84 research outputs found

    The Functional DRD3 Ser9Gly Polymorphism (rs6280) Is Pleiotropic, Affecting Reward as Well as Movement

    Get PDF
    Abnormalities of motivation and behavior in the context of reward are a fundamental component of addiction and mood disorders. Here we test the effect of a functional missense mutation in the dopamine 3 receptor (DRD3) gene (ser9gly, rs6280) on reward-associated dopamine (DA) release in the striatum. Twenty-six healthy controls (HCs) and 10 unmedicated subjects with major depressive disorder (MDD) completed two positron emission tomography (PET) scans with [11C]raclopride using the bolus plus constant infusion method. On one occasion subjects completed a sensorimotor task (control condition) and on another occasion subjects completed a gambling task (reward condition). A linear regression analysis controlling for age, sex, diagnosis, and self-reported anhedonia indicated that during receipt of unpredictable monetary reward the glycine allele was associated with a greater reduction in D2/3 receptor binding (i.e., increased reward-related DA release) in the middle (anterior) caudate (p<0.01) and the ventral striatum (p<0.05). The possible functional effect of the ser9gly polymorphism on DA release is consistent with previous work demonstrating that the glycine allele yields D3 autoreceptors that have a higher affinity for DA and display more robust intracellular signaling. Preclinical evidence indicates that chronic stress and aversive stimulation induce activation of the DA system, raising the possibility that the glycine allele, by virtue of its facilitatory effect on striatal DA release, increases susceptibility to hyperdopaminergic responses that have previously been associated with stress, addiction, and psychosis

    A complex interaction between glycine/NMDA receptors and serotonergic/noradrenergic antidepressants in the forced swim test in mice

    Get PDF
    Both clinical and preclinical studies demonstrate the antidepressant activity of the functional NMDA receptor antagonists. In this study, we assessed the effects of two glycine/NMDA receptor ligands, namely L-701,324 (antagonist) and d-cycloserine (a partial agonist) on the action of antidepressant drugs with different pharmacological profiles in the forced swim test in mice. Swim sessions were conducted by placing mice individually in glass cylinders filled with warmed water for 6 min. The duration of behavioral immobility during the last 4 min of the test was evaluated. The locomotor activity of mice was measured with photoresistor actimeters. L-701,324 and d-cycloserine given with reboxetine (administered in subeffective doses) did not change the behavior of animals in the forced swim test. A potentiating effect was seen when both tested glycine site ligands were given concomitantly with imipramine or fluoxetine in this test. The lesion of noradrenaline nerve terminals produced by DSP-4 neither altered the baseline activity nor influenced the antidepressant-like action of L-701,324 or d-cycloserine. The depletion of serotonin by p-CPA did not alter baseline activity in the forced swim test. However, it completely antagonized the antidepressant-like action produced by L-701,324 and d-cycloserine. Moreover, the antidepressant-like effects of imipramine, fluoxetine and reboxetine were abolished by d-serine, a full agonist of glycine/NMDA receptors. The present study demonstrates that glycine/NMDA receptor functional antagonists enhance the antidepressant-like action of serotonin, but not noradrenaline-based antidepressants and such their activity seems to depend on serotonin rather than noradrenaline pathway

    Globotriaosylsphingosine Accumulation and Not Alpha-Galactosidase-A Deficiency Causes Endothelial Dysfunction in Fabry Disease

