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We analyze the transport properties of contacts between unconventional superconductor and normal diffu-
sive metal in the framework of the extended circuit theory. We obtain a general boundary condition for the
Keldysh-Nambu Green’s functions at the interface that is valid for arbitrary transparencies of the interface.
This allows us to investigate the voltage-dependent conductance~conductance spectrum! of a diffusive normal
metal ~DN!/ unconventional singlet superconductor junction in both ballistic and diffusive cases. Ford-wave
superconductors, we calculate conductance spectra numerically for different orientations of the junctions,
resistances, Thouless energies in DN, and transparencies of the interface. We demonstrate that conductance
spectra exhibit a variety of features including a V-shaped gaplike structure, zero bias conductance peak~ZBCP!
and zero bias conductance dip. We show that two distinct mechanisms:~i! coherent Andreev reflection~CAR!
in DN and ~ii ! formation of midgap Andreev bound state at the interface ofd-wave superconductors, are
responsible for ZBCP, their relative importance being dependent on the anglea between the interface normal
and the crystal axis ofd-wave superconductors. Fora50, the ZBCP is due to CAR in the junctions of low
transparency with small Thouless energies. This is similar to the case of diffusive normal metal/insulator/
s-wave superconductor junctions. With increase ofa from zero top/4, the MABS contribution to ZBCP
becomes more prominent and the effect of CAR is gradually suppressed. Such complex spectral features shall
be observable in conductance spectra of realistic high-Tc junctions at very low temperature.

DOI: 10.1103/PhysRevB.69.144519 PACS number~s!: 74.50.1r, 74.20.Rp, 74.70.Kn
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I. INTRODUCTION

The low-energy transport in mesoscopic superconduc
systems is governed by Andreev reflection,1 a unique process
specific to electron scattering at normal met
superconductor interfaces. The phase coherence betwee
coming electrons and Andreev reflected holes persists
mesoscopic length scale in the diffusive normal metal, wh
enhances interference effects on the probability of Andr
reflection.2 The coherence plays an important role at su
ciently low temperatures and voltages when the ene
broadening due to either voltage or temperature become
the order of the Thouless energyETh of the mesoscopic
structure. As a result, the conductance spectra of mesosc
junctions may be significantly modified by these interferen
effects. A remarkable experimental manifestation of
electron-hole phase coherence is the observation of the
bias conductance peak~ZBCP! in diffusive normal metal
~DN!/superconductor~S! tunneling junctions.3–13

Various theoretical models of charge transport in diffus
junctions extend the clean limit theories developed
Blonder, Tinkham, and Klapwijk14 ~BTK! and Zaitsev.15 In
Refs. 16–21 the scattering matrix approach was used. On
other hand, the quasiclassical Green’s function method
nonequilibrium superconductivity22 is much more powerful
and convenient for the actual calculations of conductance
the arbitrary bias voltages.23 Using the Kuprianov and
Lukichev boundary condition24 for a diffusive SIN interface,
0163-1829/2004/69~14!/144519~16!/$22.50 69 1445
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Volkov, Zaitsev, and Klapwijk have obtained the condu
tance spectra with ZBCP, origin of which was attributed
coherent Andreev reflection~CAR! which induces the prox-
imity effect in diffusive metal.23 Several authors studied th
charge transport in mesoscopic junctions combining t
boundary condition with Usadel25 equations that describe su
perconducting correlations in a diffusive metal.26–33

The modified boundary conditions were studied by s
eral authors.35,36 Important progress was achieved by one
the authors26,37who developed the so-called ‘‘circuit theory
for matrix currents that allows one to formulate bounda
conditions for Usadel-like equations in the case of arbitr
transparencies. By using this generalized boundary co
tion, three of the authors have evaluated the conductanc
DN/S junctions and demonstrated how various may be
conductance spectra.38

Another mechanism of ZBCP plays the role in ballis
unconventional superconductor junctions. The conducta
peak in this situation arises from the formation of midg
Andreev bound states~MABS! at the interface.34,39–42The
experimental observation of the ZBCP has been reported
various unconventional superconductors of anisotropic p
ing symmetry.42–57A basic theory of ballistic transport in th
presence of MABS has been formulated in Refs. 40 and
Stimulated by this theory, extensive studies of MABS in u
conventional superconductor junctions have been perform
during the last decade: in the case of broken time reve
symmetry state,58–65 in triplet superconductor junctions,66–71

in quasi-one-dimensional organic superconductors,72–74
©2004 The American Physical Society19-1
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MABS and Doppler effect,75–79 MABS in ferromagnet
junctions,80–88 influence of MABS on Josephson effect89–98

and other related problems.99–107 However, an interesting
question remained: how two mechanisms of ZBCP~due to
CAR and due to MABS! work together, this being relevan
for diffusive normal metal/unconventional superconduc
~DN/US! junctions.

To solve this problem, three of the present authors h
recently extended the circuit theory to the systems that c
tain unconventional singlet superconductor junctions.108 Ap-
plication of this theory for DN/d-wave superconductor~DN/
d) junctions has shown that the formation of MABS strong
competes with the proximity effect that is an essential ing
dient for CAR in DN. The MABS induces the unconve
tional channels where quasiparticles are resonantly trans
ted through the interface. The overall contribution of the
channels to the proximity effect is, however, suppressed
the isotropization, i.e., the angular averaging over mom
tum directions of injected quasiparticles. However, Ref. 1
does not contain the necessary technical details of the m
current derivation and presents the results only for low v
age limit. To compare with experiment, one has to evalu
the conductance spectrum in wide range of bias voltage

In this paper, we present a detailed derivation of the m
trix current in DN/US junctions. Although the relation ob
tained is valid for both singlet and triplet superconduc
junctions, we focus on the case of singlet superconductor.
present detailed numerical calculations of the conducta
spectra of DN/US junctions ford-wave superconductors. W
investigate the dependence of the spectra on various pa
eters: the height of the barrier at the interface, resistanceRd
in DN, the Thouless energyETh in DN, and the angle be
tween the normal to the interface and the crystal axis
d-wave superconductor (a). We normalize the voltage
dependent conductancesS(eV) by its value in the norma
state,sN , so thatsT(eV)5sS(eV)/sN .

Our main results are as follows:
~1! The ZBCP is frequently seen in the shape ofsT(eV).

For aÞ0, the ZBCP is robust, not depending on the diff
sive resistanceRd . For a50, ZBCP is due to the CAR.

~2! The appearance of ZBCP is different for MABS an
CAR mechanisms. The first mechanism may lead to a
trarily large sT(0). Thesecond mechanism cannot provid
sT(0) exceeding unity. While for the first mechanism t
width of the ZBCP is determined by the transparency of
junction, it is determined by Thouless energy for the seco
one. These two mechanisms compete since the proxim
effect and the MABS in singlet junctions are genera
incompatible.108

~3! In the extreme casea5p/4 the proximity effect and
the CAR are absent. ThesT(eV) is then given by a simple
Ohm’s law: sT(eV)5(Rb1Rd)/(RRd501Rd) Rb being the
resistance of the interface.

~4! For a50, when MABS are absent forRd50, the
ZBCP of sT(eV) is attributed to the CAR alone. When th
transparency of the junction is sufficiently low,sT(eV) for
ueVu,D0 is enhanced with the increase ofRd due to the
enhancement of the proximity effect (D0 is the maximum
14451
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amplitude of the pair potential!. The ZBCP becomes promi
nent forETh!D0 andRd /Rb,1 (RdÞ0). In this case, the
ZBCP turns into a zero-bias conductance dip~ZBCD! with a
further increase ofRd /Rb .

~5! We have shown that the conductance spectrum
vary substantially depending on the parameters. The res
obtained are important to analyze the actual experime
data on conductance spectra of high-TC cuprate junctions
since in this case the diffusive scattering in the normal me
is of special relevance.

