+[H_—(H. /ga+G)H (g + G171 (2-H.)
+[(H4 /19,+G1)—H_(qoH. +Gy) TH_] 7!
X(G1—H. 1a) +[(goH .+ +Gy)
~H_(Hi /gyt G H 174G —qHL).  (ALD)

Applying the following identity:

HyH_+H_H,=0

PHYSICAL REVIEW B 69, 144519 (2004

I o can be written as follows:

Tno=([G1,H-la,—HI'H + G HI'H, Gia?) (G,
- |:|:1é1)qn"‘ éll:l:1|:|+é1Qﬁ]+([é1:|:|:l]/Qn
—HMH, /g2 + G H T HL Gy Y (6,- Gy H Y/,
+HZH, 192+ (G H- /g, —H A,
+GHIMH, G /0?) (G, —HI'Gy)/a,
+GHZMH Gy /g2]+([G1, H- g, —HZ"H 0}
+GH L, G (G- G H Y+ H-H, g2

(A12)

The eigenvalugy,, and the transparency of the junctidn
satisfy the following relations:

49,/(1+9)%=T,, (1+a2)/(1+q,)>=(2-T,)/2.

We introduce

T

T _ n
T, 42V1-T,

and the resultindno becomes

[ho=—D " HT1,(26,-[H~4,G,15)
FHIMH, +T2,6,HIH, Gy
+G1D 16 {T1(26,-[H 1,641,
+T2 H'H, + G H THL Gy} (A13)
with

D=—T [Gy H T+HH. T G, H H. Gy,

10 is also represented as follow&

TnO: Z[élvén]

with

By=Bni[Tin(1—HIH+T2,GH M, ],

Bup=(—Tin[G1, HZ+HIH, —T2 .G HIH . Gy).
(A14)
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