    Get PDF
    BACKGROUND: Fabry disease (FD) is caused by a deficiency of the lysosomal enzyme alpha-galactosidase A (GLA) resulting in the accumulation of globotriaosylsphingosine (Gb3) in a variety of tissues. While GLA deficiency was always considered as the fulcrum of the disease, recent attention shifted towards studying the mechanisms through which Gb3 accumulation in vascular cells leads to endothelial dysfunction and eventually multiorgan failure. In addition to the well-described macrovascular disease, FD is also characterized by abnormalities of microvascular function, which have been demonstrated by measurements of myocardial blood flow and coronary flow reserve. To date, the relative importance of Gb3 accumulation versus GLA deficiency in causing endothelial dysfunction is not fully understood; furthermore, its differential effects on cardiac micro- and macrovascular endothelial cells are not known. METHODS AND RESULTS: In order to assess the effects of Gb3 accumulation versus GLA deficiency, human macro- and microvascular cardiac endothelial cells (ECs) were incubated with Gb3 or silenced by siRNA to GLA. Gb3 loading caused deregulation of several key endothelial pathways such as eNOS, iNOS, COX-1 and COX-2, while GLA silencing showed no effects. Cardiac microvascular ECs showed a greater susceptibility to Gb3 loading as compared to macrovascular ECs. CONCLUSIONS: Deregulation of key endothelial pathways as observed in FD vasculopathy is likely caused by intracellular Gb3 accumulation rather than deficiency of GLA. Human microvascular ECs, as opposed to macrovascular ECs, seem to be affected earlier and more severely by Gb3 accumulation and this notion may prove fundamental for future progresses in early diagnosis and management of FD patients

    Oxaliplatin, irinotecan and capecitabine as first-line therapy in metastatic colorectal cancer (mCRC): a dose-finding study and pharmacogenomic analysis

    Get PDF
    A dose-finding study was performed to evaluate the dose-limiting toxicity (DLT), maximum-tolerated dose (MTD) and the recommended dose (RD) of escalating the doses of capecitabine and fixed doses of irinotecan and oxaliplatin on a biweekly schedule for metastatic colorectal cancer patients (mCRC). A pharmacogenomic analysis was performed to investigate the association between SNPs and treatment outcome. METHODS: Eighty-seven chemotherapy-naive mCRC patients were recruited through a two-step study design; 27 were included in the dose-finding study and 60 in the pharmacogenomic analysis. Oxaliplatin (85 mg m(-2)) and CPT-11 (150 mg m(-2)), both on day 1, and capecitabine doses ranging from 850 to 1500 mg m(-2) bid on days 1-7 were explored. Peripheral blood samples were used to genotype 13 SNPs in 10 genes related to drug metabolism or efficacy. Univariate and multivariate Cox analysis was performed to examine associations between SNPs, ORR and PFS. RESULTS: The capecitabine RD was 1000 mg m(-2) bid. Diarrhoea and neutropenia were the DLTs. After a median follow-up of 52.5 months, the median PFS and OS were 12 (95% CI; 10.6-13.4) and 27 months (95% CI; 17.2-36.8), respectively.The GSTP1-G genotype, the Kohne low-risk category and use of a consolidation approach strongly correlated with decreased risk of progression. Patients with all favourable variables showed a median PFS of 42 months vs 3.4 months in the group with all adverse factors. A superior clinical response was obtained in patients with one GSTP1-G allele as compared with GSTP1-AA carriers (P=0.004). CONCLUSION: First-line therapy with oxaliplatin, irinotecan and capecitabine is efficient and well-tolerated. The GSTP1 polymorphism A>G status was significantly associated with ORR and PFS in mCRC treated with this triplet therapy

    Generation of a reference transcriptome for evaluating rainbow trout responses to various stressors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fish under intensive culture conditions are exposed to a variety of acute and chronic stressors, including high rearing densities, sub-optimal water quality, and severe thermal fluctuations. Such stressors are inherent in aquaculture production and can induce physiological responses with adverse effects on traits important to producers and consumers, including those associated with growth, nutrition, reproduction, immune response, and fillet quality. Understanding and monitoring the biological mechanisms underlying stress responses will facilitate alleviating their negative effects through selective breeding and changes in management practices, resulting in improved animal welfare and production efficiency.</p> <p>Results</p> <p>Physiological responses to five treatments associated with stress were characterized by measuring plasma lysozyme activity, glucose, lactate, chloride, and cortisol concentrations, in addition to stress-associated transcripts by quantitative PCR. Results indicate that the fish had significant stressor-specific changes in their physiological conditions. Sequencing of a pooled normalized transcriptome library created from gill, brain, liver, spleen, kidney and muscle RNA of control and stressed fish produced 3,160,306 expressed sequence tags which were assembled and annotated. SNP discovery resulted in identification of ~58,000 putative single nucleotide polymorphisms including 24,479 which were predicted to fall within exons. Of these, 4907 were predicted to occupy the first position of a codon and 4110 the second, increasing the probability to impact amino acid sequence variation and potentially gene function.</p> <p>Conclusion</p> <p>We have generated and characterized a reference transcriptome for rainbow trout that represents multiple tissues responding to multiple stressors common to aquaculture production environments. This resource compliments existing public transcriptome data and will facilitate approaches aiming to evaluate gene expression associated with stress in this species.</p