The structure of the paper is as follows. We formulate
model in use in Sec. II. We also present there the deta
derivation of the matrix current and end up with the expr
sion for the normalized conductance. We focus ond-wave
superconductor junctions in Sec. III and evaluatesT(eV)
and the measure of the proximity effectu0 for various cases.
We summarize the results in Sec. IV.

II. FORMULATION

In this section we introduce the model and the formalis
We consider a junction consisting of normal and superc
ducting reservoirs connected by a quasi-one-dimensional
fusive conductor~DN! with a lengthL much larger than the
mean-free path. The interface between the DN conductor
the US~unconventional superconductor! electrode has a re
sistanceRb while the DN/N interface has zero resistanc
The positions of the DN/N interface and the DN/S interfa
are denoted asx52L andx50, respectively. According to
the circuit theory,37 the constriction area (2L1,x,L1) be-
tween DN and US is considered as composed of the diffus
isotropization zone (2L1,x,2L2), the left side ballistic
zone (2L2,x,0), the right side ballistic zone (0,x
,L1), and the scattering zone (x50). The scattering zone is
modeled as an insulatingd-function barrier with the trans-
parencyTn54cos2f/(4cos2f1Z2), whereZ is a dimension-
less constant,f is the injection angle measured from th
interface normal to the junction, andn is the channel index.
We assume that the sizes of the ballistic and scattering zo
alongx axis are much shorter than the superconducting
herence length.

Here, we express insulating barrier as ad-function model
Hd(x), whereZ is given by Z52mH/(\2kF) with Fermi
momentumkF and effective massm. In order to clarify
charge transport in DN/US junctions, we must obta
Keldysh-Nambu Green’s function, which has indices
transport channels and the direction of motion alongx axis
taking into account the proper boundary conditions. For t
purpose it is necessary to extend a general theory of bou
ary condition which covers the crossover from ballistic
diffusive cases37 formulated for conventional junctions in th
framework of the circuit theory.26,37 However, the circuit
theory cannot be directly applied to unconventional sup
conductors since it requires the isotropization. To avoid t
difficulty we restrict the discussion to a conventional mod
of smooth interfaceby assuming momentum conservation
the plane of the interface.

In the following sections, we will show how to derive th
matrix current in DN/US junctions. Then we will derive th
9-2



F
he

n
d

es
e-

els

s
an
e
a
w

o
tu

an
n
u

n

y

en

a-
in-

it,

of

hen
n-

THEORY OF CHARGE TRANSPORT IN DIFFUSIVE . . . PHYSICAL REVIEW B 69, 144519 ~2004!
retarded and Keldysh components of the matrix current.
nally, we will show how to calculate conductance of t
junctions.

A. Calculation of the matrix current

To derive the relation between the matrix current a
Green’s functions, we make use of the method propose
Ref. 37. The method puts the older ideas15 to the framework
of Landauer-Bu¨ttiker scattering formalism. One express
the matrix current in a constriction in terms of on
dimensional Green’s functionsǧn,s;n8,s8(«;x,x8), wheren,
n8 and s,s8561 denote the indices of transport chann
and the direction of motion alongx axis, respectively. The
‘‘check’’ represents the Keldysh-Nambu structure. The
Green’s functions have to be expressed in terms of the tr
fer matrix that incorporates all information about the scatt
ing, and asymptotic Green’s functions presenting bound
conditions deep in each side of the constriction. Here,
restrict the discussion to a conventional model ofsmooth
interface, assuming momentum conservation in the plane
the interface. Within the model, the channel number even
ally numbers possible values of this in-plane momentum
the transfer matrix becomes block diagonal in the chan
index. Following the treatment developed in Ref. 37, we th
solve Green’s functionsǧn,s;n8,s8(«,x,x8) separately for
each channel.ǧn,s;n8,s8(«,x,x8) can be expressed as

ǧn,s;n8,s8~«,x,x8!5 (
s,s8561

exp~ ispnx2 is8pnx8!

3Ǧn
s,s8~x,x8!. ~1!

The functionsǦn
s,s8(x,x8) are varying smoothly at the

scale of 1/pn and obey the following semiclassical equatio

S isvn

]

]x
1Ȟ~x! D Ǧn

s,s8~x,x8!50 ~2!

with effective HamiltonianȞ(x) whereȞ(x) andȞ0(x) are
given by

Ȟ~x!5Ȟ0~x!2Š imp~x!, ~3!

Ȟ0~x!5«ťz1Ď~x!, ťz5S t̂z 0

0 t̂z
D . ~4!

In the above,Š imp(x) is a self-energy due to the impurit
scattering andŠ imp(x)Þ0 is satisfied only forx,0. The
self-energy originating from the superconducting pair pot
tial Ď(x)50 for x,0 while Ď(x) for x.0 is given by

Ď~x!5S D̂s 0

0 D̂s
D , D̂s5S 0 Ds

2Ds* 0 D . ~5!

Ǧn
ss8(x,x8) has discontinuity atx5x8,

Ǧn
ss8~x10,x!2Ǧn

ss8~x20,x!52 i 1̌sdss8 /uvnu. ~6!
14451
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To get rid of the discontinuity, we defineḡn
ss8(x,x8) as fol-

lows:

2iǦn
ss8~x,x8!5@ ḡn

ss8~x,x8!1ssgn~x2x8!#/uvnu. ~7!

We denoteḡn
ss8(01,01)5ḡ2 and ḡn

ss8(02,02)5ḡ1, where

ḡ2 and ḡ1 satisfy

ḡ25M̄†ḡ1M̄ ,

using a transfer matrixM̄ .
The derivation of the matrix current

Ǐ 5
2e2

h
Trn,s@S̄zḡ1#5

2e2

h
Trn,s@S̄zḡ2# ~8!

is given in the Appendix, where it is shown thatǏ n0 can be
represented as follows:108

Ǐ n052@Ǧ1 ,B̌n#

with

B̌n5~2T1n@Ǧ1 ,Ȟ2
21#1Ȟ2

21Ȟ12T1n
2 Ǧ1Ȟ2

21Ȟ1Ǧ1!21

3@T1n~12Ȟ2
21!1T1n

2 Ǧ1Ȟ2
21Ȟ1#. ~9!

This is the very equation that was first derived as Eq.~2! of
Ref. 108. It should be remarked that this formula of the m
trix current is very general since it is available both for s
glet and triplet superconductors. For low transparency lim
i.e., Tn!1, T1n!1, Ǐ n0 can be approximated to be

Ǐ n05
Tn

2
@Ȟ1

21~12Ȟ2!,Ǧ1#. ~10!

Equation ~10! can be regarded as an extended version
Kuprianov and Lukichev’s boundary condition24 for uncon-
ventional superconductor junctions. On the other hand, w
Ǧ215Ǧ22 is satisfied as in the conventional superco
ductor, since

lim
Ȟ2→0

2Ď21$T1n~2Ǧ12@Ȟ2
21,Ǧ1#1!1Ȟ2

21Ȟ1

1T1n
2 Ǧ1Ȟ2

21Ȟ1Ǧ1%

5~Ȟ11T1nǦ1!21~2Ȟ11T1nǦ1!

and

lim
Ȟ2→0

Ǧ1Ď21Ǧ1$T1n~2Ǧ12@Ȟ2
21,Ǧ1#1!1T1n

2 Ȟ2
21Ȟ1

1Ǧ1Ȟ2
21Ȟ1Ǧ1%5~Ǧ11T1nȞ1!21~2T1nȞ11Ǧ1!

are satisfied, then the resultingǏ n0 and Ǐ is reduced to be
9-3
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Ǐ n052T1n~11T1n
2 1T1n@Ȟ1 ,Ǧ1#1!21@Ȟ1 ,Ǧ1#,

Ǐ 5(
n

2e2

h
~11T1n

2 1T1n@Ȟ1 ,Ǧ1#1!21@Ȟ1 ,Ǧ1#, ~11!

which is identical to Eq.~36! of Ref. 37. In the above, the
definition of Ď is given in the Appendix.