    Protein kinase C and cardiac dysfunction: a review

    Get PDF
    Heart failure (HF) is a physiological state in which cardiac output is insufficient to meet the needs of the body. It is a clinical syndrome characterized by impaired ability of the left ventricle to either fill or eject blood efficiently. HF is a disease of multiple aetiologies leading to progressive cardiac dysfunction and it is the leading cause of deaths in both developed and developing countries. HF is responsible for about 73,000 deaths in the UK each year. In the USA, HF affects 5.8 million people and 550,000 new cases are diagnosed annually. Cardiac remodelling (CD), which plays an important role in pathogenesis of HF, is viewed as stress response to an index event such as myocardial ischaemia or imposition of mechanical load leading to a series of structural and functional changes in the viable myocardium. Protein kinase C (PKC) isozymes are a family of serine/threonine kinases. PKC is a central enzyme in the regulation of growth, hypertrophy, and mediators of signal transduction pathways. In response to circulating hormones, activation of PKC triggers a multitude of intracellular events influencing multiple physiological processes in the heart, including heart rate, contraction, and relaxation. Recent research implicates PKC activation in the pathophysiology of a number of cardiovascular disease states. Few reports are available that examine PKC in normal and diseased human hearts. This review describes the structure, functions, and distribution of PKCs in the healthy and diseased heart with emphasis on the human heart and, also importantly, their regulation in heart failure

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Is Health Related Quality of Life (HRQoL) a valid indicator for health systems evaluation?