B. Calculation of the retarded part of the matrix current

In order to calculate the retarded part of the matrix c
rent, we denote Keldysh-Nambu Green’s functionǦ1 , Ǧ26 ,

Ǧ15S R̂1 K̂1

0 Â1
D , Ǧ265S R̂26 K̂26

0 Â26

D , ~12!

where the Keldysh componentK̂1,26 is given by K̂1(26)

5R̂1(26) f̂ 1(2)(0)2 f̂ 1(2)(0)Â1(26) with the retarded compo
nent R̂1,26 and the advanced componentÂ1,26 using distri-
bution function f̂ 1(2)(0). In theabove,R̂26 is expressed by

R̂265~g6t̂31 f 6t̂2!

with g65«/A«22D6
2 , f 65D6 /AD6

2 2«2, and Â26

52 t̂3R̂26
† t̂3, where « denotes the quasiparticle energ

measured from the Fermi energy.f̂ 2(0)5 f 0S(0)
n
to

14451
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5tanh@«/(2kBT)# in thermal equilibrium with temperatureT.
Here, we put the electrical potential zero in the US electro
We also denoteȞ1 , Ȟ2 , B̌n , Ǐ as follows:

Ȟ15S R̂p K̂p

0 Âp
D , Ȟ25S R̂m K̂m

0 Âm
D ,

B̌n5S B̂R B̂K

0 B̂A
D , Ǐ 5S Î R Î K

0 Î A
D . ~13!

Hereafter, in the present paper, we focus on the singlet
perconductor junction case without broken time rever
symmetry states~BTRSS!. For triplet case or singlet one
with BTRSS, the situation becomes much more complex109

and we will discuss it in a forthcoming paper in detail.
singlet superconductors, we can chooseR̂15cosu0t̂3

1sinu0t̂2 to satisfy the boundary condition at the interfac
After some algebra, we can obtainB̂R as follows:

B̂R52T1n@11T1n
2 1T1n~R̂1R̂p

211R̂p
21R̂1!#21

3@T1nR̂11R̂p
21#,

where we have used the relation

R̂1R̂m
21R̂p1R̂m

21R̂pR̂150.

The resultingÎ R can be written as
Î R5
2e2

h (
n

22Tn@cosu0~ f 11 f 2!2sinu0~g11g2!#

~22Tn!~11g1g21 f 1 f 2!1Tn@cosu0~g11g2!1sinu0~ f 11 f 2!#
t̂3t̂2 . ~14!
This is one of the central results of this paper.

C. Calculation of the Keldysh part of the matrix current

Next, we focus on the Keldysh component. We define

I b5
e2

h (
n

Tr@ Î Kt̂3#. ~15!

After straightforward calculations,I b is given by

I b5
e2

h (
n

Tr$t̂3~R̂1B̂K1R̂1
†B̂K!

2@ t̂3~R̂1
†B̂R

†1B̂RR̂11B̂R
†R̂11R̂1

†B̂R!# f 0N~0!

2@~R̂11R̂1
†!~B̂R1B̂R

† !# f 3N~0!%

with K̂15R̂1 f̂ 1(0)2 f̂ 1(0)Â1 f̂ 1(0)5 f 0N(0)1 f 3N(0)t̂3.
SinceB̂R and R̂1 are proportional to the linear combinatio
of t̂2 and t̂3, the second term which is proportional
f 0N(0) disappears. It is necessary to obtainB̂K which is
given by
B̂K5D̂R
21N̂K2D̂R

21D̂KD̂A
21N̂A ~16!

with

Ď52T1n@Ǧ1 ,Ȟ2
21#1Ȟ2

21Ȟ12T1n
2 Ǧ1Ȟ2

21Ȟ1Ǧ1 ,

Ď5S D̂R D̂K

0 D̂A
D ,

whereN̂K and N̂A are the Keldysh and advanced parts ofŇ
given by

Ň52T1nȞ2
211T1n

2 Ǧ1Ȟ2
21Ȟ1 Ň5S N̂R N̂K

0 N̂A
D .

We can expressN̂K and D̂K as linear combination of distri-
bution functionsf 0S(0), f 0N(0), and f 3N(0) as follows:

N̂K5Ĉ1f 0S~0!1Ĉ2f 0N~0!1Ĉ3f 3N~0!,

D̂K5Ĉ4f 0S~0!1Ĉ5f 0N~0!1Ĉ6f 3N~0!,
9-4
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by 232 matrix Ci ( i 51, . . . ,6). Taking account of the fac
that D̂R

21Ĉ1 , D̂R
21Ĉ2 , D̂R

21Ĉ4D̂A
21N̂A , and D̂R

21Ĉ5D̂A
21N̂A

can be expressed by the linear combination oft̂2 and t̂3,
while D̂R

21Ĉ3 andD̂R
21Ĉ6D̂A

21N̂A are proportional to the lin-

ear combination of 1ˆ and t̂1, we can expressI b as follows:

I b5
e2

h (
n

Tr$~R̂11R̂1
†!@B̂KEt̂32~B̂R1B̂R

† !# f 3N~0!%,

B̂KE5D̂R
21@Ĉ32Ĉ6D̂A

21N̂A#

with

Ĉ35T1n
2 ~R̂1t̂32 t̂3Â1!Âm

21Âp ,

Ĉ65T1n@2~R̂1t̂32 t̂3Â1!Âm
211R̂m

21~R̂1t̂32 t̂3Â1!

2T1n~R̂1t̂32 t̂3Â1!Âm
21ÂpÂ12T1nR̂1R̂m

21R̂p

3~R̂1t̂32 t̂3Â1!#. ~17!

Since the following equations are satisfied:
14451
D̂A
21N̂A52t3B̂R

†t3 , Âm(p)52 t̂3R̂m(p)
† t̂3 ,

D̂R
21~2T1nR̂m

211T1n
2 R̂1R̂m

21R̂p!5B̂R ,

I b is given by

I b5
e2

h (
n

@2~R̂11R̂1
†!B̂R~R̂11R̂1

†!B̂R
†

2~R̂11R̂1
†!~B̂R1B̂R

† !

1T1n
2 ~R̂11R̂1

†!D̂R
21~R̂11R̂1

†!~R̂m
† !21R̂p

†

1T1n~R̂11R̂1
†!D̂R

21~R̂11R̂1
†!~R̂m

† !21B̂R
†

1T1n
2 ~R̂11R̂1

†!D̂R
21~R̂11R̂1

†!~R̂m
† !21R̂p

†R̂1
†B̂R

† # f 3N~0!.

~18!

After a simple manipulation, we can show

B̂R~R̂m
211T1nR̂1R̂pR̂m

21!2T1nR̂m
21R̂p

52T1nD̂R
215dR

21T1nR̂mR̂p
21 ~19!

with
dR5
~11T1n

2 !~11g1g21 f 1 f 2!12T1n@cosu0~g11g2!1sinu0~ f 11 f 2!#

11g1g21 f 1 f 2
.

Then the resultingI b is given by

I b5
e2

h (
n

@2~R̂11R̂1
†!B̂R~R̂11R̂1

†!B̂R
†2~R̂11R̂1

†!~B̂R1B̂R
† !2T1n

2 ~R̂11R̂1
†!D̂R

21~R̂11R̂1
†!~D̂R

† !21# f 3N~0!. ~20!

SinceB̂R is given asB̂R5b2t̂21b3t̂3 with

b25
2T1n@T1nsinu0~11g1g21 f 1 f 2!1 f 11 f 2#

~11T1n
2 !~11g1g21 f 1 f 2!12T1n@cosu0~g11g2!1sinu0~ f 11 f 2!#

,

b35
2T1n@T1ncosu0~11g1g21 f 1 f 2!1g11g2#

~11T1n
2 !~11g1g21 f 1 f 2!12T1n@cosu0~g11g2!1sinu0~ f 11 f 2!#

, ~21!

final expression ofI b is given by the following equation:

I b5
2e2

h (
n

Tn

2

C0f 3N~0!

u~22Tn!~11g1g21 f 1 f 2!1Tn@cosu0~g11g2!1sinu0~ f 11 f 2!#u2
,

C05Tn~11ucosu0u21usinu0u2!@ ug11g2u21u f 11 f 2u21u11 f 1 f 21g1g2u21u f 1g22g1 f 2u2#

12~22Tn!Re$~11g1* g2* 1 f 1* f 2* !@~cosu01cosu0* !~g11g2!1~sinu01sinu0* !~ f 11 f 2!#%

14TnIm~cosu0sinu0* !Im@~ f 11 f 2!~g1* 1g2* !#. ~22!
9-5
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This is a very general expression which is available for a
singlet superconductor without BTRSS. This expression
also one of the central results of this paper. For isotro
limit where f 15 f 2 andg15g2 is satisfied, we obtain

I b5
2e2

h (
n

Tn
2L112Tn~22Tn!L2

2u~22Tn!1Tn@g1cosu01 f 1sinu0#u2
,

L15~11ucosu0u21usinu0u2!~ ug1u21u f 1u211!

14Im@ f 1g1* #Im@cosu0sinu0* #, ~23!

which is identical to Eq.~11! of Ref. 37. On the other han
for the ballistic limit, whereu050 is satisfied, we can repro
duce the generalized BTK formula,40

I b5
2e2

h (
n

Tn@11TnuG1u21~Tn21!uG1G2u2#

u11~Tn21!G1G2u2
~24!

with

G15
D1

«1A«22D1
2

, G25
D2

«1A«22D2
2

,

where the following equations are satisfied:

g11g2

11g1g21 f 1 f 2
5

11G1G2

12G1G2
,

f 11 f 2

11g1g21 f 1 f 2
5

i ~G11G2!

12G1G2
.

D. Calculation of the conductance

In the following, we apply the quasiclassical Keldysh fo
malism for calculation of the conductance. The spatial
pendence of 434 Green’s function in DNǦN(x) which is
expressed in the matrix form as

ǦN~x!5S R̂N~x! K̂N~x!

0 ÂN~x!
D

should be determined. The Keldysh componentK̂N(x) is
given by K̂N(x)5R̂N(x) f̂ 1(x)2 f̂ 1(x)ÂN(x) with retarded
componentR̂N(x), advanced componentÂN(x) using distri-
bution functionf̂ 1(x). We put the electrical potential zero i
theSelectrode. In this case the spatial dependence ofǦN(x)
in DN is determined by the static Usadel equation,25

D
]

]x
F ǦN~x!

]ǦN~x!

]x
G1 i @Ȟ,ǦN~x!#50 ~25!

with the diffusion constantD in DN, whereȞ is given by

Ȟ5S Ĥ0 0

0 Ĥ0
D

with Ĥ05«t̂3.
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The boundary condition forǦN(x) at the DN/S interface
is given by

L

Rd
F ǦN~x!

]ǦN~x!

]x
GU

x502

52
h

2e2Rb

^ Ǐ &. ~26!

The average over the various angles of injected particle
the interface is defined as

^ Ǐ ~f!&5E
2p/2

p/2

df cosf Ǐ ~f!Y E
2p/2

p/2

dfT~f!cosf

~27!

with Ǐ (f)5 Ǐ andT(f)5Tn . The resistance of the interfac
Rb is given by

Rb5
h

2e2

2

E
2p/2

p/2

dfT~f!cosf

.

ǦN(2L) coincides with that in the normal state. The elect
current is expressed usingǦN(x) as

I el5
2L

4eRd
E

0

`

d«TrF t3S ǦN~x!
]ǦN~x!

]x
D KG , ~28!

where $ǦN(x)@]ǦN(x)/]x#%K denotes the Keldysh compo
nent of $ǦN(x)@]ǦN(x)/]x#%. In the actual calculation, we
introduce a parameteru(x) which is a measure of the prox
imity effect in DN where we denotedu(0)5u0 in the previ-
ous subsections. Usingu(x), R̂N(x) can be denoted as

R̂N~x!5 t̂3cosu~x!1 t̂2sinu~x!. ~29!

ÂN(x) and K̂N(x) satisfy the following equations:ÂN(x)
52t3R̂N

† (x) t̂3, andK̂N(x)5R̂N(x) f̂ 1(x)2 f̂ 1(x)ÂN(x) with

the distribution function f̂ 1(x) which is given by f̂ 1(x)
5 f 0N(x)1 t̂3f 3N(x). In the above,f 3N(x) is the relevant
distribution function which determines the conductance
the junction we are now concentrating on. From the retar
or advanced component of the Usadel equation, the sp
dependence ofu(x) is determined by the following equation

D
]2

]x2
u~x!12i« sin@u~x!#50, ~30!

while for the Keldysh component we obtain

D
]

]x F] f 3N~x!

]x
cosh2u imag~x!G50 ~31!

with u imag(x)5Im@u(x)#. At x52L, since DN is attached
to the normal electrode,u(2L)50 and f 3N(2L)5 f t0 is
satisfied with

f t05 1
2 $tanh@~«1eV!/~2kBT!#2tanh@~«2eV!/~2kBT!#%,
9-6
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whereV is the applied bias voltage. Next, we focus on t
boundary condition at the DN/S interface. Taking the
tarded part of Eq.~26!, we obtain
n

ry

d

14451
-
L

Rd

]u~x!

]x U
x502

5
^F&
Rb

,

F5
2Tn@cosu0~ f 11 f 2!2sinu0~g11g2!#

~22Tn!~11g1g21 f 1 f 2!1Tn@cosu0~g11g2!1sinu0~ f 11 f 2!#
. ~32!

On the other hand, from the Keldysh part of Eq.~26!, we obtain

L

Rd
S ] f 3N

]x D cosh2u0U
x502

52
^I b0& f 3N~02!

Rb
,

I b05
Tn

2

C0f 3N~02!

u~22Tn!~11g1g21 f 1 f 2!1Tn@cosu0~g11g2!1sinu0~ f 11 f 2!#u2
,

C05Tn~11ucosu0u21usinu0u2!@ ug11g2u21u f 11 f 2u21u11 f 1 f 21g1g2u21u f 1g22g1 f 2u2#

12~22Tn!Re$~11g1* g2* 1 f 1* f 2* !@~cosu01cosu0* !~g11g2!1~sinu01sinu0* !~ f 11 f 2!#%

14TnIm~cosu0sinu0* !Im@~ f 11 f 2!~g1* 1g2* !#. ~33!
ly.

the
g
en-

stal
After a simple manipulation, we can obtain

f 3N~02!5
Rbf t0

Rb1
Rd^I b0&

L E
2L

0 dx

cosh2u imag~x!

.

Since the electric currentI el can be expressed viau0 in the
following form:

I el52
L

eRd
E

0

`S ] f 3N

]x DU
x502

cosh2@ Im~u0!#d«,

we obtain the following final result for the current:

I el5
1

eE0

`

d«
f t0

Rb

^I b0&
1

Rd

L E
2L

0 dx

cosh2u imag~x!

. ~34!

Then the total resistanceR at zero temperature is given by

R5
Rb

^I b0&
1

Rd

L E
2L

0 dx

cosh2u imag~x!
. ~35!

In the following section, we will discuss the normalized co
ductancesT(eV)5sS(eV)/sN(eV) wheresS(N)(eV) is the
voltage-dependent conductance in the superconducting~nor-
mal! state given bysS(eV)51/R andsN(eV)5sN51/(Rd
1Rb), respectively.