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.The purpose of this review is to do a discussion about the use of the HRQoL as a health measure of the populations that enable to analyze its potential use as a measure of development and efficiency of health systems. The principal use of the HRQoL is in health technologies economics evaluation; however this measure can be use in public health when need to know the health state of population. The WHO recognizes its potential use but its necessary to do a discussion about your difficulties for its application and restrictions for its use as a performance indicator for the health systems. The review show the different aspects about the use of HRQoL how a measure of efficiency ot the health system, each aspect identified in the literature is analyzed and discussed, developing the pros and cons of their possible use, especially when it comes as a cardinal measure. The analysis allows recognize that measuring HRQoL in countries could serve as a useful indicator, especially when it seeks to measure the level of health and disease, as do most of the indicators of current use. However, the methodological constraints that do not allow comparability between countries especially when you have large socioeconomic differences have yet to be resolved to allow comparison between different regions.Romero, D.; Vivas Consuelo, DJJ.; Alvis Guzman, NR. (2013). Is Health Related Quality of Life (HRQoL) a valid indicator for health systems evaluation?. SpringerPlus. 2:664-674. doi:10.1186/2193-1801-2-664S6646742Acemoglu D, Johnson S: Disease and development: The effect of life expectancy on economic growth. J Polit Econ 2007, 115(6):925-985. 10.1086/529000Anderson J, Sayles H, Curtis JR, Wolfe F, Michaud K: Converting modified health assessment questionnaire (HAQ), multidimensional HAQ, and HAQII scores into original HAQ scores using models developed with a large cohort of rheumatoid arthritis patients. Arthritis care & research 2010, 62(10):1481-1488. Epub 2010/05/25 10.1002/acr.20265Aristotles : Nicomachean Ethics: Batoche Books Kitchener. 1999. Available from: http://www.efm.bris.ac.uk/het/aristotle/ethics.pdfAugustovski FA, Irazola VE, Velazquez AP, Gibbons L, Craig BM: Argentine valuation of the EQ-5D health states. Value in health 2009, 12(4):587-596. Epub 2009/11/11 10.1111/j.1524-4733.2008.00468.xBernert S, Fernandez A, Haro JM, Konig HH, Alonso J, Vilagut G, et al.: Comparison of different valuation methods for population health status measured by the EQ-5D in three European countries. Value in health 2009, 12(5):750-758. Epub 2009/06/06 10.1111/j.1524-4733.2009.00509.xCervellati M, Sunde U: Life expectancy and economic growth: The role of the demographic transition. Discussion Paper No 2 St. Gallen. Switzerland: Research Center for Ageing, Welfare and Labour Analysis (SCALA); 2009.Cervellati M, Sunde U: Disease and development: The role of life expectancy reconsidered. Econ Lett 2011, 113(3):269-272. 10.1016/j.econlet.2011.08.008Chatters LM: Religion and health: public health research and practice. Annual review of public health 2000, 21: 335-367. Epub 2000/07/08 10.1146/annurev.publhealth.21.1.335Chen B, Mahal A: Measuring the health of the Indian elderly: evidence from National Sample Survey data. Population health metrics 2010, 8: 30. Epub 2010/11/18 10.1186/1478-7954-8-30Cleland JA, Lee AJ, Hall S: Associations of depression and anxiety with gender, age, health-related quality of life and symptoms in primary care COPD patients. Family practice 2007, 24(3):217-223. Epub 2007/05/17 10.1093/fampra/cmm009Cook EL, Harman JS: A comparison of health-related quality of life for individuals with mental health disorders and common chronic medical conditions. Public Health Rep 2008, 123(1):45-51. Epub 2008/03/20Dolan P, Gudex C, Kind P, Williams A: Valuing health states: a comparison of methods. Journal of health economics 1996, 15(2):209-231. Epub 1996/03/08 10.1016/0167-6296(95)00038-0Evans DB, Lauer JA, Tandon A, Murray CJ: Determinants of Health System Performance: Second-Stage Efficiency Analysis. In Health systems performance assessment debates, methods and empiricism. Edited by: Murray CJ, Evans DB. Geneva: World Health Organization; 2003:693-698.Fayers PM, Machin D: Quality of life The assessment, analysis and interpretation of patient-reported outcomes. 