It should be remarked that in the present circuit theo
Rd /Rb can be varied independently ofTn , i.e., of Z, since
we can change the magnitude of the constriction area in
pendently. In other words,Rd /Rb is no more proportional to
-

,

e-

Tav(L/ l ), whereTav is the averaged transmissivity andl is
the mean-free path in the diffusive region, respective
Based on this fact, we can chooseRd /Rb andZ as indepen-
dent parameters.

III. RESULTS

In this subsection, we focus on the line shapes of
conductance whered-wave symmetry is chosen as a pairin
symmetry of unconventional superconductor. The pair pot
tials D6 are given byD65D0cos@2(f7a)# wherea denotes
the angle between the normal to the interface and the cry
axis ofd-wave superconductors andD0 is the maximum am-
plitude of the pair potential. In the above,f denotes the
injection angle of the quasiparticle measured from thex axis.
It is known that quasiparticles with injection anglef with
p/42uau,ufu,p/41uau feel the MABS at the interface
which induces ZBCP.

FIG. 1. Normalized conductancesT(eV) for Z510, and a
50. ~a! ETh5D0. ~b! ETh50.01D0 . a, Rd /Rb50; b, Rd /Rb

50.1; c, Rd /Rb51; d, Rd /Rb52; ande, Rd /Rb510.
9-7
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A. aÄ0 without MABS

Let us first choosea50 where ZBCP due to the MABS i
absent. We choose relatively strong barrierZ510 ~Fig. 1! for
variousRd /Rb . For ETh5D0 @see Fig. 1~a!#, the magnitude
of sT(eV) for ueVu,D0 increases with the increase o
Rd /Rb . First, the line shape of the voltage-dependent c
ductance remains to be V shaped and only the height of
bottom value is enhanced~curvesb and c). The V shaped
line shape originates from the existence of nodes of
d-wave pair potential. Then, with a further increase
Rd /Rb , a rounded bottom structure appears~curvesd and
e!. For ETh50.01D0 @Fig. 1~b!#, the magnitude ofsT(eV)
has a ZBCP once the magnitude ofRd /Rb deviates slightly
from 0. The order of the magnitude of the ZBCP width
given byETh as in the case ofs-wave junctions.38 When the
magnitude ofRd /Rb exceeds unity, thesT(eV) acquires a
ZBCD ~curve e). The qualitative features of line shapes
sT(eV) are different from those ins-wave junctions~see
Figs. 1 and 2 in Ref. 38!. It should be remarked that even
the case ofd-wave junctions we can expect ZBCP by CA
as in the case ofs-wave junction fora50.

On the other hand, for much more transparent case w
Z51 the line shapes of the conductance become quite
ferent. ForETh5D0 @Fig. 2~a!#, the magnitude ofsT(eV)
decreases with the increase of the magnitude ofRd /Rb
where the bottom parts of all curves are V shaped structu
On the other hand, forETh50.01D0 , sT(eV) has a ZBCD
even for a small magnitude ofRd /Rb . Both for Figs. 2~a!
and 2~b!, the magnitude ofsT(eV) for ueVu,D0 decreases
with the increase ofRd /Rb . These features are quite diffe
ent from those shown in Fig. 1.

FIG. 2. Normalized conductancesT(eV) for Z51, anda50.
~a! ETh5D0. ~b! ETh50.01D0 . a, Rd /Rb50; b, Rd /Rb50.1; c,
Rd /Rb51; d, Rd /Rb52; e, Rd /Rb510.

FIG. 3. Normalized conductancesT(eV) for Z50, anda50.
~a! ETh5D0. ~b! ETh50.01D0 . a, Rd /Rb50; b, Rd /Rb50.1; c,
Rd /Rb51; d, Rd /Rb52; ande, Rd /Rb510.
14451
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For transparent limitZ50, the magnitude ofsT(eV) de-
creases with the increase ofRd /Rb ~see Fig. 3!. For ETh
5D0 , sT(eV) has a broad ZBCP for smallRd /Rb . However,
with the increase ofRd /Rb , sT(eV) for ueVu,D0 is reduced
and becomes nearly constant. ForETh50.01D0 with Rd /Rb
510, tiny ZBCD appears@curve e of Fig. 3~b!#. As com-
pared to the corresponding case of ans-wave junction~see
Fig. 4 of Ref. 38!, ZBCD is hard to be seen ind-wave junc-
tions.

It is interesting to study how various parameters influen
the proximity effect. The measure of the proximity effect
the DN/US interfaceu0 is plotted forZ50 andZ510 with
corresponding parameters in Figs. 1 and 3~see Figs. 4 and
5!. For Rd /Rb50, u050 is satisfied for anyETh and Z.
Besides this fact, at«50, u0 always becomes a real numbe
These features are consistent with those ins-wave
junctions.38 First, we study the case ofETh /D051 ~Fig. 4!
where the same values ofRd /Rb are chosen as in Figs. 1 an
3. The real part ofu0 is enhanced with an increase inRd /Rb
and decreases as a function of«. At the same time, the imagi
nary part ofu0 is an increasing function of« for «,D0 .
Both real and imaginary parts have a sudden change«

FIG. 4. Real~upper panels! and imaginary parts~lower panels!
of u0 are plotted as a function of«. Z510 ~left panels! andZ50
~right panels! with ETh /D051 and a50. a, Rd /Rb50.1; b,
Rd /Rb51; andc, Rd /Rb510.

FIG. 5. Real~upper panels! and imaginary parts~lower panels!
of u0 are plotted as a function of«. Z510 ~left panels! andZ50
~right panels! with ETh /D050.01 anda50. a, Rd /Rb50.1; b,
Rd /Rb51; andc, Rd /Rb510.
9-8
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THEORY OF CHARGE TRANSPORT IN DIFFUSIVE . . . PHYSICAL REVIEW B 69, 144519 ~2004!
5D0 , whereD0 is the magnitude of the pair potential felt b
quasiparticles with the perpendicular injection. It is rema
able that the magnitude of Re(Im)(u0) is reduced with the
decrease ofZ. Next, we discuss the line shapes ofu0 for
ETh /D050.01. Re(u0) has a peak at zero voltage and d
creases with the increase of«. Im(u0) increases sharply
from 0 and has a peak at about«;ETh , except for a suffi-
ciently large value ofRd . These features are consistent w
s-wave junctions~see Fig. 7 of Ref. 38!. Besides this, both
real and imaginary parts have a sudden change at«5D0 as
in the case ofETh/D051. Also in this case, the magnitude o
Re~Im!~u0! is reduced with the decrease ofZ. This feature
can be qualitatively explained as follows. We concentrate
the limiting case«50 for simplicity.

The magnitude ofu0(0)5u00 is determined by the fol-
lowing equation@see Eq.~32!#:

u00

Rd
5^F~f!&5

E
2p/2

p/2

cosfF~f!df

RbE
2p/2

p/2

cosfT~f!df

,

F~f!5
2Tncosu00d

22Tn1Tnsinu00d
, Tn5T~f! ~36!

since f 15 f 25d and g15g250 are satisfied withd51
(21) for 2p/4,f,p/4 (p/4,ufu,p/2). The sign
change nature ofd originates fromd-wave profile of the pair
potential. This sign change reduces the magnitude of
right-hand side of Eq.~36!, and the resultingu00 is small. For
the case of large magnitude ofZ, the degree of the reductio
due to the sign change ofd, i.e.,F(f) is not significant. For
large magnitude ofZ due to the existence of the factorTn
(Tn!1) proportional to cos2f, only the small value off can
contribute to the integral of numerator whered51. This is
the reason why the obtained measure ofu00 for Z50 is much
smaller than that forZ510.

Although the magnitude ofu0, i.e., the measure of th
proximity effect, is enhanced with increasingRd /Rb , its in-
fluence onsT(eV) is different for low and high transparen
junctions. In the low transparent junctions, the increase in
magnitude ofu0 by Rd /Rb can enhance the conductan
sT(eV) for eV;0 and produce a ZBCP, whereas in hig
transparent junctions the enhancement ofu0 produces the

FIG. 6. Normalized conductancesT(eV) for a5p/8. ~a! ETh

5D0. ~b! ETh50.01D0 . a, Rd /Rb50; b, Rd /Rb51; and c,
Rd /Rb510.
14451
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ZBCD. However, the amplitude of dip is reduced since t
magnitude ofu00 becomes small due to the sign change
F(f).

B. aÅ0 with MABS

In this subsection, we focus onsT(eV) andu0 for aÞ0
(0,a,p/4). First we focus ona5p/8, where MABS is
formed for p/8,ufu,3p/8. In the low transparent case
i.e., Z510, sT(eV) has a ZBCP due to the formation o
MABS at the DN/US interface. The height of ZBCP is r
duced with the increase ofRd /Rb ~see Fig. 6!. Contrary to
the corresponding case ofs-wave junctions~see Fig. 1!,
sT(eV) is almost independent ofETh . ForZ50 ~see Fig. 7!,
sT(eV) has a broad ZBCP both forETh5D0 and ETh
50.01D0. With the increase ofRd /Rb , only the magnitude
of sT(eV) is reduced and ZBCD does not appear.

It is also interesting to see howu0 is influenced by various
parameters. In Fig. 8, line shapes ofu0 for ETh /D051 are
plotted for various parameters. ForZ510, the magnitude of
Re(u0) is drastically suppressed at«;0 and is an increasing
function of« contrary to the case ofa50. Im~u0! has a peak
around «;0.7D0;D0 cos(2a), where D0 cos(2a) is the
magnitude of the pair potential felt by quasiparticles w
perpendicular injection. ForZ50, « dependence ofu0 is
qualitatively similar to the corresponding case ofa50 ~see
Fig. 4!, since the role of MABS is not important. Fo
ETh /D050.01, the magnitude of Re(u0) at «;0 is sup-

FIG. 7. Normalized conductancesT(eV) for Z50, and a
5p/8. ~a! ETh5D0. ~b! ETh50.01D0 . a, Rd /Rb50; b, Rd /Rb

51; andc, Rd /Rb510.

FIG. 8. Real~upper panels! and imaginary parts~lower panels!
of u0 are plotted as a function of«. Z510 ~left panels! andZ50
~right panels! with ETh /D051 and a5p/8. a, Rd /Rb50.1; b,
Rd /Rb51; andc, Rd /Rb510.
9-9
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pressed~see Fig. 9! for Z510. Im(u0) has a peak around
«;0.7D0 as in the case ofETh/D051. On the other hand
for high transparent case, i.e.,Z50, Re(u0) has a peak a
«50 and decreases with the increase of«. Im(u0) increases
sharply from 0 and has a peak at about«;ETh , except for a
sufficiently large value ofRd . These features are qualita
tively consistent witha50 ~see Fig. 5!.

In order to understand these profiles, we focus on the c
with «50. u00 is determined by the following relation fo
aÞ0:

u00

Rd
5

^F~f!&
Rb

,

F~f!55
2T~f!cosu00

22T~f!1T~f!sinu00
, 0,ufu,p/42a

22 tanu00, p/42a,ufu,p/41a

22T~f!cosu00

22T~f!2T~f!sinu00
, p/41a,ufu,p/2.

~37!

After simple algebra, we obtain

u00

Rd
5

f S11 f S21 f S3

Rbf N
,

f S1522A2tanu00sina,

f S25E
0

p/42a

cosf
2T~f!cosu00

22T~f!1T~f!sinu00
df,

f S352E
p/41a

p/2

cosf
2T~f!cosu00

22T~f!2T~f!sinu00
df,

f N5E
0

p/2

T~f!cosfdf. ~38!

In the above,f S1 denotes the contribution tôF(f)& from
the unconventional channel with MABS andf S2 and f S3 de-

FIG. 9. Real~upper panels! and imaginary parts~lower panels!
of u0 are plotted as a function of«. Z510 ~left panels! andZ50
~right panels! with ETh /D050.01 anda5p/8. a, Rd /Rb50.1; b,
Rd /Rb51; andc, Rd /Rb510.
14451
se

note that from the conventional channel without MABS. F
low transparent case,T(f)!1, the magnitude off S1 domi-
nates over those off S2 and f S3 andu00 is determined by

u00

Rd
;

22A2tanu00sina

Rbf N
, ~39!

then the resultingu00 is reduced to be almost zero. As se
from this, MABS and proximity effect strongly compet
each other. While for high transparent limit,T(f)51, the
magnitude off S1 becomes the same order as those off S2 and
f S3. Then from the contribution by conventional chann
i.e., f S2 and f S3, the magnitude ofu00 is much larger than
that for Z510.

For a5p/4, wheref S25 f S350 is satisfied, only the un-
conventional channelf S1 can contribute tôF(f)&. Not only
u00 but u0 for any« is exactly zero. Then the total resistan
R can be given by108

R5
Rb

^I b0&
1Rd5RRd501Rd ~40!

and the resultingsT(eV) is given by

sT~eV!5
Rd1Rb

RRd501Rd
.

One of the typical examples is plotted in Fig. 10.
The effect ofRd is significant for the resultingsT(eV).

For the actual quantitative comparison with tunneling expe
ments, we must take into account the effect ofRd .

C. a dependence of zero-voltage conductance

Finally, we study the dependence ofsT(0) on the angle
a. In this case,sT(0) is independent ofETh . For all situa-
tions shown in Figs. 11–13,u0050 is satisfied fora5p/4,
due to the complete absence of proximity effect where o
the unconventional channel with MABS exists. ForZ50,

FIG. 10. Normalized conductancesT(eV) for Z510, ETh /D0

51 anda5p/4. a, Rd /Rb50; b, Rd /Rb51; andc, Rd /Rb510.
In this case,sT(eV) is completely independent of the magnitude
ETh .
9-10
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THEORY OF CHARGE TRANSPORT IN DIFFUSIVE . . . PHYSICAL REVIEW B 69, 144519 ~2004!
sT(0) is almost constant with the change ofa althoughu00
is a decreasing function ofa ~see Fig. 11!.

For Z51, sT(0) is an increasing function ofa, while u00
is a decreasing function~see Fig. 12!. For Z510, sT(0) is
enhanced much more rapidly as compared to the case fZ
51, while with the increase ofRd /Rb , sT(0) becomes
nearly constant~see Fig. 13!. As seen from Figs. 12 and 13
the influence ofRd /Rb on thesT(0) is significantly impor-
tant.

In order to understand these features we look atI b0 in
detail. In general, for«50, ^I b0& can be expressed by

^I b0&5
I b11I b21I b3

I n
,

I b152A2 sinasec2u00,

I b25E
0

p/42a

cosf
2T~f!@T~f!1$22T~f!%sinu00#

u22T~f!1T~f!sinu00u2
,

I b35E
p/41a

p/2

cosf
2T~f!@T~f!2$22T~f!%sinu00#

u22T~f!2T~f!sinu00u2
,

I n5E
0

p/2

T~f!cosfdf. ~41!

I b1 denotes the contribution from the unconventional chan
while I b2 and I b3 denote those from the conventional cha
nel. ForZ50, the integral can be performed analytically. F
a50, ^I b0& becomes 2sec2u00@12(A221)sinu00# for a
50 and 2 sec2u00 for a5p/4. Since the order ofu00 is at

FIG. 11. Normalized conductance at zero voltagesT(0) for
variousa with Z50. In this casesT(0) is independent ofETh . a,
Rd /Rb50; b, Rd /Rb50.1; c, Rd /Rb51; andd, Rd /Rb510.