2nd edition. John Wiley & Sons Ltda: West Sussex; 2007.Gulis G: Life expectancy as an indicator of environmental health. European Journal of Epidemiolog 2000, 16(2):161-165. 10.1023/A:1007629306606Herdman M, Gudex C, Lloyd A, Janssen M, Kind P, Parkin D, et al.: Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5 L). Quality of life research 2011, 20(10):1727-1736. Epub 2011/04/12 10.1007/s11136-011-9903-xHorsman J, Furlong W, Feeny D, Torrance G: The Health Utilities Index (HUI): concepts, measurement properties and applications. Health and quality of life outcomes 2003, 1: 54. Epub 2003/11/14 10.1186/1477-7525-1-54Institute of Medicine, National Academy of Science: Summarizing population health directions for the development and application of population metrics. Washington, D.C: Committee on Summary Measures of Population Health; 1998.Jeremic V, Seke V, Radojicic Z, Jeremic D, Markovic A, Slovic D, et al.: Measuring health of countries: a novel approach. HealthMED 2011, 5(6):1762-1766.Jia H, Moriarty DG, Kanarek N: County-level social environment determinants of health-related quality of life among US adults: a multilevel analysis. Journal of community health 2009, 34(5):430-439. Epub 2009/06/26 10.1007/s10900-009-9173-5Konerding U, Moock J, Kohlmann T: The classification systems of the EQ-5D, the HUI II and the SF-6D: what do they have in common? Quality of life research 2009, 18(9):1249-1261. Epub 2009/09/04 10.1007/s11136-009-9525-8Krabbe PF, Peerenboom L, Langenhoff BS, Ruers TJ: Responsiveness of the generic EQ-5D summary measure compared to the disease-specific EORTC QLQ C-30. Quality of life research 2004, 13(7):1247-1253. Epub 2004/10/12le Hoi V, Chuc NT, Lindholm L: Health-related quality of life, and its determinants, among older people in rural Vietnam. BMC public health 2010, 10: 549. Epub 2010/09/14 10.1186/1471-2458-10-549McDonough CM, Tosteson AN: Measuring preferences for cost-utility analysis: how choice of method may influence decision-making. PharmacoEconomics 2007, 25(2):93-106. Epub 2007/01/26 10.2165/00019053-200725020-00003McHorney CA, Ware JE Jr, Raczek AE: The MOS 36-Item Short-Form Health Survey (SF-36): II Psychometric and clinical tests of validity in measuring physical and mental health constructs. Medical care 1993, 31(3):247-263. Epub 1993/03/01 10.1097/00005650-199303000-00006McHorney CA, Ware JE Jr, Lu JF, SCD : The MOS, 36-item Short-Form Health Survey (SF-36): III. Tests of data quality, scaling assumptions, and reliability across diverse patient groups. Medical care 1994, 32(1):40-66. 10.1097/00005650-199401000-00004Molla M, Madans J, Wagener D, Crimmins E: Summary measures of population health: Report of findings on methodologic and data issues. Hyattsville, MD: National Center for Health Statics; 2003. [cited 2013. Available from: http://www.cdc.gov/nchs/data/misc/pophealth.pdfMolla M, Madans J, Wagener D, Crimmins E: Summary measures of population health: Report of findings on methodologic and data issues. Hyattsville, MD: National Center for Health Statics; 2003.Murray CJ, Frenk J: A framework for assessing the performance of health systems. Bull World Health Organ 2000, 78(6):717-731. Epub 2000/08/05Mykletun A, Stordal E, Dahl AA: Hospital Anxiety and Depression (HAD) scale: factor structure, item analyses and internal consistency in a large population. The British journal of psychiatry 2001, 179: 540-544. Epub 2001/12/04 10.1192/bjp.179.6.540NAUGHTON MJ, Shumaker SA, Anderson RT, Czajkowski SM: Psychological Aspects of Health-Related Quality of Life Measurement: Tests and Scales. In Quality of Life and Pharmaco economics in Clinical Trials. Edited by: Spilker B. New York: Lippincott-Raven; 1996:117-131.Neumann PJ, Jacobson PD, Palmer JA: Measuring the value of public health systems: the disconnect between health economists and public health practitioners. American journal of public health 2008, 98(12):2173-2180. Epub 2008/10/17 10.2105/AJPH.2007.127134OMS: Official records of the world health organization. Geneva: World Health Organization; 1948. Ginebra: Organización Mundial de la Salud; 1948 [cited 2013 Abril]; Available from: http://www.who.int/library/collections/historical/es/index3.html Ginebra: Organización Mundial de la Salud; 