FIG. 12. Normalized conductance at zero voltagesT(0) for
variousa with Z51. In this casesT(0) is independent ofETh . a,
Rd /Rb50; b, Rd /Rb50.1; c, Rd /Rb51; andd, Rd /Rb510.
14451
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most 0.1 as seen from Fig. 11~b!, the difference between th
two cases is small. Then we can expect thatsT(0) is almost
constant as a function ofa. On the other hand, forZÞ0, the
contribution from the unconventional channel becomes s
nificant and the resultinĝI b0& can be approximated to be

^I b0&;2A2sinasec2u00/I n .

It is an increasing function ofa, and the resultingsT(0) is
also an increasing function ofa ~see Figs. 12 and 13!.

IV. CONCLUSIONS

In the present paper, detailed theoretical investigation
the voltage-dependent conductance of DN/US junctions
presented. We have provided the detailed derivation of
expression for the matrix current presented in our previ
paper.108 For the reader’s convenience, we explicitly prese
the retarded and the Keldysh parts of the matrix current
the case when the US has a singlet parity. Applying th
expressions to DN/d-wave junctions, we have obtained th
following main results.

~1! There are two kinds of ZBCP, i.e., ZBCP due to t
CAR by proximity effect in DN and that due to the formatio
of MABS at interfaces ofd-wave superconductors. ZBC
frequently appears in the line shapes ofsT(eV). For low
transparent junctions with small Thouless energyETh we al-
ways expect ZBCP independent ofa.

~2! The nature of ZBCP due to the MABS and that b
CAR is significantly different. The correspondingsT(0) for
the former case can take arbitrary values exceeding unity
the other hand,sT(0) for the latter case never exceeds uni
The width of the ZBCP in the former case is determined
the transparency of the junction while the width for the lat
case is determined by the Thouless energy. These
ZBCP’s compete each other since the proximity effect a
the existence of MABS are incompatible in singl
junctions.108

~3! For the extreme case,a5p/4, where the proximity
effect is absent and the CAR is canceled,sT(eV) is given by
sT(eV)5(Rb1Rd)/(RRd501Rd) with the resistance at the

interfaceRb .
~4! Only whena50 MABS is absent forRd50. Then

CAR influences significantlysT(eV), similarly to the case
of ans-wave junction. When the transparency of the juncti
is sufficiently low, sT(eV) for ueVu,D0 is enhanced with

FIG. 13. Normalized conductance at zero voltagesT(0) for
variousa with Z510. In this casesT(0) is independent ofETh . a,
Rd /Rb50; b, Rd /Rb50.1; c, Rd /Rb51; andd, Rd /Rb510.
9-11
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the increase ofRd due to the enhancement of the proximi
effect assisted by CAR. The ZBCP becomes prominent
ETh!D0 and Rd /Rb,1. In such a case, with a further in
crease ofRd /Rb the ZBCP changes into a ZBCD.

~5! We have clarified various line shapes of the cond
tance including ZBCP. The obtained results serve as an
portant guide to analyze the actual experimental data of
tunneling spectra of high-TC cuprate junctions. We want to
stress that the height of ZBCP is strongly suppressed by
existence of DN and the resultingsT(0) is not so high as
obtained in the ballistic regime.40 In the actual fit of the
experimental data, we strongly hope to take into account
effect of Rd . When the transparency of the junction is lo
and aÞ0, the contribution of unconventional channel b
comes important and that from conventional channel is n
ligible. In such a case without solving Usadel equati
sT(eV) can be simply approximated by

sT~eV!5
Rd1Rb

RRd501Rd
, RRd505

Rb

^I b0&
,

^I b0&5

E
2p/2

p/2

cosfI b0df

E
2p/2

p/2

cosfT~f!df

,

I b05
T~f!$11T~f!uG1u21@T~f!21#uG1G2u2%

u11@T~f!21#G1G2u2
,

G15
D1

«1A«22D1
2

, G25
D2

«1A«22D2
2

,

Rb5
h

2e2

2

E
2p/2

p/2

dfT~f!cosf

~42!

with D65D0cos@2(f7a)# and«5eV. This expression is a
convenient one for the fit of the experimental data. Howev
for the quantitative discussions including much more gen
cases, one must solve the Usadel equation as was done
present paper. It is an interesting future problem to comp
the present results with experiments since recent experim
tal results show the existence of mesoscopic coherenc
high TC cuprate junctions.110

There are several problems which are not discussed in
present paper. In the present study, we have focused on
junctions. The extension of the circuit theory to long diff
sive S/N/S junctions has been performed by Bezuglyiet al.36

In S/N/S junctions, the mechanism of multiple Andreev
flections produces the subharmonic gap structures onI -V
curves111–117and the situation becomes much more comp
as compared to N/S junctions. Moreover, in S/N/S junctio
with unconventional superconductors, MABS leads to
anomalous current-phase relation and temperature de
dence of the Josephson current.89 An interesting problem is
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an extension of the circuit theory to S/N/S junctions w
unconventional superconductors.

There are two kinds of ZBCP’s considered in the pres
paper. We expect that the response to the magnetic
should be significantly different in these two cases. T
ZBCP originating from MABS is rather robust against th
magnetic field while that from CAR is much more sensitiv
We want to clarify this feature in actual calculations.

In the present paper, since we follow the quasiclass
Green’s function formalism, the impurity scattering is tak
into account within the self-consistent Born approximatio
It is a challenging problem to study the weak localizati
effects.
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APPENDIX

The matrix current is expressed as

Ǐ 5
2e2

h
Trn,s@S̄zḡ1#5

2e2

h
Trn,s@S̄zḡ2#. ~A1!

To find the matrix current, we have to evaluateḡ1(2) . For

this purpose, we shall consider the behavior ofǦn
ss8(x,x8)

in the isotropization zone in DN side (2L1,x,x8,2L2)
and in the ballistic zone of right side (x,x8.0). In the iso-
tropic zone, since the effect of impurity scattering is dom
nant and Ȟ can be approximated to be2Š imp(x)
5Ǧ1 /(2t imp) for x,0. Ǧ1 is the Keldysh-Nambu Green’
function in DN atx52L1 with j1@L1@vt imp andj1@L1

2L2@vt imp wherej15AD/2pT is the coherence length o
the Green’s function in DN. Due to this condition,Ǧ1 can be
approximated to beǦ15ǦN(2L1);ǦN(02), whereǦN(x)
obeys the Usadel equation in DN. The Green’s funct

Ǧn
ss8(x,x8) is expressed by

Ǧn
ss8~x,x8!5 P̄~x!@ ḡ11sgn~x2x8!S̄z# P̄~2x8!,

P̄~x!5
1

2A2vni
$exp@x/~2vnt imp!#~ 1̄2S̄zḠ1!

1exp@2x/~2vnt imp!#~ 1̄1S̄zḠ1!% ~A2!

with

Ḡ15S Ǧ1 0

0 Ǧ1
D , S̄z5S 1̌ 0

0 21̌
D . ~A3!
9-12
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To ensure thatǦn
ss8(x,x8) does not grow with decreasingx

andx8 in the isotropic zone in DN, we shall require

~S̄z1Ḡ1!~S̄z2ḡ1!50, ~A4!
-

g

es

-

as

14451
~S̄z1ḡ1!~S̄z2Ḡ1!50. ~A5!

On the other hand, in the US side (x.0) it is not simple to

obtain Ǧn
ss8(x,x8) since it has directional dependenc

Ǧn
ss8(x,x8) is given by
Ǧn
ss8~x,x8!5 P̄~x!@ ḡ21sgn~x2x8!S̄z# P̄~2x8!, P̄~x!5 P̄1~x!1 P̄2~x!, P̄1(2)~x!5S P̌1(2)1 0̌

0̌ P̌1(2)2
D , ~A6!

P̌16~x!5
1

2A2vni
S g6~17R̂26! f 0@g6~17R̂26!2g6* ~17Â26!#

0 g6* ~17Â26!
D ,

P̌26~x!5
1

2A2vni
S ḡ6~16R̂26! f 0@ ḡ6~16R̂26!2ḡ6* ~16Â26!#

0 ḡ6* ~16Â26!
D

be

we
with

g65expF2 i
A~«1 id!22D6

2

\vFx
xG

and

ḡ65expF i
A~«1 id!22D6

2

\vFx
xG .

In the above,R̂26 andÂ26 are retarded and advanced com
ponents of Keldysh-Nambu Green’s functionǦ26 at the in-
terface of US where6 denotes the direction of motion alon
x axis. Ǧ21 and Ǧ22 are given byǦ265ǦS6(01) where
ǦS6(x) is a quasiclassical Green’s function in US. It do
depend on the direction of motions. Here we neglect the
spatial dependence for simplicity and we assumeǦ26

5ǦS6(x)5ǦS6(`). Sinceg6 and g6* are glowing func-
tions with the increase ofx, the term that includes this com
ponent should be eliminated by multiplying@ ḡ21sgn(x
2x8)S̄z#. For convenience, we denote

ḡ21sgn~x2x8!S̄z5S Ǎ Č

B̌ Ď
D .

In order to eliminate the divergence terms with the incre
of x (x.0),

S g1~12R̂21! f 0@g1~12R̂21!2g1* ~12Â21!#

0 g1* ~12Â21!
D S â ĉ

b̂ d̂
D

50, Ǎ5S â ĉ

b̂ d̂
D

e

should be satisfied. Then following four equations must
satisfied for anyx:

g1~12R̂21!â1 f 0@g1~12R̂21!2g1* ~12Â21!#b̂50,

g1* ~12Â21!b̂50,

g1* ~12Â21!d̂50,

g1~12R̂21!ĉ1 f 0@g1~12R̂21!2g1* ~12Â21!#d̂50.

Thus we obtain

S (12R̂21) f 0[ 2R̂211Â21)]

0 (12Â21)
D S â ĉ

b̂ d̂
D 50.

Applying the similar discussions for other components,
also obtain the following equations:

S Ě1 0

0 Ě2

D S Ǎ Č

B̌ Ď
D 50

with

Ě65S (12R̂26) f 0[ 2R̂261Â26)]

0 (12Â26)
D .

The resulting equation is identical to Eq.~30! of Ref. 37.

~S̄z2Ḡ2!~ ḡ21S̄z!50. ~A7!

Applying similar discussion for the case with increasingx8
(x8.0), we can also obtain

~ ḡ22S̄z!~S̄z1Ḡ2!50.
9-13
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To find explicit expression ofḡ2, we multiply Eq.~A4! by
M̄† from the left and byM̄ from the right. By introducing the
matrix Q̄5M̄†M̄ , we derive

ḡ25~Q̄Ḡ21Ḡ1!21$2Q̄1~Ḡ12Q̄Ḡ2!S̄z% ~A8!

with

Ḡ25S Ǧ21 0

0 Ǧ22

D .

To evaluate matrix currentǏ , we rewriteḡ2 in the basis com-
posed of eigenvectors ofQ̄ and Keldysh-Nambu indices. Fo
each eigenvectorcWn with eigenvalueqn.1, the vectorS̄zcWn

is also an eigenvector ofQ̄ with eigenvalueqn
21 ,

Q̄5S qn 0

0 qn
21D , S̄z5S 0 1̌

1̌ 0
D . ~A9!

The resultingḡ2 is given by

ḡ25S qnȞ11Ǧ1 qnȞ2

qn
21Ȟ2 qn

21Ȟ11Ǧ1
D 21

3S qn~22Ȟ2! Ǧ12qnȞ1

Ǧ12qn
21Ȟ1 qn

21~22Ȟ2!
D ~A10!

with Ȟ65(Ǧ216Ǧ22)/2. Then the matrix currentǏ can be
expressed as

Ǐ 5
2e2

h (
n

Ǐ n0 ,

Ǐ n05@Ȟ22~qnȞ11Ǧ1!Ȟ2
21~Ȟ1 /qn1Ǧ1!#21~22Ȟ2!

1@Ȟ22~Ȟ1 /qn1Ǧ1!Ȟ2
21~qnȞ11Ǧ1!#21~22Ȟ2!

1@~Ȟ1 /qn1Ǧ1!2Ȟ2~qnȞ11Ǧ1!21Ȟ2#21

3~Ǧ12Ȟ1 /qn!1@~qnȞ11Ǧ1!

2Ȟ2~Ȟ1 /qn1Ǧ1!21Ȟ2#21~Ǧ12qnȞ1!. ~A11!

Applying the following identity:

Ȟ1
2 1Ȟ2

2 51̌, Ȟ1Ȟ21Ȟ2Ȟ150
S

il-

14451
Ǐ n0 can be written as follows:

Ǐ n05~@Ǧ1 ,Ȟ2
21#qn2Ȟ2

21Ȟ11Ǧ1Ȟ2
21Ȟ1Ǧ1qn

2!21@~Ǧ1

2Ȟ2
21Ǧ1!qn1Ǧ1Ȟ2

21Ȟ1Ǧ1qn
2#1~@Ǧ1 ,Ȟ2

21#/qn

2Ȟ2
21Ȟ1 /qn

21Ǧ1Ȟ2
21Ȟ1Ǧ1!21@~Ǧ12Ǧ1Ȟ2

21!/qn

1Ȟ2
21Ȟ1 /qn

2#1~@Ǧ1 ,Ȟ2
21#/qn2Ȟ2

21Ȟ1

1Ǧ1Ȟ2
21Ȟ1Ǧ1 /qn

2!21@~Ǧ12Ȟ2
21Ǧ1!/qn

1Ǧ1Ȟ2
21Ȟ1Ǧ1 /qn

2#1~@Ǧ1 ,Ȟ2
21#qn2Ȟ2

21Ȟ1qn
2

1Ǧ1Ȟ2
21Ȟ1Ǧ1!21@~Ǧ12Ǧ1Ȟ2

21!qn1Ȟ2
21Ȟ1qn

2#.

~A12!

The eigenvalueqn and the transparency of the junctionTn
satisfy the following relations:

4qn /~11qn!25Tn , ~11qn
2!/~11qn!25~22Tn!/2.

We introduce

T1n5
Tn

22Tn12A12Tn

and the resultingǏ n0 becomes

Ǐ n052Ď21$T1n~2Ǧ12@Ȟ2
21,Ǧ1#1!

1Ȟ2
21Ȟ11T1n

2 Ǧ1Ȟ2
21Ȟ1Ǧ1%

1Ǧ1Ď21Ǧ1$T1n~2Ǧ12@Ȟ2
21,Ǧ1#1!

1T1n
2 Ȟ2

21Ȟ11Ǧ1Ȟ2
21Ȟ1Ǧ1% ~A13!

with

Ď52T1n@Ǧ1 ,Ȟ2
21#1Ȟ2

21Ȟ12T1n
2 Ǧ1Ȟ2

21Ȟ1Ǧ1 ,

Ǐ n0 is also represented as follows:108

Ǐ n052@Ǧ1 ,B̌n#

with

B̌n5B̌nb
21@T1n~12Ȟ2

21!1T1n
2 Ǧ1Ȟ2

21Ȟ1#,

B̌nb5~2T1n@Ǧ1 ,Ȟ2
21#1Ȟ2

21Ȟ12T1n
2 Ǧ1Ȟ2

21Ȟ1Ǧ1!.
~A14!
ys.
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