1948 [cited 2013 Abril]; Available from:Paternina D, Melguizo E: Calidad de vida en adultos mayores. Revisión sistemática. V encuentro institucional semilleros de investigación. Cartagena, Colombia: Universidad de Cartagena; 2010.PATRICK D, Erickson P: Health Policy, Quality of Life: Health Care Evaluation and Resource Allocation. New York: Oxford University Press; 1993.Pereira CC, Palta M, Mullahy J, Fryback DG: Race and preference-based health-related quality of life measures in the United States. Quality of life research 2011, 20(6):969-978. Epub 2010/12/25 10.1007/s11136-010-9813-3Poole JL, Steen VD: The use of the Health Assessment Questionnaire (HAQ) to determine physical disability in systemic sclerosis. Arthritis care and research 1991, 4(1):27-31. Epub 1991/03/01 10.1002/art.1790040106Prause W, Saletu B, Tribl GG, Rieder A, Rosenberger A, Bolitschek J, et al.: Effects of socio-demographic variables on health-related quality of life determined by the quality of life index–German version. Human psychopharmacology 2005, 20(5):359-365. Epub 2005/06/28 10.1002/hup.699Prieto L, Sacristan JA: Problems and solutions in calculating quality-adjusted life years (QALYs). Health and quality of life outcomes 2003, 1: 80. Epub 2003/12/23 10.1186/1477-7525-1-80Pyne JM, Sieber WJ, David K, Kaplan RM, Hyman Rapaport M, Keith WD: Use of the quality of well-being self-administered version (QWB-SA) in assessing health-related quality of life in depressed patients. Journal of affective disorders 2003, 76(1–3):237-247. Epub 2003/08/29Roset M, Badia X, Mayo NE: Sample size calculations in studies using the EuroQol 5D. Quality of life research 1999, 8(6):539-549. Epub 1999/11/05 10.1023/A:1008973731515Salomon JA, Murray CJ, Ustün TB, Chatterji S: Health state valuations in summary measures of population health. In Health systems performance assessment debates, methods and empiricism. Edited by: Murray CJ, Evans DB. Geneva: World Health Organization; 2003:693-698.Sanders BS: Measuring Community Health Levels. American journal of public health and the nation's health 1964, 54: 1063-1070. Epub 1964/07/01 10.2105/AJPH.54.7.1063Tajvar M, Arab M, Montazeri A: Determinants of health-related quality of life in elderly in Tehran Iran. BMC public health 2008, 8: 323. Epub 2008/09/24 10.1186/1471-2458-8-323Tandon A, Lauer JA, Evans DB, Murray CJ: Health system efficiency: Concepts. In Health systems performance assessment debates, methods and empiricism. Edited by: Murray CJ, Evans DB. Geneva: World Health Organization; 2003:683-692.Thacker SB, Stroup DF, Carande-Kulis V, Marks JS, Roy K, Gerberding JL: Measuring the public's health. Public Health Rep 2006, 121(1):14-22. Epub 2006/01/19Torrance GW: Toward a utility theory foundation for health status index models. Health services research 1976, 11(4):349-369.Vogels T, Verrips GH, Verloove-Vanhorick SP, Fekkes M, Kamphuis RP, Koopman HM, et al.: Measuring health-related quality of life in children: the development of the TACQOL parent form. Quality of life research 1998, 7(5):457-465. Epub 1998/08/06Von Neumann J, Morgenstern O: Theory of games and economic behavior. 3rd edition. New York: Jhon Wiley and Sons; 1967.Wang H, Kindig DA, Mullahy J: Variation in Chinese population health related quality of life: results from a EuroQol study in Beijing, China. Quality of life research 2005, 14(1):119-132. Epub 2005/03/26 10.1007/s11136-004-0612-6Ware JE Jr, Sherbourne CD: The MOS 36-item short-form health survey (SF-36) I. Conceptual framework and item selection. Medical care 1992, 30(6):473-483. Epub 1992/06/11 10.1097/00005650-199206000-00002WHO: WHOQOL: measuring quality of life. 1997. Available from: http://www.who.int/mental_health/media/68.pdfWHO: Health systems performance assessment debates, methods and empiricism. Edited by: Murray CJ, Evans DB. Geneva: World Health Organization; 2003.Wright DR, Wittenberg E, Swan JS, Miksad RA, Prosser LA: Methods for measuring temporary health States for cost-utility analyses. PharmacoEconomics 2009, 27(9):713-723. Epub 2009/09/18 10.2165/11317060-000000000-00000Zarate V, Kind P, Valenzuela P, Vignau A, Olivares-Tirado P, Munoz A: Social valuation of EQ-5D health states: the Chilean case. Value in health 2011, 14(8):1135-1141. Epub 2011/12/14 10.1016/j.jval.2011.09.00
    corecore